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Abstract

The need for scalable, high-performance datastores has
led to the development of NoSQL databases, which
achieve scalability by partitioning data over a single key.
However, programmers often need to query data with
other keys, which data stores provide by either querying
every partition, eliminating the benefits of partitioning,
or replicating additional indexes, wasting the benefits of
data replication.

In this paper, we show there is no need to compromise
scalability for functionality. We present Replex, a data-
store that enables efficient querying on multiple keys by
rethinking data placement during replication. Tradition-
ally, a data store is first globally partitioned, then each
partition is replicated identically to multiple nodes. In-
stead, Replex relies on a novel replication unit, termed
replex, which partitions a full copy of the data based on
its unique key. Replexes eliminate any additional over-
head to maintaining indices, at the cost of increasing re-
covery complexity. To address this issue, we also intro-
duce hybrid replexes, which enable a rich design space
for trading off steady-state performance with faster re-
covery. We build, parameterize, and evaluate Replex on
multiple dimensions and find that Replex surpasses the
steady-state and failure recovery performance of Hyper-
Dex, a state-of-the-art multi-key data store.

1 Introduction

Applications have traditionally stored data in SQL
databases, which provide programmers with an efficient
and convenient query language to retrieve data. How-
ever, as storage needs of applications grew, programmers
began shifting towards NoSQL databases, which achieve
scalability by supporting a much simpler query model,
typically by a single primary key. This simplification

made scaling NoSQL datastores easy: by using the key
to divide the data into partitions or “shards”, the data-
store could be efficiently mapped onto multiple nodes.
Unfortunately, this model is inconvenient for program-
mers, who often still need to query data by a value other
than the primary key.

Several NoSQL datastores[1, 3, 14, 9, 15, 7] have
emerged that can support queries on multiple keys
through the use of secondary indexes. Many of these
datastores simply query all partitions to search for an en-
try which matches a secondary key. In this approach, per-
formance quickly degrades as the number of partitions
increases, defeating the reason for partitioning for scal-
ability. HyperDex [12], a NoSQL datastore which takes
another approach, generates and partitions an additional
copy of the datastore for each key. This design allows for
quick, efficient queries on secondary keys, but at the ex-
pense of storage and performance overhead: supporting
just one secondary key doubles storage requirements and
write latencies.

In this paper, we describe Replex, a scalable, highly
available multi-key datastore. In Replex, each full copy
of the data may be partitioned by a different key, thereby
retaining the ability to support queries against multiple
keys without incurring a performance penalty or storage
overhead beyond what is required to protect the database
against failure. In fact, since Replex does not make un-
necessary copies of data, it outperforms other NoSQL
systems during both steady-state and recovery.

To address the challenge of determining when and
where to replicate data, we explore, develop, and param-
eterize a new replication scheme, which makes use of a
novel replication unit we call a replex. The key insight
of a replex is to combine the need to replicate for fault-
tolerance and the need to replicate for index availability.
By merging these concerns, our protocol avoids using ex-
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traneous copies as the means to enable queries by addi-
tional keys. However, this introduces a tradeoff between
recovery time and storage cost, which we fully explore
(§ 3). Replex actually recovers from failure faster than
other NoSQL systems because of storage savings during
replication.

We implement (§ 4) and evaluate (§ 5) the performance
of Replex using several different parameters and con-
sider both steady-state performance and performance un-
der multiple failure scenarios. We compare Replex to
Hyperdex and Cassandra and show that Replex’s steady-
state performance is 76% better than Hyperdex and on-
par with Cassandra for writes. For reads, Replex outper-
forms Cassandra by as much as 2-9× while maintaining
performance equivalent with HyperDex. In addition, we
show that Replex can recover from one or two failures
2-3× faster than Hyperdex, all while using a fraction of
the resources.

Our results contradict the popular belief that support-
ing multiple keys in a NoSQL datastore is expensive.
With replexes, NoSQL datastores can easily support mul-
tiple keys with little overhead.

2 System Design

We present Replex’s data model and replication design,
which enables fast index reads and updates while being
parsimonious with storage usage.

2.1 Data Model and API

Replex stores data in the form of RDBMS-style tables:
every table has a schema that specifies a fixed set of
columns, and data is inserted and replicated at the row-
granularity. Every table also specifies a single column to
be the primary key, which becomes the default index for
the table.

As with traditional RDBMSs, the user can also specify
any number of additional indexes. An index is defined by
the set of columns that comprise the index’s sorting key.
For example, the sorting key for the primary index is the
column of the primary key.

The client queries we focus on in this paper are
insert(r), where r is a row of values, and lookup(R),
where R is a row of predicates. Predicates can be null,
which matches on anything. Then lookup(R) returns all
rows r that match on all predicates in R. The non-null
predicates should correspond to the sorting key of an in-
dex in the table. Then that index is used to find all match-
ing rows.

Henceforth, we will refer to the data stored in Replex

insert(r)	   replex	  A	  

lookup(R)	  

hB(R)	  
Replex	  

replex	  B	   replex	  C	  

Figure 1: Every replex stores the table across of a num-
ber of partitions. This diagram shows the system model
for a table with 3 indexes. When a row r is inserted, hA,
hB, and hC determine which partition (shaded) in the re-
plex stores r. Similarly, a lookup on a replex is broadcast
to a number of partitions based on h.

as the table. Then Replex is concerned with maintaining
the indexes of and replicating the table.

2.2 Data Partitioning with Replexes

In order to enable fast queries by a particular index, a
table must be partitioned by that index. To solve this
problem, Replex builds what we call a replex for every
index. A replex stores a table and shards the rows across
multiple partitions. All replexes store the same data (ev-
ery row in the table), the only difference across replexes
is the way data is partitioned and sorted, which is by the
sorting key of the index associated with the replex.

Each replex is associated with a sharding function, h,
such that h(r) defines the partition number in the replex
that stores row r. For predicate R, h(R) returns a set be-
cause the rows of values that satisfy R may lie in mul-
tiple partitions. The only columns that affect h are the
columns in the sorting key of the index associated with
the replex.

A novel contribution of Replex is to treat each parti-
tion of a replex as first-class replicas in the system. Sys-
tems typically replicate a row for durability and avail-
ability by writing it to a number of replicas. Similarly,
Replex uses chain replication [27] to replicate a row to a
number of replex partitions, each of which sorts the row
by the replex’s corresponding index, as shown in Fig-
ure 1; in Section 2.3 we explain why we choose chain
replication. The key observation is that after replication,
Replex has both replicated and indexed a row. There is
no need for explicit indexing.

By treating replexes as true replicas, we eliminate the
overheads associated with maintaining and replicating
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Figure 2: Consider storing every log entry in a Re-
plex table. For linearizability, a local timestamp cannot
appear to go backwards with respect to the global times-
tamp. For example, tagging in last entry with local times-
tamp X:9 violates the semantics of the global timestamp.

individual index structures, which translates to reduc-
tions in network traffic, operation latency, and storage
inflation.

2.3 Replication Protocol

Replacing replicas with replexes requires a modified
replication protocol. The difficulty arises because indi-
vidual replexes can have requirements, such as unique-
ness constraints, that cause the same operation to be both
valid and invalid depending on the replex. Hence before
an operation can be replicated, a consensus decision must
be made among the replexes to agree on the validity of
an operation.

As an example of an ordering constraint, consider a
distributed log that totally orders updates to a number of
shared data structures, a la state machine replication. In
addition to the global ordering, each data structure re-
quires a local ordering that must reflect the global total
ordering. For example, suppose there are two data struc-
tures X and Y, and a subset of the log is shown in Fig-
ure 2. To store the updates in Replex, we can create a
table with two columns: a global timestamp and a lo-
cal timestamp. Because consumers of the log will want
to look up entries both against the global timestamp and
within the sublog of a specific data structure, we also
specify an index per column; examples of logs with such
requirements appear in systems such as Corfu [4], Hy-
der [6], and CalvinFS [24].

Then the validity requirement in this case is a dense
prefix of timestamps: a timestamp t cannot be written un-
til all timestamps t ′ < t have been inserted into the table;
this is true for both the local and global timestamps. For
example, an attempt to insert the row (40, X:9) would be
valid by the index of the global timestamp, but invalid by
the index of the local timestamp, because the existence
of X:10 in the index means X:9 must have already been
inserted. Then the row should not be inserted into the

(op,	  valid1)	  
(op,	  valid1	  &	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  valid2)	  

valid1	   valid2	   valid3	  
	  	  	  valid	  =	  
	  	  	  valid1	  &	  
	  	  	  valid2	  &	  
	  	  	  valid3	  
	  valid	  valid	  valid	  

to	  client	  

incoming	  op	  

Figure 3: Each node represents an index. This mod-
ified replication protocol has two phases: 1) Top phase:
propagates the operation to all relevant partitions and col-
lects each partition’s decision. 2) Bottom phase: the last
partition aggregates these decisions into the final valid
boolean, which is then propagated back up the chain.
When a replex receives valid, it knows to commit or
abort the operation

table; this is problematic if the first replex has already
processed the insert, which means lookups on the first
index will see row (40, X:9).

Datastores without global secondary indexes do not
have this validity problem, because a key is only sorted
by a single index. Datastores with global secondary in-
dexes employ a distributed transaction for update oper-
ations, because an operation must be atomically repli-
cated as valid or invalid across all the indexes [11]. Be-
cause replexes are similar to global secondary indexes,
a distributed transaction can do the job. But to use a
distributed transaction for every update operation would
cripple system throughput.

To remove the need for a distributed transaction in our
replication protocol, we modify chain replication to in-
clude a consensus protocol. We choose chain replication
instead of quorum-based replication because all replexes
must participate to determine validity. As in chain repli-
cation, our protocol visits every replex in some fixed or-
der. Figure 3 illustrates the steps in this new replication
protocol.

Our new protocol can be split into two phases: (1)
consensus phase, where we propagate the operation to
all replexes, as in chain replication. The actual parti-
tion within the replex that handles the operation is the
partition that will eventually replicate the operation, as
depicted in Figure 1. As the protocol leaves each parti-
tion, it collects that partition’s validity decision. When
this phase reaches the last partition in the chain, the last
partition aggregates each partition’s decision into a final
decision, which is simply the logical AND of all deci-
sions: if there is a single abort decision, the operation is
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invalid. (2) replication phase, where the last partition
initiates the propagation of this final decision back up
the chain. As each partition receives this final decision,
if the decision is to abort, then the partition discards that
operation. If the decision is to commit, then that partition
commits the operation to disk and continues propagating
the decision.

It is guaranteed that when the client sees the result of
the operation, all partitions will agree on the outcome
of the operation, and if the operation is valid, all parti-
tions will have made the decision durable. An intuitive
proof of correctness for this consensus protocol is sim-
ple. We can treat the first phase of our protocol as an in-
stance of chain replication, which is an instance of Ver-
tical Paxos, which has existing correctness proofs [16].
The second phase of our protocol is simply a discovery
phase in Paxos protocols and is hence irrelevant in the
proof of correctness. This discovery phase is necessary
for replexes to discover the final decision so they may
persist (replicate) necessary data, but has no bearings on
the consensus decision itself.

It is possible for a client to see committed operations at
one replex before another. For example, suppose client 1
is propagating an operation to replexes A and B. The op-
eration reaches B and commits successfully, writing the
commit bit at B. Then this committed operation is visi-
ble to client 2 that queries replex B, even though client
2 cannot see it by querying replex A, if the commit bit
is still in flight. Note that this does not violate the con-
sensus guarantee, because any operation viewed by one
client is necessarily committed.

Our protocol is similar to the CRAQ protocol which
adds dirty-read bits to objects replicated with chain repli-
cation [23]. The difference between the two protocols is
that CRAQ operates on objects, rather than operations:
our protocol determines whether or not an operation may
be committed to an object’s replicated state machine his-
tory, while CRAQ determines whether or not an object
is dirty. In particular, operations can be aborted through
our protocol.

Finally, we observe that our replication protocol does
not allow writes during failure. In chain replication,
writes to an object on a failed node cannot resume un-
til its full persisted history has been restored; similarly,
writes may not be committed in Replex until the failed
node is fully recovered.

2.4 Failure Amplification

Indexing during replication enables Replex to achieve
fast steady-state requests. But there is a cost, which be-
comes evident when we consider partition failures.

Failed partitions bring up two concerns: how to recon-
struct the failed partition and how to respond to queries
that would have been serviced by the failed partition.
Both of these problems can be solved as long as the sys-
tem knows how to find data stored on the failed parti-
tion. The problem is even though two replexes contain
the same data, they have different sharding functions, so
replicated data is scattered differently.

We define failure amplification as the overhead of
finding data when the desired partition is unavailable.
We characterize failure amplification along two axes: 1)
disk IOPS and CPU: the overhead of searching through
a partition that is sorted differently, 2) network traffic:
the overhead of broadcasting the read to all partitions in
another replex. For the remainder of the paper, we use
failure amplification to compare recovery scenarios.

For example, suppose a user specifies two indexes on
a table, which would be implemented as two replexes in
Replex. If a partition fails, a simple recovery protocol
would redirect queries originally destined for the failed
partition to the other replex. Then the failure amplifica-
tion is maximal: the read must now be broadcast to every
partition in the other replex, and at each partition, a read
becomes a brute-force search that must iterate through
the entire local storage of a partition.

On the other hand, to avoid failure amplification
within a failure threshold f , one could introduce f re-
plexes with the same sharding function, h; these are the
exact replicas of traditional replication. There is no fail-
ure amplification within the failure threshold, because
sharding is identical across exact replicas; the cost is stor-
age and network overhead in the steady-state.

The goal is to capture the possible deployments in be-
tween these two extremes. Unfortunately, without addi-
tional machinery, this space can only be explored in a
discrete manner: by adding or removing exact replicas.
In the next section, we introduce a construct that allows
fine-grained reasoning within this tradeoff space.

3 Hybrid Replexes

Suppose a user schema specifies a single table with two
indexes, A and B, so Replex builds two replexes. As
mentioned before, as soon as a partition in either replex
fails, reads to that partition must now visit all partitions
in the other replex, the disjoint union of which is the en-
tire dataset.

One strategy is to add replexes that are exact replicas.
For example, we can replicate replex A, as shown in Fig-
ure 4. Then after one failure, reads to replex A do not
see any failure amplifcation. However, adding another
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System	  2	  

Replex A 

Replex B 

Replex A 

Figure 4: In graph depictions of replexes, nodes are par-
titions and edges indicate two partitions might share data.
For example, because replexes A and B have independent
sharding functions, it is possible for all combinations of
nodes to share data. This graph shows a simple solution
to reduce the failure amplification experienced by replex
A, which is to replicate A again.

copy of replex A does not improve failure amplification
for reads to B: if a partition fails in replex B, failure am-
plification still becomes worst-case.

To eliminate failure amplification of a single failure
on both replexes, the user must create exact replicas of
both replexes, thereby doubling all storage and network
overheads previously mentioned.

Instead, we present hybrid replexes, which is a core
contribution of Replex. The basic idea behind hybrid re-
plexes is to introduce a replex into the system that in-
creases failure resilience of any number of replexes; an
exact replica only increases failure resilience of a single
replex. We call them hybrid replexes because they en-
able a middleground between adding either one or zero
exact-copy replexes.

A hybrid replex is shared by replex A if hhybrid is de-
pendent on hA. In the next few sections, we will explain
how to define hhybrid given the shared replexes.

Hybrid replexes are a building block for constructing a
system with more complex failure amplification models
per replex. To start with, we show how to construct a
hybrid replex that is shared across two replexes.

3.1 2-Sharing

Consider replexes A and B from before. The system con-
structs a new, hybrid replex that is shared by A and B.
Assume that all replexes have 4 partitions; in Section 3.2
we will consider p partitions.

To define the hybrid replex, we must define hhybrid .
Assume that each partition in each replex in Figure 5 is

Figure	  5	  

Replex A 

Replex B 

Hybrid Replex 

P	  

Figure 5: Each node is connected to exactly 2 nodes
in another replex. This means that partitions in both re-
plexes will see only 2x failure amplification after a single
failure.

numbered from left to right from 0-3. Then:

hhybrid(r) = 2 · (hA(r) (mod 2))+hB(r) (mod 2) (1)

The graph in Figure 5 visualizes hhybrid . The parti-
tion in the hybrid replex that stores row r is the partition
connecting the partition in A and the partition in B that
store r. Edges indicate which partitions in another replex
share data with a given partition; in fact, if there exists
a path between any two partitions, then those two parti-
tions share data. Then any read that would have gone to
a failed node can equally be serviced by visiting all par-
titions in an replex that are path-connected to the failed
node.

For example, P shares data with exactly two partitions
in the hybrid replex, and all four partitions in replex A.
This means that when P fails, reads can either go to these
two partitions in the hybrid replex or all four partitions in
replex A, thereby experiencing 2x or 4x failure amplifi-
cation, respectively. Then it is clear that reads should be
redirected to the hybrid replex. Furthermore, because the
hybrid replex overlaps attributes with replex B, any read
redirected to the hybrid replex can be faster compared
to a read that is redirected to replex A, which shares no
attributes with replex B.

Figure 5 helps visualize how a partition in any replex
will only cause failure amplification of two: each parti-
tion has an outcast of two to adjacent replexes. Hence by
adding a single replex, we have reduced the failure am-
plification for all replexes after one failure. Contrast this
with the extra replica approach: if we only add a single
exact replica of replex A, replex B would still experience
4x failure amplification after a single failure.

This hybrid technique might evoke erasure coding in
the reader. However, as we explain in Section 6, erasure
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Figure 6: Graceful degradation. Shaded nodes indicate the nodes that must be contacted to satisfy queries that would
have gone to partition P. As failures occur, Replex looks up replacement partitions for the failed node and modifies
reads accordingly. Instead of contacting an entire replex after two failures, reads only need to contact a subset.

coding solves a different problem. In erasure coding, par-
ity bits are scattered across a cluster in known locations.
The metric for the cost of a code is the reconstruction
overhead after collecting all the parity bits. On the other
hand, with replexes, there is no reconstruction cost, be-
cause replexes store full rows. Instead, hybrid replexes
address the problem of finding data that is sharded by a
different key in a different replex.

Hybrid replexes also smooth out the increase in failure
amplification as failures occur. The hybrid approach in-
troduces a recursive property that enables graceful read
degradation as failures occur, as shown in Figure 6.

In Figure 6, reads to P are redirected as cascading
failures happen. When P fails, the next smallest set of
partitions— those in the hybrid replex— are used. If a
partition in this replex fails, then the system replaces it
in a similar manner. Then the full set of partitions that
must be accessed is the three shaded nodes in the right-
most panel. Three nodes must fail concurrently before
the worst set, all partitions in an replex, is used. The sys-
tem is only fully unavailable for a particular read if after
recursively expanding out these partition sets it cannot
find a set without a failed node.

This recursion stops suddenly in the case of exact
replicas. Suppose a user increases the failure resilience
of A by creating an exact replica. As the first failure in A
occurs, the system can simply point to the exact replica.
When the second failure happens, however, reads are
necessarily redirected to all partitions in B.

3.2 Generalizing 2-sharing

In general, we can parametrize a hybrid replex by n1 and
n2, where n1 · n2 = p and p is the number of partitions
per replex. Then:

hhybrid(r) = n2 · ( fA(r) (mod n1))+ fB(r) (mod n2) (2)

Applying this to Figure 5, each partition in A would
have an outcast of n2 instead of two, and each partition

in B would have an incast of n1. Then when partitions in
replex A fail, reads will experience n2-factor amplifica-
tion, while reads to partitions in replex B will experience
n1-factor failure amplification. The intuition is to think
of each partition in the hybrid replex as a pair: (x,y),
where 0 ≤ x < n1 and 0 ≤ y < n2. Then when a parti-
tion in replex A fails, reads must visit all hybrid parti-
tions (x,∗) and when a partition in replex B fails, reads
must visit all hybrid partitions (∗,y). The crucial obser-
vation is that n1 ·n2 = p, so the hybrid layer enables only
n1,n2 = O(

√
p) amplification of reads during failure, as

opposed to O(p).
n1 and n2 become tuning knobs for a hybrid replex.

A user can assign n1 and n2 to different replexes based
on importance. For example, if p = 30, then a user
might assign n1 = 5 and n2 = 6 to two replexes A and
B that are equally important. Alternatively, if the work-
load mostly hits A, which means failures in A will affect
a larger percentage of queries, a user might assign n1 = 3
and n2 = 10. Even more extreme, the user could assign
n1 = 1 and n2 = 30, which represents the case where the
hybrid replex is an exact replica of replex A.

3.3 More Extensions

In this section, we discuss intuition for further generaliz-
ing hybrid replexes. Explicit construction requires defin-
ing complex hhybrid that is beyond the scope of this paper.

Hybrid replexes can be shared across r replexes, not
just two as presented in the previous sections. To de-
crease failure amplification across r replexes, we create
a hybrid replex that is shared across these r replexes. To
parametrize this space, we use the same notation used to
generalize 2-sharing. In particular, think of each parti-
tion in the hybrid replex as an r-tuple: (n1, . . . ,nr). Then
when some partition in the qth replex fails, reads must
visit all partitions (∗, . . . ,∗,xq,∗, . . . ,∗). Then failure am-
plification after one failure becomes O(p

r−1
r ). As ex-
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Figure 7: Inserting two hybrid replexes in between two
replexes (in bold). Each node in the graph has outcast 2,
which means after any partition fails, failure amplifica-
tion will be at most 2x. After two failures, amplification
will be 3x; after three, it will be 4x.

pected, if more replexes share a hybrid replex, improve-
ment over O(p) failure amplification becomes smaller.

For example, suppose a table requires 4 indexes,
which will be translated into 4 replexes. Then a hybrid
replex is not necessary for replication, but rather can be
inserted at the discretion of the user, who might want to
increase read availability during recovery. Simply pay-
ing the costs of an additional 4-shared hybrid replex can
greatly increase failure read availability.

We can also increase the number of hybrid replexes in-
serted between two replexes. For example, we can insert
two hybrid replexes between every two desired replexes,
as shown in Figure 7. Then two hybrid replexes enable
O(p1/3) amplification of reads during failure, at the ex-
pense of introducing yet another replex. If two replexes
share k hybrid replexes, then there will be O(p

1
k+1 ) am-

plification of reads during failure. As expected, if two
replexes share more hybrid replexes, the failure ampli-
fication becomes smaller. Furthermore, Figure 7 shows
that adding more hybrid replexes enables better cascad-
ing failure amplification. The power of hybrid replexes
lies in tuning the system to expected failure models.

4 Implementation

We implemented Replex on top of HyperDex, which
already has a framework for supporting multi-indexed
data. However, we could have implemented replexes
and hybrid replexes on any system that builds indexes for
its data, including RDBMSs such as MySQL Cluster, as
well as any NoSQL system. We added around 700 lines
of code to HyperDex, around 500 of which were devoted

to make data transfers during recovery performant.
HyperDex implements copies of the datastore as sub-

spaces. Each subspace in HyperDex is associated with
a hash function that shards data across that subspace’s
partitions. We replaced these subspaces with replexes,
which can take an arbitrary sharding function. For exam-
ple, in order to implement hybrid replexes, we initialize
a generic replex and assign h to any of the hhybrid dis-
cussed in Section 3. We reuse the chain replication that
HyperDex provides to replicate across subspaces.

To satisfy a lookup query, Replex calculates which
nodes are needed for lookup from the system configura-
tion that is fetched from a coordinator node. A lookup is
executed against any number of replexes, so Replex uses
the sharding function of the respective replex to identify
relevant partitions. The configuration tells Replex the
current storage nodes and their status. We implemented
the recursive lookup described in Section 3.1 that uses
the configuration to find the smallest set that contains all
available partitions. For example, if there are no failures,
then the smallest set is the original partitions. Replex im-
plements this lookup functionality in the client-side Hy-
perDex library. The client then sends the search query
to all nodes in the final set and aggregates the responses;
the client library waits to hear from all nodes before re-
turning.

This recursive construction is used again in Replex’s
recovery code. In order to reconstruct a partition, Re-
plex calculates a minimal set of partitions to contact and
sends each member a reconstruction request with a pred-
icate. The predicate can be thought of as matching on
h(r), where h is the sharding function of the replex to
which the receiving partition belongs. When a node re-
ceives the reconstruction request, it maps the predicate
across its local rows and only sends back rows that sat-
isfy the predicate.

Finally, to run Replex, we set HyperDex’s fault toler-
ance to f = 0.

5 Evaluation

Our evaluation is driven by the following questions:

• How does Replex’s design affect steady-state index
performance? (§ 5.1)

• How do hybrid replexes enable superior recovery
performance? (§ 5.2)

• How can generalized 2-sharing allow a user to tune
failure performance? (§ 5.3)
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Figure 9: Read latency microbenchmark CDF

• How do hybrid replexes enable better resource
tradeoffs with r-sharing? (§ 5.4)

Setup. All physical machines used had 8 CPUs and
16GB of RAM running Linux (3.10.0-327). All ma-
chines ran in the same rack, connected via 1Gbit links to
a 1Gbit top-of-rack switch. 12 machines were designated
as servers, 1 machine was a dedicated coordinator, and 4
machines were 64-thread clients. For each experiment,
1 or 2 additional machines were allocated as recovery
servers.

5.1 Steady-State Performance

To analyze the impact of replacing replicas with replexes,
we report operation latencies in Replex. We specify a ta-
ble in Replex with two indexes: the primary index and
a secondary index. We configure Replex to build a sin-
gle hybrid replex, so Replex builds 3 full replexes during
the benchmark; we call this system Replex-3 in Table 2.
Because Replex-3 builds 3 replexes, data is tolerant to
2 failures. Hence, we also set HyperDex to three-way
replicate data objects.

Read latency for Replex is identical to HyperDex’s,
because reads are simply done on the primary index of
both systems; we report the read CDF in Figure 9. More
importantly, the insert latency for Replex is consistently

Name Workload Total Operations

Load 100% Insert 10 M
A 50% Read/50% Update 500 K
B 95% Read/5% Update 1 M
C 100% Read 1 M
D 95% Read/5% Insert 1 M
E 95% Scan/5% Insert 10 K
F 50% Read/50% Read-Modify 500 K

Table 1: YCSB workloads.
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Figure 10: Mean throughput for full YCSB suite over
3 runs. Error bars indicate standard deviation. Results
grouped by workload, in the order they are executed in
the benchmark.

2x less than the latency of a HyperDex insert, as in Fig-
ure 8. This is because one Replex insert visits 3 parti-
tions while one HyperDex insert visits 2 ·3= 6 partitions;
these values are the replication factor denoted in Table 2.
In fact, the more indexes a user builds, the larger the fac-
tor of difference in latency inserts. This helps to demon-
strate Replex’s scalability compared to HyperDex.

Figure 10 reports results from running a full YCSB
benchmark on 3 systems: Cassandra, HyperDex, and
Replex-3; Yahoo Cloud-Serving Benchmark (YCSB) is
a well established benchmark for comparing NoSQL
stores [10]. Because Replex-3 is tolerant to 2 failures,
we also set Cassandra and HyperDex to three-way repli-
cate data objects. In the load phase, YCSB inserts 10
million 100 byte rows into the datastore.

Replex-3’s lower latency insert operations translate to
higher throughput on the load portion and Workloads
A, F than both HyperDex and Cassandra; these are the
workloads with inserts/updates. Workload C has compa-
rable performance to HyperDex, because these reads can
be performed on the index that HyperDex builds. Cas-
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System Failures Tolerated Replication Factor

Replex-2 1 2x
Replex-3 2 3x
HyperDex 2 6x

Table 2: Systems evaluated.

sandra has comparable load throughput because writes
are replicated in the background; Cassandra writes re-
turn after visiting a single replica while our writes return
after visiting all 3 replexes for full durabilty.

5.2 Failure Evaluation

In this section, we examine the throughput of three sys-
tems as failures occur: 1) HyperDex with two sub-
spaces, 2) Replex with two replexes (Replex-2), and 3)
Replex with two replexes and a hybrid replex (Replex-
3). Each system has 12 virtual partitions per subspace
or replex. One machine is reserved for reconstructing
the failed node. Each system automatically assigns the
12 virtual partitions per replex across the 12 server ma-
chines.

For each system we specify a table with a primary and
secondary index. We run two experiments, one that loads
1 million rows of size 1KB bytes and one that loads 10
million rows of size 100 bytes; the second experiment
demonstrates recovery behavior when CPU is the bottle-
neck. We then start a microbenchmark where clients read
as fast as possible against both indexes. Reads are split
50:50 between the two indexes. We kill a server after
25 seconds. Figure 11 shows the read throughput in the
system as a function of time, and Tables 3 and 4 report
average recovery statistics.

Recovery time in each system depends on the size of
the data loss, which depends on how much data is stored
on a physical node. The number of storage nodes is a
constant across all three systems, so the amount of data
stored on each node is proportional to the total amount of
data across all replicas; recovery times in Tables 3 and 4
are approximately proportional to the Replication Factor
column in Table 2. By replacing replicas with replexes,
Replex can reduce recovery time by 2-3x, while also us-
ing a fraction of the storage resources.

Interestingly, Replex-2 recovers the fastest out of all
systems, which suggests the basic Replex design has per-
formance benefits even without adding hybrid replexes.

Recovery throughput shows one of the advantages of
the hybrid replex design. In Table 3, Replex-2 has mini-
mal throughput during recovery, because each read to the
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Figure 11: We crash a server at 25s and report read
throughput for Replex-2, Replex-3, and Hyperdex. Sys-
tems are loaded with 10 million, 100 byte rows. All
three systems experience a dip in throughput right before
returning to full functionality due to the cost of recon-
figuration synchronization, which introduces the recon-
structed node back into the system configuration.

System Recovery Time (s) Recovery Throughput (op/s)

Replex-2 50± 1 18,989± 1,883
Replex-3 60± 1 65,780± 3,839
HyperDex 105± 17 34,697± 19,003

Table 3: Recovery statistics of one machine failure af-
ter 25 seconds. 10 million, 100 byte records. Results
reported as average time ± standard deviation of 3 runs.

System Recovery Time (s) Recovery Throughput (op/s)

Replex-2 6.7± 0.57 70,084± 5,980
Replex-3 8.7± 0.56 110,280± 11,232
HyperDex 20.0± 2.65 127,232± 85,932

Table 4: Recovery statistics of one machine failure after
25 seconds. 1 million, 1KB records. Results reported as
average time ± standard deviation of 3 runs.

failed node must be sent to all 12 partitions in the other
replex. These same 12 partitions are also responsible for
reconstructing the failed node; each of the partitions must
iterate through their local storage to find data that be-
longs on the failed node. Finally, these 12 partitions are
still trying to respond to reads against the primary index,
hence system throughput is hijacked by reconstruction
throughput and the amplified reads. Replex-2 through-
put is not as bad in Table 4, because 1 million rows does
not bottleneck the CPU during recovery.

The Replex-3 alleviates the stress of recovery by
introducing the hybrid replex. First, each read is only
amplified 3 times, because the grid constructed by the
hybrid replex has dimensions n1 = 3,n2 = 4. Second,
only 3 partitions are responsible for reconstructing the
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Figure 12: Read throughput after two failures. We crash
one server at 25s and then a second at 30s. Request pile-
up because throughput is used for recovery is responsible
for the jumps in HyperDex throughput.

System Recovery Time (s) Recovery Throughput (op/s)

Replex-3 37.6± 1.2 60,844± 27,492
HyperDex 98.0± 11 30,220± 8,104

Table 5: Recovery statistics of two machine failures at
25s and 30s. Results reported as average time± standard
deviation of 3 runs. Recovery time is measured from the
first failure.

failed node. In fact, in both experiments, Replex-3
achieves recovery throughput comparable to that of
HyperDex, which has no failure amplification, whilst
adding little recovery time.

Finally, we highlight the hybrid replex design by run-
ning an experiment that causes two cascading failures.
Replex-2 only tolerates two failures, so we do not in-
clude it in this experiment. Figure 15 shows the results
when we run the same 50:50 read microbenchmark and
crash a node at 25s and 30s. We reserve an additional
2 machines as spares for reconstruction. We run the ex-
periment where each system is loaded with 1 million, 1K
rows.

Figure 15 stresses the advantages of graceful degra-
dation, enabled by the hybrid replex. We observe that
experiencing two failures more than quadruples the re-
covery time in HyperDex. This is because the two re-
constructions occur sequentially and independently. In
Replex-3, failing a second partition causes reduced re-
covery throughput, because the second failed partition
must rebuild from partitions that are actively serving
reads. However, recovery time is bounded because re-
construction of the failed nodes occurs in parallel. When
the second failed partition recovers, throughput nearly
returns to normal.
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Figure 13: We crash a machine at 25s. Each graph
shows read throughput for Replex-3 with five different
hybrid parametrizations and the labelled workload. Al-
though (12,1) has the worst throughput during failure,
it recovers faster than the other parametrizations because
recovery is spread across more partitions.

5.3 Parametrization of the Hybrid Replex

As discussed in Section 3.2, any hybrid replex H can be
parametrized as (n1,n2). Consider the Replex-3 setup,
which replicates operations to replexes in the order A→
H →B. If H is parametrized by (n1,n2), then failure of
a partition in B will result in n1-factor read amplification,
and a failure in A will result in n2-factor read amplifica-
tion. In this section we investigate the effect of hybrid
replex parameterization on throughput under failure.

We load each parametrization of Replex-3 with 1 mil-
lion 1KB entries and fail a machine at 25s. Four separate
client machines run an a : b read benchmark, where a
percent of reads go to replex A and b percent of reads
go to replex B. Figure 13 shows the throughput results
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Figure 14: Replex-3 throughput with a 25:75 read
benchmark. We crash a machine in replex A at 25s.

when a machine in B is killed at 25s. We report the
throughput results for all three workloads to indicate that
parametrization trends are independent of workload.

As expected, parametrizing H with (1,12) causes the
least failure amplification, hence throughput is relatively
unaffected by the failure at 25s. As n1 grows larger,
throughput grows steadily worse during the failure, be-
cause failure amplification becomes greater. We also
point out that as the benchmark contains a larger per-
centage of reads in replex A, steady-state throughput in-
creases (note the different Y-axis scales in Figure 13).
This is because of the underlying LevelDB implemen-
tation of HyperDex. LevelDB is a simple key-value
store with no secondary index support; reads on replex
A are simple LevelDB gets, while reads to replex B be-
come LevelDB scans. To achieve throughput as close
to native gets as possible, we optimized point scans to
act as gets to replex B, but the difference is still appar-
ent in the throughput. Fortunately, this absolute differ-
ence in throughput does not affect the relative trends of
parametrization.

The tradeoff from one parametrization to the next is
throughput during failures in A. As an example, Figure
14 shows the throughput results when a machine in re-
plex A is killed after 25s, with a 25:75 read workload.
The performance of the parametrizations is effectively
reversed. For example, even though (1,12) performed
best during a failure in B, it performs worst during a fail-
ure in A, in which failure amplification is 12x. Hence a
user would select a parametrization based on which re-
plex’s failure performance is more valued.

5.4 Evaluating 3-Sharing

In the previous sections, all systems evaluated assumed
3-way replication. In particular, in Replex, if the num-
ber of indexes i specified by a table is less than 3, then
Replex can build 3− i hybrid replexes for free, by which
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Figure 15: Read throughput after a failure at 25s with a
33:33:33 benchmark.

# Hybrids Recovery Time (s) Recovery Throughput (op/s)

0 14.7± 0.58 5,831± 678
1 13.0± 0 14,569±6,087

Table 6: Recovery statistics for Replex systems with 3
replexes and different numbers of hybrid replexes. One
machine is failed after 25 seconds. Results reported as
average time ± standard deviation of 3 runs.

we mean those resources must be used anyway to achieve
3-way replication.

When i≥ 3, resource consumption from additional hy-
brid replexes becomes more interesting. No longer is
a hybrid replex inserted to achieve a replication thresh-
old; rather, a hybrid replex is inserted to increase recov-
ery throughput, at the expense of an additional storage
replica. Consider i = 3 and suppose a user only wishes
to add a single hybrid replex, because of resource con-
straints. One way to maximize the utility of this hybrid
replex is through 3-sharing, as described in Section 3.3.
Of course, depending on the importance of the three orig-
inal indexes, 2-sharing is also an option, but this is al-
ready explored in the previous sections. For sake of eval-
uation, we consider 3-sharing in this section.

The system under evaluation has 3 replexes, A,B,C,
and 1 hybrid replex that is 3-shared across the original
replexes. The hybrid replex is parametrized by n1 = 3,
n2 = 2, n3 = 2. Again, we load 1 million 1KB entries
and fail a node at 25s. Four seperate client machines
run a read benchmark spread equally across the indexes.
Figure 15 shows the throughput results, compared to a
Replex system without a hybrid replex.

Again, if there is no hybrid index, then recovery
throughput suffers because of failure amplification. As
long as a single hybrid index is added, the recovery
throughput is more than doubled, with little change to re-
covery time. This experiment shows in the power of hy-
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brid replexes in tables with more indexes: as the number
of indexes grows, the fractional cost of adding a hybrid
replex decreases, but the hybrid replex can still provide
enormous gains during recovery.

6 Related Work

6.1 Erasure Coding

Erasure coding is a field of information theory which
examines the tradeoffs of transforming a short message
to a longer message in order to tolerate a partial era-
sure (loss) of the message. LDPC [25], LT [19], On-
line [18], Raptor [22], Reed-Solomon [20], Parity [8]
and Tornado [17] are examples of well-known erasure
codes which are used today. Hybrid replexes also ex-
plore the tradeoff between adding storage and network
overheads and recovery performance. Recently, specific
failure models have been applied to erasure coding to
produce even more compact erasure codes [13]. Simi-
larly, hybrid replex construction allows fine tuning given
a workload and failure model.

6.2 Multi-Index Datastores

Several multi-index datastores have emerged as a re-
sponse to the limitations of the NOSQL model. These
datastores can be broadly divided into two categories:
those which must contact every partition to query by
secondary index, and those which support true, global
secondary indexes. Cassandra [1], CouchDB [3], Hyper-
table [14], MongoDB [9], Riak [15] and SimpleDB [7]
are examples of of the former approach. While these
NOSQL stores are easy to scale since they only partition
by a single “sharding” key, querying by secondary index
can be particularly expensive if there is a large number
of partitions. Some of these systems alleviate this over-
head through the use of caching, but at the expense of
consistency and overhead of maintaining the cache.

Unlike the previous NOSQL stores, Hyperdex [12]
builds a global secondary index for each index, enabling
efficent query of secondary indexes. However, each in-
dex is also replicated to maintain fault tolerance, which
comes with a significant storage overhead. As we saw
in Section 5, this leads to slower inserts and significant
rebuild times on failure.

6.3 Relational (SQL) Databases

Traditional relational databases build multiple indexes
and auxillary data structures, which are difficult to par-
tition and scale. Sharded MySQL clusters [21, 10] are

an example of an attempt to scale a relational database.
While it supports fully relational queries, it is also
plagued by performance and consistency issues [26, 10].
For example, a query which involves a secondary index
must contact each shard, just as with a multi-index data-
store.

Yesquel[2] provides the features of SQL with the scal-
ability of a NOSQL system. Like Hyperdex, however,
Yesquel separately replicates every index.

6.4 Other Data stores

Corfu [4], Tango [5], and Hyder [6] are examples of
data stores which use state machine replication on top
of a distributed shared log. While writes may be written
to different partitions, queries are made to in-memory
state, which allows efficient strongly consistent queries
on multiple indexes without contacting any partitions.
However, such an approach is limited to state which can
fit in the memory of a single node. When state cannot
fit in memory, it must be partitioned, resulting in a query
which must contact each partition.

7 Conclusion

Programmers need to be able to query data by more than
just a single key. For many NoSQL systems, supporting
multiple indexes is more of an afterthought: a reaction to
programmer frustration with the weakness of the NoSQL
model. As a result, these systems pay unnecessary penal-
ties in order to support querying by other indexes.

Replex reconsiders multi-index data stores from the
bottom-up, showing that implementing secondary in-
dexes can be inexpensive if treated as a first-order
concern. Central to achieving negligible overhead
is a novel replication scheme which considers fault-
tolerance, availability, and indexing simultaneously. We
have described this scheme and its parameters and have
shown through our experimental results that we outper-
form HyperDex and Cassandra, state-of-the-art NoSQL
systems, by as much as 10×. We have also carefully
considered several failure scenarios that show Replex
achieves considerable improvement on the rebuild time
during failure, and consequently availability of the sys-
tem. In short, we have demonstrated not only that a
multi-index, scalable, high-availability NoSQL datastore
is possible, it is the better choice.
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