
406 §9.7 C H A P T E R N I N E

(see Program 5.19). Give the index heap tournament corresponding to the
keys E A S Y Q U E S T I O N.

◦9.53 Implement the priority-queue ADT for index items (see Program 9.11)
using an index heap tournament (see Exercise 9.46).

9.7 Binomial Queues

None of the implementations that we have considered admit implemen-
tations of join, remove the maximum, and insert that are all efficient
in the worst case. Unordered linked lists have fast join and insert, but
slow remove the maximum; ordered linked lists have fast remove the
maximum, but slow join and insert; heaps have fast insert and remove
the maximum, but slow join; and so forth. (See Table 9.1.) In applica-
tions where frequent or large join operations play an important role,
we need to consider more advanced data structures.

In this context, we mean by “efficient” that the operations should
use no more than logarithmic time in the worst case. This restriction
would seem to rule out array representations, because we can join
two large arrays apparently only by moving all the elements in at
least one of them. The unordered doubly linked-list representation of
Program 9.9 does the join in constant time, but requires that we walk
through the whole list for remove the maximum. Use of a doubly
linked ordered list (see Exercise 9.40) gives a constant-time remove the
maximum, but requires linear time to merge lists for join.

Numerous data structures have been developed that can support
efficient implementations of all the priority-queue operations. Most
of them are based on direct linked representation of heap-ordered
trees. Two links are needed for moving down the tree (either to both
children in a binary tree or to the first child and next sibling in a
binary tree representation of a general tree) and one link to the parent
is needed for moving up the tree. Developing implementations of
the heap-ordering operations that work for any (heap-ordered) tree
shape with explicit nodes and links or other representation is generally
straightforward. The difficulty lies in dynamic operations such as
insert, remove, and join, which require us to modify the tree structure.
Different data structures are based on different strategies for modifying
the tree structure while still maintaining balance in the tree. The

Algorithms, 3rd Edition,
in Java, Parts 1-4:
Fundamentals, Data
Structures, Sorting, and
Searching.
Robert Sedgewick,
Addison-Wesley 2002.

This excerpt made
available by permission of
Robert Sedgewick, and of
Pearson Education, Inc.

P R I O R I T Y Q U E U E S A N D H E A P S O R T §9.7 407

T

S N

R

O

A G

I

W

P

L

E

E

T

S

R N

O A G I

W

P

L E

E

Figure 9.15
A binomial queue of size 13
A binomial queue of size N is a
list of left-heap-ordered power-of-
2 heaps, one for each bit in the
binary representation of N . Thus,
a binomial queue of size 13 =
11012 consists of an 8-heap, a 4-
heap, and a 1-heap. Shown here
are the left-heap-ordered power-
of-2 heap representation (top) and
the heap-ordered binomial-tree
representation (bottom) of the same
binomial queue.

algorithms use trees that are more flexible than are complete trees, but
keep the trees sufficiently balanced to ensure a logarithmic time bound.

The overhead of maintaining a triply linked structure—ensuring
that a particular implementation correctly maintains three pointers in
all circumstances—can be burdensome (see Exercise 9.41). Moreover,
in many practical situations, it is difficult to demonstrate that effi-
cient implementations of all the operations are required, so we might
pause before taking on such an implementation. On the other hand, it
is also difficult to demonstrate that efficient implementations are not
required, and the investment to guarantee that all the priority-queue
operations will be fast may be justified. Regardless of such consid-
erations, the next step from heaps to a data structure that allows for
efficient implementation of join, insert, and remove the maximum is
fascinating and worthy of study in its own right.

Even with a linked representation for the trees, the heap condition
and the condition that the heap-ordered binary tree be complete are
too strong to allow efficient implementation of the join operation.
Given two heap-ordered trees, how do we merge them together into
just one tree? For example, if one of the trees has 1023 nodes and
the other has 255 nodes, how can we merge them into a tree with
1278 nodes, without touching more than 10 or 20 nodes? It seems
impossible to merge heap-ordered trees in general if the trees are to
be heap ordered and complete, but various advanced data structures
have been devised that weaken the heap-order and balance conditions
to get the flexibility that we need to devise an efficient join. Next,
we consider an ingenious solution to this problem, called the binomial
queue, that was developed by Vuillemin in 1978.

To begin, we note that the join operation is trivial for one partic-
ular type of tree with a relaxed heap-ordering restriction.

Definition 9.4 A binary tree comprising nodes with keys is said to
be left heap ordered if the key in each node is larger than or equal to
all the keys in that node’s left subtree (if any).

Definition 9.5 A power-of-2 heap is a left-heap-ordered tree consist-
ing of a root node with an empty right subtree and a complete left
subtree. The tree corresponding to a power-of-2 heap by the left-child,
right-sibling correspondence is called a binomial tree.

408 §9.7 C H A P T E R N I N E

X
T

S W
R N P M

O A G I L E A E

X
W

P M

L E A E

T
S

R N

O A G I

X

T W

S

R

O

A

N

G

I P

L

E

M

A

E

X
W

P

M

L

E A

E

T
S

R

N

O

A G

I

Figure 9.16
Joining of two equal-sized

power-of-2 heaps.
We join two power-of-two heaps
(top) by putting the larger of the
roots at the root, with that root’s
(left) subtree as the right subtree
of the other original root. If the
operands have 2n nodes, the result
has 2n+1 nodes. If the operands
are left-heap ordered, then so is
the result, with the largest key
at the root. The heap-ordered
binomial-tree representation of the
same operation is shown below the
line.

Program 9.13 Joining of two equal-sized power-of-2 heaps

We need to change only a few links to combine two equal-sized power-
of-2 heaps into one power-of-2 heap that is twice that size. This method,
which we define as a private method in the implementation, is one key
to the efficiency of the binomial queue algorithm.

static Node pair(Node p, Node q)

{

if (p.item.less(q.item))

{ p.r = q.l; q.l = p; return q; }

else { q.r = p.l; p.l = q; return p; }

}

Binomial trees and power-of-2 heaps are equivalent. We work
with both representations because binomial trees are slightly easier
to visualize, whereas the simple representation of power-of-2 heaps
leads to simpler implementations. In particular, we depend upon the
following facts, which are direct consequences of the definitions.
• The number of nodes in a power-of-2 heap is a power of 2.
• No node has a key larger than the key at the root.
• Binomial trees are heap-ordered.

The trivial operation upon which binomial queue algorithms are
based is that of joining two power-of-2 heaps that have an equal num-
ber of nodes. The result is a heap with twice as many nodes that is
easy to create, as illustrated in Figure 9.16. The root node with the
larger key becomes the root of the result (with the other original root
as the result root’s left child), with its left subtree becoming the right
subtree of the other root node. Given a linked representation for the
trees, the join is a constant-time operation: We simply adjust two links
at the top. An implementation is given in Program 9.13. This basic
operation is at the heart of Vuillemin’s general solution to the problem
of implementing priority queues with no slow operations.

Definition 9.6 A binomial queue is a set of power-of-2 heaps, no
two of the same size. The structure of a binomial queue is determined
by that queue’s number of nodes, by correspondence with the binary
representation of integers.

P R I O R I T Y Q U E U E S A N D H E A P S O R T §9.7 409

A binomial queue of N elements has one power-of-2 heap for
each 1 bit in the binary representation of N . For example, a binomial
queue of 13 nodes comprises an 8-heap, a 4-heap, and a 1-heap, as
illustrated in Figure 9.15. There are at most lgN power-of-2 heaps in
a binomial queue of size N , all of height no greater than lgN .

In accordance with Definitions 9.5 and 9.6, we represent power-
of-2 heaps (and handles to items) as links to nodes containing keys and
two links (like the explicit tree representation of tournaments in Fig-
ure 5.10); and we represent binomial queues as arrays of power-of-2
heaps, by including the following private members in our implemen-
tation of Program 9.8:

private static class Node

{ Item item; Node l, r;

Node(Item v)

{ item = v; l = null; r = null; }

};

private Node[] bq;

The arrays are not large and the trees are not high; and this rep-
resentation is sufficiently flexible to allow implementation of all the
priority-queue operations in less than lgN steps, as we shall now see.

Each link in the array bq is a links to a power-of-2 heap: bq[i] is
either null or a link to a 2i-heap. As the queue grows and shrinks, the
length of the array increases and decreases, but much less frequently:
for example the array length increases by 1 only after the queue size
doubles. It will be convenient to always have the last link null, so we
begin with an array of size 1, a null link:

PQfull()

{ bq = new Node[1]; bq[0] = null; }

thus adopting the convention that a queue is empty if and only if the
array is of length 1.

Now, let us consider the insert operation. The process of insert-
ing a new item into a binomial queue mirrors precisely the process
of incrementing a binary number. To increment a binary number, we
move from right to left, changing 1s to 0s because of the carry associ-
ated with 1 + 1 = 102, until finding the rightmost 0, which we change
to 1. In the analogous way, to add a new item to a binomial queue, we
move from right to left, merging heaps corresponding to 1 bits with a

410 §9.7 C H A P T E R N I N E

W
T

N P

E I L E

W

P

L E

T

I

E

N

T
N

E I

N
E

Figure 9.17
Insertion of a new element

into a binomial queue
Adding an element to a binomial
queue of seven nodes is analogous
to performing the binary addition
1112 + 1 = 10002, with carries at
each bit. The result is the binomial
queue at the bottom, with an 8-
heap and null 4-, 2-, and 1-heaps.

Program 9.14 Insertion into a binomial queue

To insert a node into a binomial queue, we first make the node into a 1-
heap, identify it as a carry 1-heap, and then iterate the following process
starting at i = 0. If the binomial queue has no 2i-heap, we put the carry
2i-heap into the queue. If the binomial queue has a 2i-heap, we combine
that with the new one (using the pair method from Program 9.13) to
make a 2i+1-heap, increment i, and iterate until finding an empty heap
position in the binomial queue. When we carry in to the null link at the
end of the array, we call grow to increase the size of the array by 1 and
put a null link in the new position (see text).

Object insert(Item v)

{ Node t = new Node(v), c = t;

for (int i = 0; i < bq.length+1; i++)
{

if (c == null) break;

if (i == bq.length-1) bq = grow(bq);

if (bq[i] == null) { bq[i] = c; break; }

c = pair(c, bq[i]); bq[i] = null;

}

return t;

}

carry heap, until finding the rightmost empty position to put the carry
heap.

Specifically, to insert a new item into a binomial queue, we make
the new item into a 1-heap. Then, ifN is even (rightmost bit 0), we just
put this 1-heap in the empty rightmost position of the binomial queue.
If N is odd (rightmost bit 1), we join the 1-heap corresponding to the
new item with the 1-heap in the rightmost position of the binomial
queue to make a carry 2-heap. If the position corresponding to 2 in
the binomial queue is empty, we put the carry heap there; otherwise,
we merge the carry 2-heap with the 2-heap from the binomial queue to
make a carry 4-heap, and so forth, continuing until we get to an empty
position in the binomial queue. This process is depicted in Figure 9.17;
Program 9.14 is an implementation.

When we add an element to a binomial queue with 2k − 1 items
to make one with 2k items, we carry into the null link at the end of
the array, replacing it with a binomial tree of size 2k (the rest of the

P R I O R I T Y Q U E U E S A N D H E A P S O R T §9.7 411

T
S

R N

O A G I

W
P

L E

M
A

E

X
T

S W
R N P M

O A G I L E A E

Figure 9.18
Removal of the maximum in a

power-of-2 heap
Taking away the root gives a forest
of power-of-2 heaps, all left-heap
ordered, with roots from the right
spine of the tree. This operation
leads to a way to remove the max-
imum element from a binomial
queue: Take away the root of the
power-of-2 heap that contains the
largest element, then use the join
operation to merge the resulting
binomial queue with remaining
power-of-2 heaps in the original
binomial queue.

Program 9.15 Removal of the maximum in a binomial queue

We first scan the root nodes to find the maximum, and remove the
power-of-2 heap containing the maximum from the binomial queue.
We then remove the root node containing the maximum from its power-
of-2 heap and temporarily build a binomial queue that contains the
remaining constituent parts of the power-of-2 heap. Finally, we use
the join operation to merge this binomial queue back into the original
binomial queue.

Item getmax()

{ int i, max; Item v = null;

for (i = 0, max = -1; i < bq.length; i++)

if (bq[i] != null)

if ((max == -1) || v.less(bq[i].item))

{ max = i; v = bq[max].item; }

Node[] temp = new Node[max+1]; temp[max] = null;

Node x = bq[max].l; bq[max] = null;

for (i = max-1; i >= 0; i--)
{ temp[i] = x; x = x.r; temp[i].r = null; }

bq = BQjoin(bq, temp);

return v;

}

links are all null). To adhere to our convention in this case, we need
to add a null link at the end, which necessitates increasing the size of
the array by 1. The method grow that Program 9.14 invokes for this
task is simple to implement (see Exercise 9.62).

Other binomial-queue operations are also best understood by
analogy with binary arithmetic. As we shall see, implementing join
corresponds to implementing addition for binary numbers.

For the moment, assume that we have an (efficient) method for
join that is organized to merge the priority-queue reference in its second
operand with the priority-queue reference in its first operand (leaving
the result in the first operand). Using this method, we could implement
the insert operation with a call to the join method where one of the
operands is a binomial queue of size 1 (see Exercise 9.66).

We can also implement the remove the maximum operation with
one call to join. To find the maximum item in a binomial queue, we

412 §9.7 C H A P T E R N I N E

T
S

R N

O A G I

W
P

L E

M
A

E

W

P

L E

E

T
S

R N

O A G I

M
A

Figure 9.19
Joining of two binomial

queues (no carry)
When two binomial queues to be
joined do not have any power-
of-2 heaps of the same size, the
join operation is a simple merge.
Doing this operation is analo-
gous to adding two binary num-
bers without ever encountering
1 + 1 (no carry). Here, a bino-
mial queue of 10 nodes is merged
with one of 5 nodes to make one
of 15 nodes, corresponding to
10102 + 01012 = 11112 .

scan the queue’s power-of-2 heaps. Each of these heaps is left-heap-
ordered, so it has its maximum element at the root. The largest of the
items in the roots is the largest element in the binomial queue. Because
there are no more than lgN heaps in the binomial queue, the total
time to find the maximum element is less than lgN .

To perform the remove the maximum operation, we note that
removing the root of a left-ordered 2k-heap leaves k left-ordered power-
of-2 heaps—a 2k−1-heap, a 2k−2-heap, and so forth—which we can
easily restructure into a binomial queue of size 2k − 1, as illustrated
in Figure 9.18. Then, we can use the join operation to combine this
binomial queue with the rest of the original queue, to complete the
remove the maximum operation. This implementation is given in
Program 9.15.

How do we join two binomial queues? First, we note that the
operation is trivial if they do not contain two power-of-2 heaps of the
same size, as illustrated in Figure 9.19: we simply merge the heaps
from the two binomial queues to make one binomial queue. A queue
of size 10 (consisting of an 8-heap and a 2-heap) and a queue of
size 5 (consisting of a 4-heap and a 1-heap) simply merge together to
make a queue of size 15 (consisting of an 8-heap, a 4-heap, a 2-heap,
and a 1-heap). The more general case follows by direct analogy with
performing addition on two binary numbers, complete with carry, as
illustrated in Figure 9.20.

For example, when we add a queue of size 7 (consisting of a
4-heap, a 2-heap, and a 1-heap) to a queue of size 3 (consisting of
a 2-heap and a 1-heap), we get a queue of size 10 (consisting of an
8-heap and a 2-heap); to do the addition, we need to merge the 1-
heaps and carry a 2-heap, then merge the 2-heaps and carry a 4-heap,
then merge the 4-heaps to get an 8-heap result, in a manner precisely
analogous to the binary addition 0112 + 1112 = 10102. The example
of Figure 9.19 is simpler than Figure 9.20 because it is analogous to
10102 + 01012 = 11112, with no carry.

This direct analogy with binary arithmetic carries through to give
us a natural implementation for the join operation (see Program 9.16).
For each bit, there are eight cases to consider, based on all the possible
different values for the 3 bits involved (carry and two bits in the
operands). The code is more complicated than that for plain addition,
because we are dealing with distinguishable heaps, rather than with

P R I O R I T Y Q U E U E S A N D H E A P S O R T §9.7 413

W
T

N P

E I L E

M

A

W

P

L E

M

A

E

T

I

N

T
N

E I

N
E

Figure 9.20
Joining of two binomial

queues
Adding a binomial queue of 3
nodes to one of 7 nodes gives one
of 10 nodes through a process
that mimics the binary addition
0112 + 1112 = 10102. Adding N
to E gives an empty 1-heap in the
result with a carry 2-heap contain-
ing N and E. Then adding the three
2-heaps leaves a 2-heap in the re-
sult with a carry 4-heap containing
T N E I. This 4-heap is added to
the other 4-heap, producing the bi-
nomial queue at the bottom. Few
nodes are touched in the process.

indistinguishable bits, but each case is straightforward. For example,
if all 3 bits are 1, we need to leave a heap in the result binomial queue,
and to join the other two heaps for the carry into the next position.
Indeed, this operation brings us full cycle on abstract data types: we
(barely) resist the temptation to cast Program 9.16 as a purely abstract
binary addition procedure, with the binomial queue implementation
nothing more than a client program using the more complicated bit
addition procedure in Program 9.13.

We do a join operation after reducing the size of the binomial
queue by 1. If the next-to-last link in the result is null, then we can
shrink the size of the array by 1, since the last link in the result will be
null. The method shrink that Program 9.16 invokes for this task is
simple to implement (see Exercise 9.62).

Property 9.7 All the operations for the priority-queue ADT can be
implemented with binomial queues such that O(lgN) steps are re-
quired for any operations performed on an N -item queue.

These performance bounds are the goal of the design of the data struc-
ture. They are direct consequences of the fact that the implementations
all have only one or two loops that iterate through the roots of the
trees in the binomial queue.

Another option, which leads to a slightly simpler implementa-
tion, is to keep the number of tree in the queue constant, so the so
the running time of all the methods is proportional to this number
(the logarithm of the maximum size of the binomial queue) (see Exer-
cise 9.64).

Property 9.8 Construction of a binomial queue with N insert oper-
ations on an initially empty queue requires O(N) comparisons in the
worst case.

For one-half the insertions (when the queue size is even and there is
no 1-heap) no comparisons are required; for one-half the remaining
insertions (when there is no 2-heap) only 1 comparison is required;
when there is no 4-heap, only 2 comparisons are required; and so
forth. Thus, the total number of comparisons is less than 0 ·N/2 + 1 ·
N/4 + 2 ·N/8 + . . . < N .

Binomial queues provide guaranteed fast performance, but data
structures have been designed with even better theoretical performance

414 §9.7 C H A P T E R N I N E

Program 9.16 Joining (merging) of two binomial queues

This code mimics the operation of adding two binary numbers. Pro-
ceeding from right to left with an initial carry bit of 0, we treat the
eight possible cases (all possible values of the operands and carry bits)
in a straightforward manner. For example, case 3 corresponds to the
operand bits being both 1 and the carry 0. Then, the result is 0, but the
carry is 1 (the result of adding the operand bits).

We exchange the references if necessary to make a reference the
queue with the larger array representation, and we increase or decrease
the size of a’s array for the result, if warranted. If there is a carry into
the last (null) link in case 4, it invokes grow; if the next-to-last link is
null after the operation is complete, it invokes shrink.

Like pair, this method is a private method in the implementation,
which is called by getmax and join. The implementation of the ADT
method join(PQfull p) is the invocation BQjoin(bq, p.bq).

static int bit(Node x)
{ return x == null ? 0 : 1; }

static int bits(Node C, Node B, Node A)

{ return 4*bit(C) + 2*bit(B) + 1*bit(A); }

static Node[] BQjoin(Node[] a, Node[] b)

{ Node c = null;

if (a.length < b.length)

{ Node[] t = a; a = b; b = t; }

for (int i = 0; i < b.length; i++)

switch(bits(c, b[i], a[i]))

{

case 2: a[i] = b[i]; break;

case 3: c = pair(a[i], b[i]);

a[i] = null; break;

case 4: if (i == a.length-1) a = grow(a);
a[i] = c; c = null; break;

case 5: c = pair(c, a[i]);

a[i] = null; break;

case 6:

case 7: c = pair(c, b[i]); break;

}

if (a[a.length-1] == null) a = shrink(a);

return a;

}

P R I O R I T Y Q U E U E S A N D H E A P S O R T §9.7 415

characteristics, providing guaranteed constant-time performance for
certain operations. This problem is an interesting and active area of
data-structure design. On the other hand, the practical utility of many
of these esoteric structures is dubious, and we need to be certain that
performance bottlenecks exist that we can relieve only by reducing the
running time of some priority-queue operation, before we delve into
complex data-structure solutions. Indeed, for practical applications,
we should prefer a trivial structure for debugging and for small queues;
then, we should use heaps to speed up the operations unless fast join
operations are required; finally, we should use binomial queues to
guarantee logarithmic performance for all operations. All things con-
sidered, however, a priority-queue package based on binomial queues
is a valuable addition to a software library.

Exercises
.9.54 Draw a binomial queue of size 29, using the binomial-tree representa-

tion.

• 9.55 Write a program to draw the binomial-tree representation of a binomial
queue, given the size N (just nodes connected by edges, no keys).

9.56 Give the binomial queue that results when the keys E A S Y Q U E S T I
O N are inserted into an initially empty binomial queue.

9.57 Give the binomial queue that results when the keys E A S Y are inserted
into an initially empty binomial queue, and give the binomial queue that results
when the keys Q U E S T I O N are inserted into an initially empty binomial
queue. Then give the result of remove the maximum for each queue. Finally,
give the result when the join operation is performed on the resulting queues.

9.58 Using the conventions of Exercise 9.1 give the sequence of binomial
queues produced when the operations

P R I O * R * * I * T * Y * * * Q U E * * * U * E

are performed on an initially empty binomial queue.

9.59 Using the conventions of Exercise 9.2 give the sequence of binomial
queues produced when the operations

(((P R I O *) + (R * I T * Y *)) * * *) + (Q U E * * * U * E)

are performed on an initially empty binomial queue.

9.60 Prove that a binomial tree with 2n nodes has
(
n
i

)
nodes at level i for

0 ≤ i ≤ n. (This fact is the origin of the name binomial tree.)

.9.61 Give an implementation for empty() that is appropriate for the bino-
mial queue implementation given in the text.

416 §9.7 C H A P T E R N I N E

9.62 Implement the grow and shrink methods that increase by one and
decrease by one, respectively, the size of a Node array leaving a null link in the
last array position (shrink should throw an exception if that is not the case).

9.63 Change the binomial queue implementation in the the text to represent
the queues with Java Vector objects instead of arrays.

◦9.64 Develop a binomial-queue implementation that uses a fixed-size array
of representation, so that grow and shrink are not needed, but the operations
all take time proportional to the array size.

◦9.65 Modify your solution such that Property 9.7 holds, by maintaining a
sentinel pointer to mark the point where the loops should terminate.

• 9.66 Implement insert for binomial queues by just using the join operation
explicitly.

•• 9.67 Implement change priority and remove for binomial queues. Note: You
will need to add a third link, which points up the tree, to the nodes.

• 9.68 Add an implementation of clone to the binomial queue implementa-
tions (Programs 9.13 through 9.16) in the text and test your implementation
with your driver program from Exercise 9.44.

• 9.69 Empirically compare binomial queues against heaps as the basis for
sorting, as in Program 9.6, for randomly ordered keys with N = 1000, 104,
105, and 106.

• 9.70 Develop an in-place sorting method like heapsort, but based on bino-
mial queues. Hint: See Exercise 9.38.

appel
Text Box

