
A Formal Instruction-Level GPU Model for Scalable Verification∗

Yue Xing, Bo-Yuan Huang, Aarti Gupta, Sharad Malik
Princeton University

ABSTRACT
GPUs have been widely used to accelerate big-data inference appli-
cations and scientific computing through their parallelized hard-
ware resources and programming model. Their extreme parallelism
increases the possibility of bugs such as data races and un-coalesced
memory accesses, and thus verifying program correctness is crit-
ical. State-of-the-art GPU program verification efforts mainly fo-
cus on analyzing application-level programs, e.g., in C, and suffer
from the following limitations: (1) high false-positive rate due to
coarse-grained abstraction of synchronization primitives, (2) high
complexity of reasoning about pointer arithmetic, and (3) keeping
up with an evolving API for developing application-level programs.

In this paper, we address these limitations by modeling GPUs
and reasoning about programs at the instruction level. We formally
model the Nvidia GPU at the parallel execution thread (PTX) level
using the recently proposed Instruction-Level Abstraction (ILA)
model for accelerators. PTX is analogous to the Instruction-Set
Architecture (ISA) of a general-purpose processor. Our formal ILA
model of the GPU includes non-synchronization instructions as
well as all synchronization primitives, enabling us to verify multi-
threaded programs. We demonstrate the applicability of our ILA
model in scalable GPU program verification of data-race checking.
The evaluation shows that our checker outperforms state-of-the-art
GPU data race checkers with fewer false-positives and improved
scalability.

1 INTRODUCTION
Graphics processing units (GPUs) have become an essential element
of computing platforms scaling from mobile devices, personal com-
puters, to data centers. Through a highly parallel multi-threaded
programming model and underlying hardware resources, GPUs
can significantly accelerate a range of applications, from image
processing, scientific computing, to large-scale inferencing. How-
ever, writing a correct (high-performance) parallel program for
GPUs is notoriously tricky and error-prone. Careless program de-
sign may lead to bugs, e.g., data races [3, 7], un-coalesced memory
accesses [1], bank conflicts [11], etc., due to subtle interleavings of
threads in the presence of GPU synchronization mechanisms. This
motivates the need for verification of GPU programs.

∗This work was supported by the Application Driving Architectures (ADA) Research
Center, a JUMP Center co-sponsored by SRC and DARPA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240771

programming	language
C,	C++

Instruction	Set	Architecture
x86,	MIPS,	ARM

CPU

programming	model
CUDA-C

PTX

Nvidia GPU

Figure 1: CPU/GPU Programming Stacks

Previous efforts have addressed this problem through static
analysis [3, 11] and dynamic checking [19, 20] of code at the pro-
gram level, e.g., for C programs. They use an abstraction of the
application-programming interface (API) of the underlying GPU,
such as the CUDA model shown in Figure 1 (right half). While
program-level reasoning has achieved useful results, it still faces
several challenges. First, the API model typically allows only a sub-
set of synchronization operations. For example, an acquire-release
pattern inferred by memory accesses with fences is typically not
captured, leading to false-positives. Second, pointer analysis with
complex data structures is difficult at the program level, often re-
quiring a tradeoff between precision and scalability. Finally, the
rapidly evolving expressiveness of the API requires the modeling
effort to keep up.

In this paper, we propose modeling GPUs and reasoning about
programs at the instruction level to address the above challenges.
Specifically, we propose a formal model of the Nvidia GPU at the
parallel thread execution (PTX) level. As shown in Figure 1, the
PTX model for the GPU (shown on the right) is analogous to the
Instruction-Set Architecture (ISA) for general-purpose processors
(shown on the left). Compared to the program level (C/CUDA) anal-
ysis, modeling at the PTX level allows us to specify in detail the
hardware thread executionmodel and synchronizationmechanisms.
It also naturally captures pointer arithmetic and thus reduces the
overhead of software-level pointer analysis for complex data types.
Moreover, as a relatively stable hardware specification, PTX is capa-
ble of serving more generations of GPUs and more versions of API
library releases. Another advantage of PTX-level modeling is better
expressiveness, since PTX is a superset of the CUDA programming
model. Some PTX instructions (such as add.cc and ld.ca) cannot
be expressed in CUDA, and are used by advanced programmers to
achieve high-performance by inlining the bare instructions in pro-
grams. While PTX has all these advantages, thus far, it has not been
formally specified or used in automated PTX program analysis.

We address this critical gap by formally modeling the GPU at
the PTX level, based on recent work on Instruction-level Abstrac-
tions (ILA) for accelerators [9]. The ILA models the GPU as a set
of instructions. To ease the effort in developing the ILA, we use
semi-automatic techniques for template-based synthesis [16] to
generate the ILA. Further, we use an actual GPU executing the

https://doi.org/10.1145/3240765.3240771

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Yue Xing, Bo-Yuan Huang, Aarti Gupta, Sharad Malik

target program as an oracle (that generates outputs for given in-
puts) during synthesis, instead of a hardware simulator, as used in
previous work [16].

We demonstrate the applicability of our ILA model in scalable
GPU program verification by developing a data race checker, where
race conditions are detected by using an SMT (Satisfiability Modulo
Theory) solver [6]. We evaluate our checker on various benchmarks,
including those from state-of-the-art GPU verification tools [5, 7, 8].
These cover different featured instructions in PTX and also several
memory/fence synchronizations that have not been covered by
previous tools. We also examine the scalability and practicality of
our checker by running it on a range of applications from different
domains. Experimental results show that our ILA-based checker
outperforms state-of-the-art data race checkers with fewer false
positives and improved scalability.

Overall this paper makes the following contributions:

• We propose an ILA-based methodology for instruction-level
GPU modeling and scalable verification. Specifically, we de-
velop a formal model for the Nvidia GPU at the PTX level,
supporting both non-synchronization instructions and all
synchronization primitives. To the best of our knowledge,
this is the first instruction-level formal model for GPUs.
• We leverage template-based synthesis to generate the GPU
model semi-automatically, using a GPU executing the target
program as an oracle, instead of a simulator as in past work.
• We demonstrate the benefits of instruction-level PTX mod-
eling in a novel data race checker for GPU programs, which
improves upon previous efforts in showing fewer false posi-
tives and improved scalability.

The paper is organized as follows. In Section 2, we briefly discuss
relevant background on the CUDA programming model, the PTX
model, and the ILA. We then describe our instruction-level GPU
model and the ILA synthesis framework in Section 3. Section 4
describes the modeling of synchronization primitives, followed by
the data race checker in Section 5, evaluations in Section 6, and
finally conclusions in Section 7.

2 BACKGROUND
2.1 CUDA Programming Model
CUDA is the application programming interface (API) provided by
Nvidia for the development of parallel programs on their GPUs.
It provides constructs to define threads, blocks, and kernels. As
shown in Figure 2, the kernel is the basic unit of programming
that describes the behavior of a single thread and is represented
as a C function. All threads execute the same kernel function in
parallel, where different thread IDs are assigned to each thread for
data partitioning. In GPUs, threads are organized hierarchically
where several threads form a block, and all blocks are grouped into
a grid of blocks. In general, the programmer specifies the kernel
function, the number of blocks, and the number of threads per block.
The GPU hardware then manages the execution of the program
and memory space. Each thread has its local memory, which is
accessible only by that thread. Shared memory can only be used
for communication among threads in the same block. There is also
global memory for all threads running on the GPU.

······

Block 0

······

Shared mem

Block m

······ Global
mem

Kernel(int* a) {
int id = tid + bid *

blockdim;
a[id] = a[id] + a[id + 1];

}
Shared mem

Figure 2: CUDA Programming Model

2.2 Parallel Thread Execution
Parallel thread execution (PTX) is the instruction-level specification
that remains stable across multiple GPU versions [13]. Like the ISA
of general-purpose processors, PTX specifies the set of instructions
supported by the GPU hardware. Most of the PTX instructions are
non-synchronization instructions, i.e., the operation only depends on
the local memory in a thread. In addition, there are instructions that
affect inter-thread behaviors, which we refer to as synchronization
primitives. The operation of synchronization primitives depends on
not only thread-local memory, but also on other threads. In PTX,
each thread has special registers storing its thread ID and block ID
to support the grid-block-thread hierarchy.

A warp is a sub-block of threads (typically 32 threads) where
threads in the same warp share the same program counter and exe-
cute in lockstep. However, we do not assume this lockstep property
in our model since the latest PTX [13] and CUDA 9 [12] specifica-
tions both disable this feature.

2.3 Instruction Level Abstraction
The Instruction-Level Abstraction (ILA) was recently proposed
to provide a uniform abstraction for formally modeling proces-
sors and accelerators in heterogeneous computing platforms [9].
An ILA models the hardware behavior as a set of instructions at
the architecture level, abstracting implementation-specific details.
Here we introduce the ILA model by explaining its primary compo-
nents. Essentially, an ILA model defines what the architectural (i.e.,
program-visible) state is, how instructions are fetched and decoded,
and how each instruction updates the architectural state. Formally,
an ILA model A is defined by a tuple:

A = ⟨S, I , F ,D,N ⟩, where
S is a vector of state variables,
I is a vector of initial values of the state variables,
F S → bvecw is a fetch function,
D = {δi : bvecw → B} is a set of decode functions,
N = {Ni : S → S } are the next state functions.

For processors/GPUs, ILAs model the ISA/PTX level instructions.
For accelerators, the instructions are commands at the accelerator
interface. This formal model enables reasoning about programs
comprising the instructions.

3 INSTRUCTION-LEVEL GPU MODEL
In GPUs, a large number of threads run in parallel where each thread
has local state and communicates/synchronizes with others through
shared state. Our GPU model is the composition of multiple per-
threadmodels, in which we define the set of non-synchronization
instructions, as shown in Figure 4. The synchronization primitives
then define the interaction between threads.

A Formal Instruction-Level GPU Model for Scalable Verification ICCAD ’18, November 5–8, 2018, San Diego, CA, USA

kernel (.param .u64 p0) {
// directive statements
.reg .b32 %r<6>;
.reg .b64 %rd <5>;

mov %r1, %tid.x;
// ...
ld.global %r2, [%rd4 +4];
ld.global %r3, [%rd4];
// ...
st.global [%rd4], %r5;
ret;

}

Figure 3: PTX Code

PTX ILA Model

per-thread
Model

states
eg. tid, r1…

bar
enter

bl
oc

k

bar
status

acq-rel
guard

per-thread
Model

states
eg. tid, r1…

bar
status

acq-rel
guard

global mem pointer, parameters

······ (otherthreads)

per-thread
Model

states
eg. tid, r1…

bl
oc

k
bar

status
acq-rel
guard

per-thread
Model

states
eg. tid, r1…

bar
status

acq-rel
guard

······ (otherthreads)

······ (otherblocks)

bar
exit

bar
enter

bar
exit

shared mem pointer

shared mem pointer

Figure 4: GPU Model Structure

In this section, we describe our modeling of non-synchronization
instructions in the per-thread model. The synchronization primi-
tives will be discussed separately in Section 4.

3.1 GPU Architectural State
The main difference between PTX programs in GPUs and assembly
programs in general-purpose processors is that state variables for
registers in PTX are program-specific and not architecture-specific.
For example, Figure 3 shows a PTX program that starts with directive
statements that specify the required registers in a thread. Similar to
declaring variables in a C program, these registers map to hardware
resources and are considered program-visible architectural state in
our GPU model.

For each PTX program, we automatically extract the architec-
tural state from these directive statements. Table 1 shows the three
types of architectural states associated with a PTX program: general
purpose registers, special registers, and parameter registers. Special
registers are pre-defined in the PTX specification. For example, %tid
and %bid are used to distinguish threads and blocks, and are mod-
eled with an additional constraint during verification – for any two
threads, either %tid or %bid is different. Parameter registers store
input parameters or parameter pointers, which are read-only and
shared by all threads. Note that pre-defined pointers to shared/-
global memory are similar to pointers to input parameter pointers,
so they fall in the same category.

3.2 Non-Synchronization Instructions
Modeling non-synchronization instructions in a per-thread model
is similar to modeling general-purpose processors, as has been
done for the RISC-V base instruction set in prior work [9]. The
difference is that here we include the thread ID and block ID in the
decode function (guards for instructions) to differentiate between
threads. We modeled both the arithmetic and control-flow instruc-
tions (e.g., add and predicated branch), which together constitute
the non-synchronization instruction set. For complex instructions
like floating point operations, we modeled them as uninterpreted
functions during verification, since these are not directly or indi-
rectly used as synchronization variables.

3.3 GPU Memory Model
Sharedmemory in GPUs has two primary uses: exchanging interme-
diate data and synchronizing between threads. A precise memory

simulation	 kernel

Template	
model

<S,	F,	D’,	N’>

PTX
ILA

GPU

Synthesizer
initial states:
(r1=0, r2=10)

target instruction:
add r3, r2, r1

Test Program

r1 = 0;
r2 = 10;
…
asm (“add r3, r2, r1”)
…
output[1] = r1
output[2] = r2 …
return output

r1_init = XXX;
r2_init = XXX;

target instruction

return (r1_end, r2_end
…)

Figure 5: ILA Synthesis with Real GPU as the Oracle

model should capture the detailed consistency model and present
all possible values a load instruction can receive for different exe-
cution traces. However, an explicit model of memory, with support
for indirect memory addresses, would not be scalable for reason-
ing. Therefore, we use an over-approximate memory model for
non-synchronization instructions. Specifically, we model the load
instruction as a nondeterministic function that returns an arbitrary
value. Note that the over-approximation is applied only to non-
synchronization instructions (for exchanging intermediate data)
but not to synchronization primitives.

3.4 ILA Synthesis for a GPU
Handcrafting an ILA model for a GPU that contains a large num-
ber of instructions is time-consuming and error-prone. Here we
leverage the counter-example guided inductive synthesis (CEGIS)
technique to help construct the ILAmodel [15, 16]. Given a partially
defined model (i.e., a template), the CEGIS engine can synthesize
the complete model by querying an oracle that generates the GPU
state (oracle output) for a given instruction and state (oracle in-
put). This oracle is usually a formal specification or a reference
simulator of the design. However, although several GPU simulators
have been proposed, many of them get out-of-date as new versions
of GPUs are released [2, 17]. Thus, in this work, unlike previous
work which used a simulator as an oracle, we use an actual GPU
running the target program as the oracle. As shown in Figure 5, our
synthesis tool converts every query from the CEGIS engine into a
test program. When executed on the GPU, the test program first ini-
tializes the architectural state, executes the target instruction, and
then writes back the updated state after the instruction completes.
We implemented our synthesis tool on top of an existing CEGIS
engine [16], along with an Nvidia Tesla K20 GPU; and successfully
synthesized all non-synchronization instructions.

4 SYNCHRONIZATION PRIMITIVES
Synchronization primitives in PTX guarantee the ordering between
instructions of different threads, andwemodel this using the happens-
before relation [10]. There are two kinds of synchronization, namely
strong and relaxed, supported in the PTXmodel. Strong synchroniza-
tion (e.g., barrier) requires one specific instruction to happen before
another. Relaxed synchronization, on the other hand, requires only

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Yue Xing, Bo-Yuan Huang, Aarti Gupta, Sharad Malik

Table 1: PTX Architectural State
Nvidia PTX Spec. ILA Model Feature
general reg state (bv) Program specific general-purpose registers (with bit-length 64/32/16/8)
special reg state (bv) Specialized read-only register for distinguishing threads, e.g., %tid and %ntid
.param, .global, state (bv) Kernel input/output pointer; program defined shared/global memory pointer;
.shared pointers read-only; same value for all threads (.shared pointer is for intra-block threads)

that the two instructions are at least ordered, but may not specify
the ordering, which is determined at runtime. In this section, we
discuss our modeling of the synchronization primitives using the
ILA model. We first explain a counter-based model for the barrier
instruction, and then present modeling of the memory-inferred
synchronizations.

4.1 Modeling Barrier Synchronization
Barrier synchronization provides block-width synchronization among
threads in the same block, where all threads run the same kernel
function. As shown in Figure 6 (where instructions go top to down,
and time goes from left to right), a barrier ensures that no thread
can proceed further unless all threads have reached the barrier
instruction, i.e., the common synchronization point. This property
ensures that all instructions before the barrier happen-before the
instructions after the barrier.

To model the barrier synchronization, we propose a counter-
based model that uses two auxiliary state variables, the bar_enter
counter, and the bar_exit counter. As indicated by its name, bar_enter
is used to count how many threads have reached the barrier. As
long as bar_enter is not equal to the total number of threads in the
block, no thread can proceed. Likewise, bar_exit counts the number
of threads that have left the barrier, i.e., have continued down the
program. It is used to reinitialize the barrier for reuse, after the last
thread leaves the barrier.

In addition to these two counters, each thread has a control state
status that can have three possible values: init, wait, and exit. Based
on the value of status, the behavior of each thread when fetching a
barrier instruction is defined as follows:

(1) If the thread first reaches the barrier (i.e., status is init), it
increments bar_enter by 1 and changes status to wait. The
program counter remains unchanged.

(2) If the thread is waiting for other threads (i.e., status is wait),
it changes status to exit if bar_enter is equal to the total
number of threads. Otherwise, all states remain unchanged.

(3) If status is exit, meaning all other threads have reached the
barrier, it increments bar_exit by 1, resets status to init, and
updates the program counter to the next instruction.

The last thread reaching/leaving the barrier is in charge of reset-
ting bar_exit/bar_enter to 0 for the next use, respectively. Barrier
modeling states, i.e., bar_enter, bar_exit, and status, are shown as
dotted circles in Figure 4.

To model PTX programs with multiple barriers, we extend our
model by adding copies of counter-pairs and assigning them unique
barrier IDs. Note that, in practice, only barrier 0 will be used (al-
though the PTX specification allows up to 16 barriers [13]), because
only one barrier can be compiled in the latest CUDA release [12].

t0 t1 t2 t3t0 t1 t2 t3

barrier
instruction

Synchronization
Point

Proceed

Block Block

t0 t1 t2 t3

Block

t0 t1 t2 t3

Block

Figure 6: Barrier Instruction Illustration

t0 t1
while(nondet()){

do something}
barrier
while(nondet()){

do something}
barrier

while(nondet())
{

do something
}
barrier

(a) (b)

t0 t1

Figure 7: Generalized Programs with Barriers

We checked the correctness of our barrier model with two gen-
eralized programs shown in Figure 7. In program (a), the kernel
executes some non-synchronization instructions for an arbitrary
number of times before reaching the barrier. Program (b), based
on program (a), is a cascaded use of multiple barrier synchroniza-
tions. Note that the number of iterations of the loops may differ
from thread to thread. We first check a barrier validity property,
which specifies that "if any thread exits the barrier, all other threads
should have already reached the barrier." In cases with multiple
barriers, we also check barrier reusability, where the validity of the
last barrier should be guaranteed. The two properties are encoded
as safety properties and we checked them using bounded model
checking (BMC [4]).

4.2 Memory-Inferred Synchronization
In general-purpose processors, shared memory has been used to
implement various synchronization primitives such as locks, mu-
tex, and semaphores. Similarly, GPUs utilize shared memory for
lock-based and ticket-based synchronization in practice [5, 12, 18].
Figure 8 shows an example of inferring synchronization ordering
using shared memory. Consider two threads, t0 and t1, executing
two loads and two stores, respectively. Under sequential consis-
tency (SC), if i0 loads a value 1 to register r1, we can infer that
i1 and i2 are ordered. Since SC respects program order and has a
total order on memory accesses, we can conclude that i1 and i2
cannot happen concurrently.

As shown in the previous example, we show how to infer in-
struction ordering under a sequential consistency memory model.
However, GPUs usually have a weak memory consistency model
to achieve better performance. Further, even in SC, the ordering

A Formal Instruction-Level GPU Model for Scalable Verification ICCAD ’18, November 5–8, 2018, San Diego, CA, USA

init: [x] = 0; [y] = 0;
t0 t1

i0: ld [x], r1; i2: st [z], 10;
i1: ld [y], r2; i3: st [x], 1;

Figure 8: Inferring Ordering from Shared Memory

may not always be inferrable simply by observing the shared mem-
ory. For instance, consider the execution traces (i0; i1; i2; i3) and
(i0; i2; i1; i3). The synchronization between i1 and i2 cannot be
determined by register r1 alone.

To address the above issues, modern GPU compilers and experi-
enced programmers use extra instructions surrounding the pair of
load/store instructions to infer the synchronization ordering. These
instructions form patterns that are used for inferring memory-based
synchronization. For example, fences can be used to restrict mem-
ory access reorderings, and loops to ensure synchronization for all
traces. Next, we explain how we model these patterns as acquire-
release pairs, where there is a happen-before ordering from a release
to an acquire.

init: [x] = 0; [y] = 0;
t0 t1

i0: ld [x], r1; i5: st [z], 10;
i1: set.ne p, r1, 1;
i2: @p bra i0;
i3: fence; i6: fence;
i4: ld [y], r2; i7: st [x], 1;

Figure 9: Memory-Inferred Synchronization

4.2.1 Patterns for Memory-Inferred Synchronization. A pattern
is composed of two building blocks: (1) a fence that restricts memory
access reordering, and (2) a code structure ensuring synchronization
for all traces, e.g., a loop.

Figure 9 shows a synchronizing pattern based on the example in
Figure 8. The goal is to synchronize the ordering between instruc-
tions i4 and i5. In thread t0, the instruction i0 is guarded by a loop
(the code structure) so that t0 can exit the loop only when i0 loads
value 1 to the register. Meanwhile, fences are inserted between the
two loads (i0 and i4) and between the two stores (i5 and i7). It
ensures that the two memory accesses in the same thread follow
the program order. Note that location [x] serves as a lock here,
which provides the synchronization between threads.

We list various code structures used in synchronization, such as
ticket-based and lock-based mechanisms, in Figure 10. Note that
ld, st and fence here denote syntactical representatives for actual
PTX instructions. The PTX ISA has a fine-grained set of ld, st,
and fence instructions with different strengths of reordering in the
consistency model distinguished by suffixes, e.g., sc and relaxed.
However, only certain combinations of fence/st and ld/fence are
strong enough to enforce an order. In Figure 11, we list all the valid
combinations of fine-grained instructions that can be used in the
synchronization patterns shown in Figure 10.

4.2.2 Modeling Acquire-Release Pairs. As per the above discus-
sion for memory-inferred synchronization, each pattern is essen-
tially an instruction sequence that manipulates the shared memory
at location M (possibly in a loop or with a fence to achieve synchro-
nization). Based on its semantics, we categorize the patterns into
two types. The first type has the semantics of storing a particular

tag:		
atom.cas	rx,[M],	 TRUE,	FALSE;
setp.eq p,	rx,	FALSE;
@p	bra	tag;
fence
···
fence
st [M],	TRUE;

···
fence
st	[M],	TRUE;

tag:		
atom.cas	r1,	[M],	TRUE,	FALSE;
setp.ne p,	rx,	FALSE;
@p	bra	tag;
fence
···

···
fence
atom.add	[M],	1,	rx;
setp.ne p,	rx,	#THREADS;
@p	bra	tag:
fence
···
tag:

···
fence
atom.add	[M],	1,	rx; setp.ne p,	rx,	#THREADS;

@p	bra	tag:
fence
···
tag:

···
fence
st	[M],	TRUE;

tag:		ld	[M]	rx;
setp.ne p,	rx,	TRUE;
@p	bra	tag;
fence
···

(tid ==	i)	{
tag:		ld[M]	rx;
setp.ne p,	rx,	TRUE;
@p	bra	tag;
fence
···}
(tid ==	j){···
fence
st [M],	TRUE;}

Kernel with acq-rel pattern Acquire operationRelease operation

··· is other code

Figure 10: Abstracted Patterns for Synchronization

ld [M] ; fence fence ; st [M]
ld.relaxed[M]; fence.acq_rel;
fence.acq_rel; st.relaxed[M];
ld.relaxed[M]; st.released[M];
ld.acquire[M]; st.relaxed[M];
ld.acquire[M]; st.release[M];
ld.weak[M]; fence.sc;
fence.sc; st.weak[M];

Figure 11: Valid ld/st + fence Combinations for Synchroniza-
tion Patterns

value to location M and is called a release operation on M. The other
type is to load the value from location M and is called an acquire
operation on M. We say an instruction is guarded by M if it appears
between an acquire M and a release M, or between the program entry
point and a release M, or between an acquire M and the program exit
point. A release-acquire pair in the program is used to ensure that
two instructions from different threads are synchronized if they are
both guarded by the same location M.

We model memory-inferred synchronization patterns as either
an acquire operation or a release operation, as shown in Figure 10.
For each instance of an acquire operation in the program, we add
a guarding state guard to the model. An acquire operation up-
dates guard to its guarding address (location M). A release operation
checks and resets guard if it matches its guarding address. When an-
alyzing synchronization of instructions in different threads, guard-
ing states are checked to see if they store the same value.

5 DATA RACE CHECKING FOR GPUS
We demonstrate the use of our formal instruction-level GPU model
in a verification application for data race checking. We formalize
the detection of a race as a safety property over the architectural
states in the GPUmodel and use boundedmodel checking [4] to find
violations. The overall verification flow is the same as for standard
property verification, and we describe details of our prototype
implementation in this section.

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Yue Xing, Bo-Yuan Huang, Aarti Gupta, Sharad Malik

Table 2: Race Condition Formulation
For any two different memory operations (mop1 andmop2)

Formula Explanation
p1 B ((tid1 , tid2) |(bid1 , bid2)) Different threads
p2 B (addr1 = addr2) Same address
p3 B ((type1 = w) |(type2 = w)) At least one write
p4 B (¬(atom1 ∧ atom2)) Not both atomic
p5 B ((bid1 = bid2) → No barrier synchronization
(bar (mop1) = bar (mop2)))
p6 B ((acq(mop1)∩ No memory inferred
acq(mop2)) = ∅) synchronization

5.1 Problem Definition
A data race is defined as two threads accessing the same shared
memory location concurrently, where at least one of the accesses is a
write operation, i.e., the two memory accesses are not synchronized,
either by a barrier or by a memory-inferred acquire-release pair. The
result of a race is considered undefined at the program or instruction
level, thus making it impossible to reason about correctness of the
rest of the program. Note that inferring synchronization patterns
is crucial in order to reduce false positives. Note also that atomic
memory operations are excluded from race checking, because two
atomic operations are regarded as being mutually exclusive.

5.2 Formalization of Race Condition
Our main approach for detecting a data race is to focus on memory
operations and represent them symbolically. We define a memory
operation as a tuple: mop(tid, bid, addr, type, atom). The tid and bid
identify the thread that executes the operation, addr is the memory
address, type indicates whether it is a ld or st, and atom specifies
whether it is an atomic operation. Each ld, st instruction in each
thread corresponds to such a memory operation. In addition, we
define two auxiliary functions to describe the synchronization for
each memory operation: bar() is a function from mop to integer,
indicating how many barrier synchronizations have been finished
before the mop. mops with different bar() values are separated by
at least one barrier, and can therefore never occur concurrently.
Acq() is a function from a mop to a set of variables that denote the
memory-inferred synchronizations that have been acquired but not
yet released.

Our formulation of a race condition is shown in Table 2. Here,
the first three formulas (p1,p2,p3) capture two conflicting accesses
from different threads, where at least one access is a write. The
fourth formula (p4) excludes atomic operations. The remaining two
formulas (p5,p6) correspond to no barrier or no acquire-release,
respectively, between the two mops.

The race condition, shown below, says that there exist two mops
such that the conjunction of all formulas from Table 2 is satisfiable:

∃mop1,mop2 s.t. (mop1 ,mop2) ∧ p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ p6 (1)

5.3 Implementation of Race Checker
We use two sets of symbolic variables to represent any pair of
mops, and the race condition is directly encoded using these vari-
ables. As mentioned in 3.1, tid and bid are states in each thread
model. To capture the other elements in the race condition, we add

a list of auxiliary state variables to a per-thread model: aux_address,
aux_atom, aux_type and aux_acq. Correspondingly, they are used
to record a mop for that thread. The memory scope (global/shared)
is also encoded as an extra bit in the aux_address. In particular,
aux_acq is used to capture acquire-release synchronization. In prac-
tical programs, the number of acquire-release memory operations
is statically analyzable as in 4.2, and is usually no more than 2.
Therefore, the number of auxiliary state variables is also statically
determined. For all programs we have seen, the acquire-release pat-
terns are not nested; thus, only one set of auxiliary state variables
is enough to capture memory-inferred synchronization.

Searching over all mops. When a mop is fetched and decoded
in the ILA model, the information for that mop can be recorded
in these auxiliary state variables. In other words, these auxiliary
state variables can capture the required information about the most
recently fetched mop. To represent any possible mop in a thread, we
nondeterministically choose whether to update these at a particular
mop. Thus, based on the nondeterministic selection, the auxiliary
state variables will represent the information for any one of the
mops that have executed. As discussed later, when an SMT solver
is used to check the race condition, all nondeterministic choices,
i.e., all mops, are searched implicitly. We have also implemented a
two-thread reduction to improve the scalability, similar to [3, 11].

Handling barriers. As shown in p5, a pair of mops can possibly
race only if they are mapped to the same value by bar(). Hence,
we only need to check mops pairs which meet that condition. To
achieve this, we implement the checker by disabling all recorded
mopswhen threads are synchronized at a barrier. Since our model of
the barrier instruction always has a synchronization point such that
all threads wait at that point before any of them can proceed, this
checker implementation guarantees that all checked mops pairs are
not separated by any barrier, which matches p5. Note that, barrier
only synchronizes for threads within a same block, for those in
different blocks, the barrier does not affect, and all mops will be
checked.

Bounded model checking (BMC). Finally, we use BMC [4] to check
whether the race condition can be satisfied. BMC unrolls the GPU
model up to a bounded length, and each unrolling goes through the
fetch, decode, and state updates corresponding to the PTX instruc-
tions. The race condition formula is checked at each synchroniza-
tion barrier point and at the end of the program. For programs with
loops, we first unwind loops up to a given iteration count (we use 5
by default). After unrolling the model, we use the SMT solver Z3 [6]
on the resulting formula. A satisfying solution corresponds to an
error trace starting from the initial states, followed by a sequence
of state transitions until a data race is detected.

6 EXPERIMENTAL EVALUATION
We evaluated our data race checker based on the GPU PTX-level
model.1 All experiments were done on a 2.50 GHz Intel Ivybridge
processor, 50GB of RAM, running Springdale Linux 7.4. Our PTX
programs were compiled using nvcc from CUDA 9 Toolkit, version
9.0.176. We used z3 v4.5.1 as the SMT solver.
1The GPU PTX-level model and the data race checker are publicly available on
https://github.com/yuex1994/ICCAD2018_submission .

A Formal Instruction-Level GPU Model for Scalable Verification ICCAD ’18, November 5–8, 2018, San Diego, CA, USA

Table 3: Results for Small Test Examples [7]

kernel # of Variants Ave. LoC Ave. Check Time(s)

\atomic 6 6 0.14
\base ld/st 10 16 0.2
\barrier 6 29 2.9
\branch 6 22 0.3

\sync block 5 23 0.45
\intra warp 4 13 0.6

\lock 20 21 1.02

6.1 Results
We requested the Barracuda test suites from authors of the paper [7].
There are 57 small race/race-free CUDA-C (some with inline PTX
assembly) kernels in total, including various featured bugs such
as races in different memory spaces, races inside a branch, missed
barrier, memory-inferred synchronization, as shown in Table 3.
Our checker correctly identifies all buggy programs and passes
all correct kernels. One difference between our checker and Bar-
racuda is that we do not assume warp-level lockstep as discussed
in Section.2.2. Therefore, intra-warp races are also detected by our
checker.

0

5

10

15

20

25

0.1 1 10 100 1000

of

 s
uc

ce
ss

fu
l v

er
ifi

ed
 k

er
ne

ls

Verification Time (s)

Figure 12: Cumulative Time (sec) for # of Successfully Veri-
fied Kernels from Nvidia SDK

We validated the usefulness of our checker on several other
benchmarks: 20 medium-sized kernels from CUDA SDK program
demos [14]; bfs, backprop, gaussian, hotspot, hybridsort, nn, kmeans,
particlefilter, and pathfinder from Rodinia suite [5], and hashtable
from GPU-TM [8]. Some applications include more than one kernel
program and we checked each of them individually.

T.O

1

10

100

1000

10000

100000

bfs_
k1

bfs_
k2

backp
rop_k1

backp
rop_k2

hash
tab

le

gau
ssi

an_k1

gau
ssi

an_k2

hotsp
ot

hybrid
so

rt_
k1 nn

lava
md

km
ean

s_k1

km
ean

s_k2

parti
cle

file
ter

pathfin
der

Verification Time (s)

Figure 13: Verification Time (sec) for Practical Applications
The scalability of medium-sized kernels is shown in Figure 12.

The verification time is typically less than 10 seconds when the size
of the program does not exceed 50 instructions, as is the case for
these kernels. Figure 13 shows the verification time for each kernel

from Rodinia and GPU-TM, and the corresponding results are in
Table 4. Our checker is capable of handling kernels scaling up to
hundreds of instructions, and it correctly detects potential bugs for
several kernels (detailed discussion in Section 6.2).

6.2 Discussion
We provide details on some interesting benchmark examples and
how our PTX-level checker handles them.

hashtable. Our checker demonstrates the following advantages:
(1) At the program level, this kernel defines complex data struc-
tures – a hash table, hash buckets, hash bucket entries, with pointer
arithmetic to select an entry from a hash bucket. Pointer arithmetic
is challenging for program level analysis but is captured naturally
through program state updates in our PTX ILA model. (2) Mem-
ory-inferred synchronization supported by our model is used in
this program. With no fences, there is a bug in this program that
implements a lock to let threads update each bucket mutually ex-
clusively. However, due to lack of fences, other memory accesses
can be reordered even with the lock. In our checker, the lack of
fences leads to lack of a acquire-release pattern, which we identify
as a bug. We corrected the bug by adding valid fences, after which
this modified kernel is correctly verified in 3 seconds.

Note that this example cannot be handled by previous race anal-
ysis tools such as GPUVerify [3], PUG [11] which check races at the
program level. First, they handle arrays by extracting the offset ex-
pressions and only consider programs with unified types (e.g., int).
Further, as the fence (__threadFence() API) is beyond the scope of
their tools, they do not consider memory-inferred synchronizations,
thereby leading to false positives.

Barracuda [7], the state-of-the-art dynamic checker does rea-
son about execution traces with acquire-release semantics. They
correctly identify the synchronization when memory operations
and fences are involved. However, as a dynamic checker, they are
limited to checking only one trace at a time, unlike our checker
which symbolically covers all traces.

bfs. Our checker identifies two bugs in kernel bfs: The first bfs
kernel uses a shared Boolean flag to compute the disjunction of each
thread’s result. The flag is implemented as follows: at the beginning
of the kernel, it is initialized to be false; each thread will either
update the flag to true or do nothing based on that thread’s result.
That is, more than one thread can set the flag concurrently. This
implementation relies on the assumption that "if multiple threads
write the same value to a memory location concurrently, that value
will be correctly stored." However, Nvidia GPUs do not guarantee
this property and we correctly identified it as a bug. Further, if
we relax the checker by ignoring this kind of store, we can verify
the correctness of the kernel in 10 seconds. (ii) In bfs, the second
kernel has some races at the kernel level. Our checker identifies
that, under some specific inputs, different threads will both load
from and store to a common address. This kernel-level race can be
avoided under a carefully designed environment that blocks the
invalid inputs, as the host program provided in the benchmark does.
This can be easily added as an environmental constraint during our
verification.

ICCAD ’18, November 5–8, 2018, San Diego, CA, USA Yue Xing, Bo-Yuan Huang, Aarti Gupta, Sharad Malik

Table 4: Verification Results for Practical Applications
kernel LoC Bug Found
bfs_k1 61 Race
bfs_k2 27 Race
backprop_k1 87 False Positive
backprop_k2 75 Correct
hashtable 38 Race
gaussian_k1 33 Correct
gaussian_k2 55 Correct
hotspot 225 Correct
hybridsort_k1 151 Race
nn 29 Correct
lavamd 513 Timeout:100000s
kmeans_k1 33 Correct
kmeans_k2 143 Correct
particlefilter 51 Correct
pathfinder 110 Correct

hybridsort. hybridsort has a similar issue that setting specific
inputs can avoid certain races. Since we model memory using non-
deterministic functions, indirect memory accesses can cause races.
For example, memory accesses in a[b[tid]] will cause races in array
a because array b can return any value, and different threads’ b[tid]
can be the same. In the benchmark hybridsort, they can have the
same indirect memory accesses, which has the vulnerability for
a race. When we checked this, we found that the input array b is
guaranteed to get different values loaded for different indices, i.e.,
b[tid] are different under different tid . So, the programmer allows
such races in the kernel, since they are avoided by the code outside
of the kernel.

backprop. Precise modeling of floating point arithmetic is out of
the scope of this paper. In kernel 1 of the backprop benchmark, some
memory indexes are first calculated as float values then rounded.
We substitute those calculation with integer arithmetic, and the
kernel was then verified to be correct.

lavamd. This is the only benchmark where our checker could
not complete within the time limit. This kernel contains more than
150 load/store instructions in each thread. Even though the checker
involves only two threads, this still leads to more than 20000 clauses
in the checking formula for each pair of memory accesses! Further
improvement can be made by constraining the search space by
providing invariants. For example, in the future, we plan to prune
redundant checking by exploiting symmetry in the two threads.

7 CONCLUSIONS
This paper presents a formal model of the Nvidia GPU at the
PTX level. Our model covers both non-synchronization instruc-
tions and synchronization primitives in the PTX specification. This
model is built using the recently proposed Instruction-Level Ab-
straction (ILA) and synthesized using semi-automatic techniques
for template-based program synthesis.

We show the usefulness of our formal model by developing a
checker for data races in PTX code, where we use bounded model
checking on our model and an SMT solver to detect race conditions.

Experimental results show that our checker outperforms state-
of-the-art data race checkers with fewer false positives and better
scalability for programs with pointers and complex data structures.

REFERENCES
[1] Rajeev Alur, Joseph Devietti, Omar S Navarro Leija, and Nimit Singhania. 2017.

GPUDrano: Detecting Uncoalesced Accesses in GPU Programs. In International
Conference on Computer Aided Verification. Springer, 507–525.

[2] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
2009. Analyzing CUDAworkloads using a detailed GPU simulator. In Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International Symposium
on. IEEE, 163–174.

[3] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson.
2012. GPUVerify: a verifier for GPU kernels. In ACM SIGPLAN Notices, Vol. 47.
ACM, 113–132.

[4] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan
Zhu, et al. 2003. Bounded model checking. Advances in computers 58, 11 (2003),
117–148.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. InWorkload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. Ieee, 44–54.

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[7] Ariel Eizenberg, Yuanfeng Peng, Toma Pigli, WilliamMansky, and Joseph Devietti.
2017. BARRACUDA: Binary-level Analysis of Runtime RAces in CUDA programs.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM, 126–140.

[8] Wilson WL Fung, Ivan Sham, George Yuan, and Tor M Aamodt. 2007. Dynamic
warp formation and scheduling for efficient GPU control flow. In Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 407–420.

[9] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta,
and Sharad Malik. 2018. Instruction-Level Abstraction (ILA): A Uniform Specifi-
cation for System-on-Chip (SoC) Verification. arXiv preprint arXiv:1801.01114
(2018).

[10] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (1978), 558–565.

[11] Guodong Li and Ganesh Gopalakrishnan. 2010. Scalable SMT-based verification of
GPU kernel functions. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering. ACM, 187–196.

[12] Nvidia. 2017. CUDA C Programming Guide 9.1. (2017). https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html

[13] Nvidia. 2017. CUDA Parallel Thread Execution ISA 6.1. (2017). https://docs.
nvidia.com/cuda/parallel-thread-execution/index.html

[14] Nvidia. 2017. CUDA Toolkit 9.1. (2017). https://developer.nvidia.com/
cuda-downloads

[15] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems, Vol. 41. ACM, 404–415.

[16] Pramod Subramanyan, Bo-Yuan Huang, Yakir Vizel, Aarti Gupta, and Sharad
Malik. 2017. Template-based Parameterized Synthesis of Uniform Instruction-
Level Abstractions for SoC Verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2017).

[17] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli. 2012.
Multi2Sim: a simulation framework for CPU-GPU computing. In Parallel Archi-
tectures and Compilation Techniques (PACT), 2012 21st International Conference
on. IEEE, 335–344.

[18] Shucai Xiao and Wu-chun Feng. 2010. Inter-block GPU communication via fast
barrier synchronization. In Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. IEEE, 1–12.

[19] Mai Zheng, Vignesh T Ravi, Feng Qin, and Gagan Agrawal. 2011. GRace: a
low-overhead mechanism for detecting data races in GPU programs. In ACM
SIGPLAN Notices, Vol. 46. ACM, 135–146.

[20] Mai Zheng, Vignesh T Ravi, Feng Qin, and Gagan Agrawal. 2014. Gmrace: De-
tecting data races in gpu programs via a low-overhead scheme. IEEE Transactions
on Parallel and Distributed Systems 25, 1 (2014), 104–115.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

