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Abstract—Modern Systems-on-Chip (SoCs) integrate hetero-
geneous compute elements ranging from non-programmable
specialized accelerators to programmable CPUs and GPUs. To
ensure correct system behavior, SoC verification techniques
must account for inter-component interactions through shared
memory, which necessitates reasoning about memory consistency
models (MCMs) This paper presents ILA-MCM, a symbolic
reasoning framework for automated SoC verification, where
MCMs are integrated with Instruction-Level Abstractions (ILAs)
that have been recently proposed to model architecture-level
program-visible states and state updates in heterogeneous SoC
components.

ILA-MCM enables reasoning about system-wide properties
that depend on functional state updates as well as ordering
relations between them. Central to our approach is a novel facet
abstraction, where a single program-visible variable is associated
with potentially multiple facets that act as auxiliary state vari-
ables. Facets are updated by ILA “instructions,” and the required
orderings between these updates are captured by MCM axioms.
Thus, facets provide a symbolic constraint-based integration
between operational ILA models and axiomatic MCM specifica-
tions. We have implemented a prototype ILA-MCM framework
and use it to demonstrate two verification applications in this
paper: (a) finding a known bug in an accelerator-based SoC, plus
a new potential bug under a weaker MCM, and (b) checking that
a recently proposed low-level GPU hardware implementation is
correct with respect to a high-level ILA-MCM specification.

I. INTRODUCTION

Systems-on-Chip (SoCs) integrate specialized hardware to
meet the power-performance requirements posed by emerging
applications. Specialized hardware can be programmable (e.g.,
Graphics Processing Units or GPUs) or non-programmable
(e.g., an AES cryptographic accelerator). They outperform
general purpose processors in specific domains like machine
learning [1], scientific computation [2], and cryptographic op-
erations [3]. The multiple processing units in an SoC typically
run concurrently. This concurrency can be difficult to reason
about, leading to design and implementation bugs in functional
correctness as well as security. Furthermore, when SoC
components interact via shared memory or memory-mapped
input and output (MMIO), one also needs to reason about
memory consistency models (MCMs). Although programmers
generally find it easier to think about concurrent code with
sequentially consistent (SC) ordering semantics, modern
instruction set architectures (ISAs) have weaker MCMs in an
effort to achieve better performance and scalability.
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Previous MCM verification efforts have focused on
modeling and analyzing MCMs at different levels of the
software/hardware stack in parallel systems [4–11]. These
approaches typically use small parallel programs, called litmus
tests, for reasoning about the MCMs themselves. They focus
on ordering relations between simple instructions, rather
than on symbolic reasoning of complex control and data
flow in programs, which is often needed in SoC verification.
Moreover, none of these efforts consider non-programmable
hardware accelerators, which may not have an ISA.

Recently, an instruction-centric operational model for het-
erogeneous SoC components has been proposed, called an
Instruction-Level Abstraction (ILA) [12]. Analogous to a pro-
cessor ISA, an ILA models a hardware component’s program-
visible states and their updates in the form of instructions. This
provides a well-defined interface between sequential software
and the underlying hardware component. For an accelerator,
its ILA instructions correspond to commands at its interface.
ILAs have been successfully generated (using semi-automated
synthesis-based techniques) for many accelerators in prac-
tice [12–14]. In the rest of this paper, we use “instructions” to
denote ILA instructions, which correspond to instructions in
a processor ISA or to derived instructions for an accelerator.

An ILA can uniformly model rich instruction semantics
(i.e., including control and data flow) of a single processing
unit, e.g., a processor or an accelerator. Although existing
MCM specifications and verifiers are well-suited for
representing orderings between memory operations of multiple
processing units, they lack such rich instruction models. We
show that for general SoC verification, it is essential to reason
about both rich instructions in heterogeneous components and
memory orderings between them.

In this paper, we address this central challenge by proposing
a general symbolic framework called ILA-MCM, shown in
Figure 1. In this framework, each processing unit in an
SoC, such as a programmable processor or an accelerator,
is uniformly represented by an ILA. The MCM is described
using axioms, as in previous efforts [4–11], but is integrated
with the ILA operational models. This enables our ILA-
MCM framework to reason about functional state updates in
instructions as well as the effects of MCMs, thereby supporting
expressive properties involving both states and orderings for
SoC verification.

A novel feature of our ILA-MCM framework is the facet
abstraction, where a single program variable in an instruction
can be associated with multiple auxiliary state variables called
facets in the verification model. Facets are useful for modeling
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Fig. 1. The ILA-MCM Framework for heterogeneous SoC verification

memory subsystems and consistency effects, where different
observers in an SoC may see logically distinct values of the
same program-visible variable. The allowed values of facets
are constrained by the operational semantics of the instructions
as well as the memory consistency axioms. Thus, facets form
a critical link between operational ILA models and axiomatic
MCM specifications.

Another feature is that our verification procedure supports
both operational and axiomatic models in general. (For ex-
ample, our second application uses a low-level operational
model for memory consistency.) The executions of operational
models (e.g., ILAs) are based on a program sketch [15]1,
which depends on the property to be verified. This creates
symbolic trace events (events, in short). Each event is guarded
by a condition and updates the state in an ILA or a facet.
The axioms are then instantiated, which may create additional
events or impose happens-before [16] ordering relations be-
tween events. We refer to these sets of constraints as the model
constraints. Finally, we add property constraints that refer to
states and ordering requirements for verification.

We use standard theories in first order logic to capture all
constraints, including the semantics of instructions in a pro-
gram and happens-before ordering relations between events.
The formula comprising all constraints is checked by a Sat-
isfiability Modulo Theory (SMT) solver [17]. Our framework
supports diverse verification tasks formulated as SMT queries,
including finding bugs (via falsification) or proving correctness
(via verification condition generation). We have implemented
a prototype ILA-MCM framework and demonstrate its use in
two challenging SoC verification applications in this paper.

To summarize, this paper makes the following contributions:

• ILA-MCM framework: We propose a framework that
combines operational models for processing cores (in-
cluding accelerators) with axiomatic memory consistency
models to enable SMT-based reasoning of complex inter-
actions between hardware, software, and memory subsys-
tems in heterogeneous SoCs.

• Facet abstraction: We propose the facet abstraction,
where a single program-visible state variable can be

1Similar to automated program synthesis, the “holes” in our program sketch
are filled in by a solver.

associated with multiple logically-distinct variables, to
represent updates on program-visible states with memory
consistency effects. The facets provide the basis for a
constraint-based integration of ILAs with MCMs.

• Evaluation on real-world SoCs designs: First, we show
an application of the ILA-MCM framework for finding
security bugs in SoC firmware [18], where our support for
expressive properties enables finding a malicious exploit
from a program sketch. Second, we show an application
for checking correctness of a low-level GPU hardware
implementation [19] against a high-level ILA-MCM spec-
ification, where our instruction-centric approach enables
its decomposition into simpler verification tasks.

An overview of various components in the ILA-MCM
framework is shown in Figure 2, annotated by the section num-
bers that describe these components. We start by introducing
the relevant background on ILAs and MCMs.

II. BACKGROUND

A. Instruction-Level Abstraction (ILA)

An ILA is a uniform abstraction for hardware accelerators
as well as general-purpose/specialized programmable proces-
sors [12]. It is an operational model that captures updates
by hardware to program-visible states (i.e., the states that are
accessible or observable via a user-facing program instruction).
It can be viewed as a generalization of the processor ISA in the
heterogeneous context, where the instructions for accelerators
are defined as the commands on their interface that update
program-visible states. In an ILA, each instruction has a
decode condition, and the instruction executes only when this
condition is true. An ILA also supports hierarchy, where an
instruction at a high level can be represented as a sequence
of child instructions at a lower level, as shown in Figure 2
for Instr A of ILA1 (under the “ILAs” column). Thus,
the granularity of ILA instructions can vary, ranging from
processor instructions to software functions. Furthermore, an
ILA is used for modeling a sequential thread of control, while
parallelism is modeled using multiple such threads.

B. Memory Consistency Model (MCM)

An MCM provides a specification to a programmer of the
order in which memory operations appear to execute [20].
Sequential consistency (SC), defined by Lamport [21],
specifies that: (1) memory accesses preserve the order within
each thread of a program, and (2) across threads, there is an
order of accesses that every observer agrees upon. Despite the
intuition of SC, nearly all modern ISAs adopt MCMs weaker
than SC. A weak MCM allows certain memory accesses to
be reordered within a program, and supplies fences or other
synchronization mechanisms to enforce required orders when
necessary. For example, the Total Store Order (TSO) model
allows a load to be reordered with earlier stores that access a
different address to allow the store-buffer optimization [22].

Figure 3 illustrates the effects of MCMs on a small multi-
threaded program with a proposed outcome, called a litmus
test. In this litmus test, each thread executes a store (st)
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Fig. 3. A forbidden outcome in SC can become permitted under a weaker
MCM. Arrows show the ordering relations (in blue) between instructions.

and then a load (ld) instruction, where all memory locations
and registers are initially 0. Figure 3(a) assumes the SC
MCM, and thus forbids a program outcome where both load
instructions return 0. This is evident in a cycle of edges that
comprise the preserved program order between the store and
load instructions (shown as ppo edges) and the order between
the read in one thread and the write in the other (shown by
from-read (fr) edges). In contrast, under TSO (Figure 3(b)),
the ppo edges are removed (since a read can be reordered with
an earlier write), so the proposed outcome is permitted since
there is no cycle. In general, MCMs also consider the co edge
(coherence order between writes to the same address) and the
rf edge (reads-from order from a write to a load which reads
from that value).

C. Gaps in Prior Work

Despite a rich history of prior work in MCM verification,
they lack some key capabilities described below.
Symbolic Reasoning with Conditional Orderings. Our main
goal is to support general verification of SoC software and
hardware. However, most prior efforts in MCM verifica-
tion rely upon an explicit enumeration over addresses, data,
and conditional predicates that may affect orderings between
memory operations. Specifically, we consider the following
two types of conditional orderings: ¶ relations involving
predicated instructions or instructions after branches, and ·
relations involving address/data-dependent values.

For example, Figure 4(a) shows ¶, with a predicate p1 on
the last load instruction in thread T2. Note that the existence
of the load event and the related fr edge (shown as a dashed
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Fig. 4. Examples of conditional orderings. (a) @p1 ld executes iff p1 is
true, i.e., iff r1==0 (setting/using predicate p1 is marked in red). (b) In
TSO, store-to-load reordering is allowed if the addresses are different.

arrow) are control-dependent. If this control-dependency is
ignored, the analysis will incorrectly deduce that the graph
is cyclic, i.e., the outcome is unobservable. Figure 4(b) shows
an example for case ·, where reordering is allowed only when
the addresses in registers r2 and r3 are different.

In prior MCM efforts based on relational models, e.g.,
using Alloy [5] or Check tools [7–11], the addresses and
data are modeled by relational predicates, e.g., whether two
addresses are the same. However, such relations have to
be pre-specified and are not explored symbolically in the
solver. Similarly, Herd uses enumeration over all possible
values of relevant addresses/data. In contrast, ILA-MCM uses
symbolic reasoning to represent ordering relations dependent
on complex contro/data flow and avoids explicit enumeration.
Rich Instruction-Centric Models. Most previous efforts in
MCM verification focus on ordering relations between in-
structions, rather than on updates of program-visible states.
For example, arithmetic instructions are abstracted away in
relational models [5]. In Herd [4], the instructions are hard-
coded and do not model bit-precise hardware (e.g., there is no
register overflow behavior). Our goal is to support SoC veri-
fication by modeling rich instruction semantics for processors
as well as non-programmable accelerators, which is required
for reasoning about general (not just litmus) programs.
Expressive Properties. MCM verification has typically fo-
cused on specifying orderings and litmus tests, while pro-
gram/processor verification has focused on state-based veri-



fication or control-oriented properties. We aim to support SoC
verification using a wide range of expressive properties that
can refer to both states and orderings.

III. ILA-MCM FRAMEWORK

We now provide details of the main components of our
ILA-MCM framework (shown in Figure 2): program sketches,
facets, axioms, and verification procedure.

A. Program Sketch

We leverage existing work on programming by
sketches [23, 24] to synthesize a program that would
exercise a bug or abstractly capture unbounded executions.
Our program sketch comprises: (1) a set of partially-specified
state updates in instructions (and any child instructions), and
(2) a partial order on them. Holes (shown as question marks
in Figure 2) are allowed in the sketch. These are filled in
by the SMT solver during verification. Examples of holes
include symbolic values (e.g., content of a memory location)
or fields in an instruction encoding (e.g., address/data field
of the store and load in Figure 2).

The program sketch, which needs to be provided by the
user, typically depends on the correctness property. Although
a program sketch has a bounded number of instructions, one
can use an outer procedure to iteratively increase the bound, to
perform a deeper search for bugs or for a proof by induction
using given invariants. In the first column in Figure 2(b), the
example considers an SoC with a processor, a device, and
a cryptographic engine (CE). Thus, there are three program
sketches (P1, P2, P3) and a SetLock instruction is illustrated
in the program sketch (P1) for the processor. The second
column (under ILA) shows the related event, which updates
the lock variable by the value of some register (left as a hole
r?) and associates a symbolic timestamp t1 with the event.

B. The Facet Abstraction

To reason about the interactions between SoC components
via shared memory, we need to establish a relation between
program variables in instructions of different ILA models via
axioms in MCMs. We model this using a novel abstraction
described below.

1) State Variables for Facets: Facets are auxiliary variables
associated with a shared program-visible state variable that can
be observed by an “agent,” which may be a thread, a physical
structure or a processing core/accelerator, depending on the
ILA modeling granularity. Facets reflect the fact that different
agents may observe distinct values of the same shared variable
in different orders. For example, the store-to-load reordering
in TSO can result in the load seeing the new value from the
store earlier than instructions on another thread. In general,
each agent can potentially have its own facet for a shared
variable. In our experience, this per-agent-facet is general
enough to model weak consistency behaviors. (More facets can
be added if one wishes to model memory consistency at the
microarchitecture level, e.g., with store-buffers or caches, etc.)

We use the notation variable.agent for the facet that
corresponds to a specific agent’s view of a given program
variable. For the example considered in Figure 2(b), suppose
there is an on-chip interconnect between the three components,
and that there is a register in the device denoting a lock.
The device observes its value by directly reading the register,
which is regarded as the facet of the device (denoted lock.dev).
The device provides a memory-mapped interface, where other
agents can access the lock register as if accessing a memory
location. We model the lock register seen by the other agents
as facets, denoted lock.proc and lock.CE, respectively.

2) State Updates for Facets: Continuing with our example,
the ILA instruction SetLock on the processor can update the
lock by writing to the memory-mapped address of the lock
register in the device. The new value may first appear in the
processor’s local buffer, then go into a cache, and through the
interconnect, propagate to the device and finally update the
device’s register. This could result in different agents seeing
different values in different orders. We model this by creating
new events: write-facet events to update facets, and read-facet
events to read facets.

For example, TSO can be modeled such that each agent
has a facet for a shared program variable. A store instruction
creates two write-facet events, one to its own facet (local
write-facet event) and the other to all other facets (global
write-facet event). A load instruction corresponds to one read-
facet event, since it only needs to read from its own facet.
In general, any instructions or child-instructions accessing
shared variables can have associated facet events. The values
that facet read/write events use for updates are derived from
the ILA instruction semantics, while the orderings of facet
read/write events are specified by the facet-axioms in the
MCM. We use the notation instr.wfe/rfe.<attr> to refer to
the write-facet events (wfe) or read-facet events (rfe), related
to a given instruction (instr), with a given attribute <attr>. In
the TSO model, <attr> can be local or global. The example
in Figure 2(b) shows two write-facet events (under Facets)
related to the SetLock instruction under the TSO model.

C. Facet-Axioms for Integrating ILAs and MCMs

So far, we have described facets as state variables, and new
facet events associated with ILA instructions that update or
read them. The orderings between these events are specified
by MCM axioms. For SC and TSO, the complete set of facet-
axioms can be found in the Appendix. We highlight some
fragments of these in Figure 5. Note that we uniformly use
happens-before relations (denoted as HB) to specify order-
ings between events. In the SC model (top part), all facet
read/write events are synchronous (i.e., these events occur
at the same time) with the instructions (lines 1-2). In the
TSO model (lower part), the two write-facet events (local
or global) of a store instruction happen after the instruction
and follow the program order (lines 3-9). These axioms are
similar to those used in prior work, e.g., in the µspec TSO
model [7], except that facet-axioms relate instructions with
facet read/write events, while µspec axioms relate instructions



 
 1: Axiom SC_WriteFacetOrder 
 2: forall w:WRITE | Sync[ w , w.wfe.global ] 
    … 
 
 3: Axiom TSO_WriteFacetOrder 
 4: forall w:WRITE | HB[ w , w.wfe.local ]  /\  
 5:   HB[ w.wfe.local , w.wfe.global ] 
 6: Axiom TSO_Store 
 7: forall w1:WRITE | forall w2: WRITE (not w1) |  
 8:   PO[ w1, w2 ] => HB[ w1.wfe.local, w2.wfe.local] 
 9:      /\ HB[ w1.wfe.global, w2.wfe.global] 
    … 
10: Axiom RF_CO_FR 
11: forall r:READ | exists w:WRITE |  
12:   SameAddress[w,r] /\ SameData[w,r]/\ w.decode /\RF[w,r]/\( 
13:      forall w2:WRITE (not w) | ( SameAddress[w,w2] /\  
14:         w2.decode )=> CO[w2,w] \/ FR[r,w2] ) 
15: Define RF[ w, r] := … 
16: Define CO[w1,w2] := … 
17: Define FR[ r, w] := … 
 
 Fig. 5. SC and TSO axioms (fragments)

with microarchitectural structures like pipeline stages and
caches. Further, axioms for other MCMs can be similarly
defined. We have designed these axioms by hand (similar to
prior MCM work); addressing their correctness is beyond the
scope of this work.

The main highlight of the facet-axioms is that the relations
over facet events in the MCM are linked with control/data
flow in the ILA instructions via predicates interpreted over
ILA state variables and facets. Consider the RF CO FR axiom
(lines 10-14), which states that: (a) all read events should
read from some executed write event with the same address,
and the data values of read and write should match, (b) if
a read r reads from a write w, any other executed write w2

should not interfere. Here, the predicates SameAddress and
SameData are interpreted over ILA state variables and facets.
Similarly, the symbolic decode condition of an instruction
(denoted instruction.decode) is a predicate over ILA state
variables. Note also that the definitions of rf, fr, and co edges
are based on the happens-before relation over facet-events.

D. ILA-MCM Verification Procedure
Our verification procedure is shown in Algorithm 1. Among

its inputs, the first is a program sketch P (T,R), where T is
a set of instances2 of partially-specified (child-) instructions,
and R is a partial order. Other inputs are a set of ILAs I ,
the axioms A, and a property φ. For each possible instruction
instance, the algorithm creates a trace step (simply called step)
using the instruction semantics3 (line 5). We also associate
a symbolic timestamp with the step, encoded as an integer
(ta for step a). Values of timestamps only reflect relative
orderings. Recall that the instructions/child-instructions may
lead to facet read/write events, and steps are also created for
these events (lines 6-8). Next, any happens-before orderings
in the program sketch are interpreted as a less-than relation
on the associated timestamps (line 10). Then, we instantiate
the quantifiers and interpret the predicates in the axioms over

2Multiple occurrences of the same (child-) instruction are regarded as
separate instances in a trace.

3Although not shown here, we use a concurrent static single assignment
(CSSA) encoding [25, 26], where uses of shared state variables are encoded
as π-variables and updates to them are encoded as new definitions.

Algorithm 1 ILA-MCM Verification Procedure
1: procedure VERIFY(P (T,R), I, A, φ)
2: . P (T,R): program sketch P , where T is a set of instances

of (child-) instructions and R is a partial order, I: set of
ILAs, A: axioms, φ: property

3: C ← > . C is set of constraints
4: for each ts ∈ T do
5: C ← C ∧ CreateStep(ts, I)
6: T ′ ← AssocFacetEvent(ts, A) . Get facet-events
7: for each ts′ ∈ T ′ do
8: C ← C ∧ CreateStep(ts′, I)
9: for each a→ b ∈ R do

10: C ← C ∧ ta < tb . Orders are on timestamps
11: C ← C ∧ InstantiateAxioms(A)
12: C ← C ∧ ¬φ
13: if SMTCheck(C) = SAT then
14: return INVALID, GetModel(C)
15: else return VALID

the set of steps (line 11), and add the negation of the property
(line 12). Finally, the set of constraints is checked by an SMT
solver. (Our prototype uses Z3 [27].) If the constraints are
satisfiable, we get a counterexample in the form of an event
trace; otherwise, the property is valid within the space allowed
by the program sketch. To verify unbounded correctness,
we can check whether given invariants are inductive and
use abstractions to model nondeterministic environments, as
discussed later in Section IV-B.

IV. VERIFICATION APPLICATIONS

A. Security Bug in a Firmware Load Protocol

1) System Overview: The SoC [18] used in this application
consists of a processor, a device, and a cryptographic
accelerator engine (CE). The processor runs a driver that
loads a firmware image onto the device. The CE is responsible
for authenticating the image before it can be used by the
device. The SoC has a system memory (SM) that all three
agents can access, and an isolated memory (IM) that can only
be written by the device but is readable by both the device
and the CE. The threat model assumes that the driver on the
processor can be compromised. The attacker’s goal is to fool
the device into running a malicious firmware image that does
not carry a correct signature.

2) ILAs and Instructions: The first step is to construct an
ILA for each of the agents: the processor, the device, and
the CE. The set of instructions and child instructions are
shown in Figure 6(a) (along with a legend). The processor
uses store operations to send commands to the memory-
mapped device or the accelerator interface, and can query the
status via reading through this interface. The ILA instructions
in the processor (device driver) are Send Command Reset,
Store Firmware, or Send Command Load. The processor
also has a Receive Report instruction that, when trig-
gered by an interrupt, reads from the device’s status reg-
ister to learn the result of firmware image authentication.
The device ILA has three instructions: Reset, Load and
Handle CE Response. The CE ILA has only one instruction
(Authentication), which handles the authentication request.



No. (Child-) instructions in three ILAs
1. Send Command: Reset
2. Reset
3. Store Firmware to SM
4. Send Command: Load Firmware
5. Load Firmware (child: 5a, 5b)
5a. Copy Firmware from SM to IM
5b. Send Authentication Request
6. Authentication (child: 6a, 6b)
6a. Verify Signature
6b. Send Response
7. Handle Response (child: 7a-7c)
7a. Read Status Bit
7b. Send Interrupt to Processor
7c. If ( status == PASS ) 

PC := IMAGE_ADDR
8. Receive Report
Lock Write Lock := “LOCK”

(a) (b) (c) (d)

Design A and Design B
have the same execution 
flow, except that Design B
has a child instruction 
Lock in Step 6.

1. @1

Device CE

2. @2
3. @3

4. @4

5a. @6

5b. @7

6a. @9

6b. @13

7a. @17

7b. @18

7c. @19

5. @5

6. @8

7. @16

3. @7

4. @8

5a. @10

5b. @11

5. @9

Processor

1. @1→2

Device CE

2. @3

1. @11→12

3. @7→8

5a. @15→16

5b. @16→17

5. @10

4. @8→9

3. @12→16

4. @16→17

2. @17

5. @18

5a. @23→26

5b. @33→35

Lock. @22→24

6b. @34→36

6. @21

6a. @25

7a. @38

7b. @39

7c. @40

7. @37

Processor

1.

Processor Device CE

2.
3.

4.

5a.

5b.

6a.

6b.

7a.

7b.

7c.

5.

6.

7.

8.

(Lock)

E. @T E represents an event, T is the 
timestamp

E. E represents an event

Gray boxes participate in writing 
the malicious image

E. @T1→T2 T1 is the time of local facet update, 
T2 is the time of global facet update

The lock operation added in Design B 

Fig. 6. (a) Instructions/child-instructions in the ILAs, plus legend. (b) Intended execution flow for Designs A and B, where a dashed arrow indicates an
agent triggering an instruction in another agent via instruction-decode conditions. (c) Malicious exploit for Design A under SC, with event timestamps (@T)
generated by the SMT solver. (d) Malicious exploit for Design B under TSO, with timestamps for local/global facet updates also generated by the SMT solver.

The intended execution flow of these instructions is shown
in Figure 6(b). First, the driver sends a Reset command to the
device by writing into the command register and the device
performs reset (Step 1 and 2). The driver stores the firmware
image in a dedicated region in SM (3) and invokes the device
(4). Upon receiving the Load Firmware command (5), the
device copies the firmware image into its IM (child-instruction
5a) and sends an authentication request to the CE (5b). The
CE checks the signature of the image in IM (6a), stores the
result into its register and signals the device of its completion
(6b). The device will read the verification result from the CE’s
address space (7a) and report the result to the driver (7b). If
the result indicates that the image is authenticated, the device
sets its own program counter to point to the firmware location
in IM and starts its execution from there (7c). Finally, the
processor handles the interrupt and knows that the firmware
image has been loaded (8).

We refer to the above implementation as Design A, which
is known to have a time-of-check to time-of-use (TOCTOU)
vulnerability. Prior work originally identified and presented a
solution to this vulnerability, namely Design B [18], where the
device protects IM contents with a lock that is accessible only
by the device and the CE. Once locked, the image stored in
IM cannot be changed. Our ILA model for Design B is similar
to Design A, except that the CE has an extra child-instruction
Lock in ILA instruction 6 which enables the lock.

3) Program Sketch: We created a program sketch based
on the instructions shown in Figure 6(a), where the solver
explores which instructions to include in the malicious exploit
by creating a hole for the decode condition of each instruction.
Further, the values and addresses of the stores by the driver

are left as holes in the program sketch.
4) Facets and Axioms: In this application, we consider two

possible MCMs: SC and TSO. We use facets and axioms
(shown in the Appendix) to model the MCMs.

5) The Property: The SoC should ensure the fol-
lowing safety property φ: (DevPC = FwAddr) →
Check(IM [FwAddr]) 6= FAIL. It says that when the device’s
program counter points to the region holding the firmware
image, the image should not be malicious. Our verification
procedure aims to synthesize an exploit that violates this
property.

6) Results: Under the SC model, our verification procedure
successfully reproduced the known malicious exploit [18] for
Design A in 3.5 seconds, with a bound of 30 ILA instructions.
The malicious exploit is shown in Figure 6(c), where the
timestamps (@T) found by the SMT solver are shown for each
event. Note that the correct image is authenticated, but the
firmware overwrites it with a malicious image, which is then
executed. This is a TOCTOU vulnerability.

Design B is intended to fix the above issue and works
correctly under the SC model. However, under the TSO
model, our verification procedure found a malicious exploit
in 6.5 seconds, with a 32-instruction bound. To the best of
our knowledge, this TSO-based vulnerability was not known
before. The resulting trace is shown in Figure 6(d), where the
essential problem is around timestamp 22 to 24. Although the
CE updates the device’s lock register at time 22, the device
does not see this update until later. As shown, at time 23, the
device overwrites the firmware with a malicious image. This
bug can be fixed by adding a fence on the CE to ensure that the
device sees the lock before the CE proceeds to authenticate.



B. Verifying Correctness of a GPU Implementation
Graphics Processing Units (GPUs) often use very weak

consistency models that allow for a large amount of buffering
and reordering of memory requests, to provide mitigation
of high memory latency. An operational model of a GPU
implementation is discussed by Wickerson et al. [19]. The im-
plementation is intended to be compliant with OpenCL [28] (a
variant of the heterogeneous-race-free (HRF) MCM [29]), with
an extension called remote scope promotion (RSP) proposed
by AMD. Under OpenCL, all programs must be free of data
races (i.e., two unsynchronized accesses to the same address
with at least one write); the behavior is undefined otherwise.
Synchronization can be achieved by an acquire-load reading
from a release-store with or promoted to a matched scope.

We aim to verify that the given hardware implementation
is correct with respect to a high-level specification model
that we build in ILA-MCM. We should mention that our
specification is actually more conservative than the language-
level OpenCL+RSP model described by Wickerson et al. –
developing an equivalent ILA-MCM model for the latter is
left to future work.

1) ILA-MCM Specification Model: This model comprises
the functions of store, load, and atomic increment operations,
plus the ordering relations they enforce. Each operation may
have additional attributes that affect the ordering relations: (a)
whether it is a release (for a store), an acquire (for a load),
neither, or both, (b) the scope of the synchronization, and (c)
whether it promotes the scope of a remote synchronization. We
model these operations using ILA instructions, where different
attributes lead to different instructions, e.g., store-relaxed and
store-release are modeled as two distinct instructions. They
have the same state updates, but the difference in their order-
ings is captured by the associated MCM axioms.

The system has a hierarchical structure comprising M
devices, each device with N workgroups, with a workgroup
having L threads. For a shared program variable, each thread
possesses a facet, and additionally each workgroup (and each
device) also has a facet. A store instruction will first update the
facet of its own thread (TH-facet update), then the facet of its
workgroup (WG-facet update) and the device facet (DV-facet
update). A load instruction will have a TH-facet-read event
(and potentially WG-facet-read and DV-facet-read events).

For each instruction, we use facet-axioms to model the
enforced ordering requirements. For example, for the store-
release (device scope, no remote promotion) instruction
storeDV,N , one of its axioms is shown in Figure 7(a). It
says that for a storeDV,N instruction s1, for all the other
store instructions s2 different from s1, if they are on the same
workgroup and there is a happens-before relation on their WG-
facet updates, then their DV-facet update events also follow
a happens-before relation. For each instruction, there can be
multiple axioms specifying its ordering relations with different
types of instructions under different conditions.

2) SoC Implementation: The implementation model, from
Wickerson et al. [19], is fully operational (does not require
facets or axioms). It contains a number of GPUs, where each

(a)

st [r2], 1

ld r1, [r3]

r1 == 1 /\ r2 == 0 
 Observable under TSO

(b)
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Reorderst [x], 1
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setp.eq  p1, r1, 0
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(wfevt)

(b) Instruction and facet-events
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Toggle.wfe.global

Processor

Device

lock

CE

lock.dev

lock.CE

lock.proc

(a) Agents and facets of lock

Axiom store_DV_N_WG_REL
forall s1:store_DV_N | 
forall s2:STORE (not s1) |
( HB[s2.rfe.WG, s1.rfe.WG] 

/\ SameWg[s1,s2] ) 
=> HB[s2.rfe.DV, s1.rfe.DV] 

STORE

storeDV,N

Sets of possible 
environmental 

transitions

(a) (b)

Abstract 
Transition

Abstract 
Transition

Fig. 7. (a) An axiom for instruction storeDV,N (b) related program sketch

GPU performs a series of operations to achieve the effect of an
instruction in the high-level specification. These operations are
modeled as child instructions, which make use of the physical
locks, FIFOs, and caches to guarantee correct data transfers
and orderings.

We model 13 child instructions. Some examples are LD

(load from L1 cache to register), ST (store from register to
L1 cache), FLUL1WG (flush the L1 cache in its workgroup),
INVL1WG (invalidate L1 cache of its workgroup). Inside a
GPU, there are also other environmental transitions, e.g., a
store may later trigger a cacheline flush. We model these
state changes by child instructions as well.

3) Verification: We verify correctness of the implementa-
tion by checking that: (1) the program variables are updated to
the same values as in the specification, and (2) the ordering of
the updates is correct. The first check corresponds to functional
equivalence checking between child-instructions on the GPU
and the instructions in an ILA-MCM model, which can be
handled using prior techniques [12]. Therefore, we focus here
on the second check, where we use our facet-axioms as
properties, and check if it is possible to synthesize a sequence
of child instructions whose execution can violate the property.
To ensure correctness using bounded traces, we need to further
use invariants and abstractions.

We perform verification as follows. First we choose an
instruction from the ILA-MCM specification model, collect
axioms that refer to this instruction, and verify these axioms
one by one. Since our facets and axioms are all instruction-
centric, this instruction-based decomposition of the overall
verification problem is directly enabled by our ILA-MCM
framework, thereby providing a potential scalability benefit
in comparison to handling all axioms monolithically.

An axiom may refer to other related instructions. For
example, in the axiom in Figure 7(a) for the storeDV,N

instruction, there is a reference to another store instruction
(of any type). We build a program sketch accordingly, as
shown in Figure 7(b) for this example. Here, each of the two
white boxes (storeDV,N and STORE) denotes the sequence of
child instructions that implement the high-level specification
instruction, respectively. Since GPU operations may trigger
environment transitions, we also add them in our program
sketch. Finally, we add abstract transitions before and between
the two sequences of child instructions. An abstract transition
is allowed to update the state to any value (i.e., it is a
havoc operation), which is constrained subsequently by given
invariants. The given invariants are checked separately on all
child instructions (some require checking on all pairs). An
example invariant is that the tail of a FIFO never passes the
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(a) Agents and facets of lock

Axiom store_DV_N_WG_REL
forall s1:store_DV_N | 
forall s2:STORE (not s1) |
( HB[s2.rfe.WG, s1.rfe.WG] 

/\ SameWg[s1,s2] ) 
=> HB[s2.rfe.DV, s1.rfe.DV] 
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Fig. 8. The counterexample found for loadDV,N , where the addresses,
timestamps and specific environmental transitions are generated by the solver

head, i.e., the FIFO does not underflow. In the future, we aim
to maintain a library of invariants and abstract transitions for
reuse. Further, the ILA-MCM verification procedure could be
integrated with a general-purpose theorem prover to formally
ensure their soundness and aid bookkeeping.

Although our ILA-MCM specifications are parametric, we
do not perform parametric verification here, since the GPU
implementation is fixed by a concrete system configuration
(M,N,L). We currently performed verification for M,N,L =
2 and M,N,L = 3.

4) Results: For the original GPU implementation verified
by Wickerson et al. [19], our verification failed with counterex-
amples for the following 5 instructions: loadDV,N , loadDV,R,
storeDV,R, fetch incDV,N , and fetch incDV,R. Among
them, loadDV,N , fetch incDV,N , storeDV,R match with
the buggy scenarios discussed in the previous work [19].
Specifically, Figure 8 shows a buggy trace that we found for
instruction loadDV,N , where the facet-read event of the later
non-atomic load instruction comes earlier than the facet-read
event of the load-acquire instruction. This violates the load-
acquire semantics. On the other hand, the counterexamples
for fetch incDV,R and loadDV,R are false positives, since
these traces cannot be extended to litmus tests with a property
violation without having data races (prohibited by OpenCL).
Interestingly, the proposed changes by Wickerson et al. to the
compiler mappings of OpenCL+RSP operations strengthened
the ordering guarantees of the hardware operations to match
our ILA-MCM model. Under their new compiler mappings,
we successfully validated that the hardware implementation
is compliant with our ILA-MCM model. This validation was
completed in 14 minutes 9 seconds (for M,N,L = 3) on a
laptop with a 2.8GHz Core-i5 processor and 16GB memory.

V. RELATED WORK

A. Hardware Specification and Verification
A number of formal hardware abstractions have been de-

veloped that enable verification. Kami [30, 31] is a Coq-based
framework that supports hardware design and verification in
Bluespec. In comparison to Kami, ILA-MCM is an ISA-level
abstraction that provides the interface between hardware and
software. In addition to verifying hardware, it can also be used
for verifying correctness/security of software interacting with
accelerators, as demonstrated in our paper. Furthermore, it can
reason about a wide range of memory consistency behaviors,
including SC, TSO, and HRF. In contrast, currently Kami has

only been applied for SC. Finally, the ILA-MCM framework
targets automated reasoning using SMT solvers, in contrast to
interactive theorem-proving in Kami.

ISA-Formal [32, 33] has been developed to formally
model and verify ARM processors. As its name suggests, it
is an ISA-level model. However, it has not been applied to
accelerators or other heterogeneous SoC components. Further,
as far as we know, it has not been integrated with MCMs to
reason about multicore memory consistency.

B. MCM and Program Verification
We have already discussed prior MCM verification tools and

techniques. For reasoning about general concurrent programs,
there are many related efforts in weak consistency models [34–
36], logics [37, 38], and verification tools [39–41]. Here we
discuss details of specific related ideas.

1) Facets vs. ViCLs: In the Check tools [7–11], the Value
in Cache Lifetime (ViCL) abstraction has been proposed to
capture cache occupancy. Although both facets and ViCLs can
model multiple “live” data for the same memory location, they
are inherently different. First, facets are state variables that are
updated according to instructions in ILAs and MCM axioms;
they are not created or destroyed. In contrast, ViCLs have cre-
ation and expiration events in happens-before graphs. Second,
facets are more general than ViCLs and are not necessarily
tied to caches or other microarchitectural structures. Third,
facets enable integration of axiomatic MCMs with operational
instruction semantics, while the latter are ignored by ViCLs.

2) Facets vs. Views: In recent work [34, 40], a view
abstraction was proposed to model the C11 MCM. Our facets
are different from views as follows: (i) a view is a map
from locations to timestamps, whereas facets are auxiliary
state variables, (ii) the views assign explicit timestamps to
events, whereas facet-axioms associate events with symbolic
timestamps, whose values are not fixed but explored implicitly
during verification, (iii) unlike views, facets have been applied
in automated SMT-based reasoning.

VI. CONCLUSIONS

In this paper, we have presented the ILA-MCM framework,
which combines the benefits of operational ILA models with
axiomatic MCMs for reasoning about concurrent interactions
between heterogeneous components in an SoC. We have
introduced a novel facet abstraction that models consistency
effects on program-visible states, and use facet-axioms to
specify consistency ordering requirements. This provides a
constraint-based integration between operational ILA models
and axiomatic MCM specifications. Our SMT-based verifi-
cation procedure supports symbolic reasoning for expressive
properties involving both rich instruction semantics and or-
derings. We have demonstrated two verification applications
of our prototype ILA-MCM framework, where we reasoned
about an SoC firmware program and a GPU hardware imple-
mentation, respectively. Our support for expressive properties
allowed synthesizing a malicious exploit in the first case,
and our instruction-centric approach enabled compositional
verification in the second.
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APPENDIX
FACET-AXIOMS FOR SC AND TSO

The facet-axioms for SC and TSO are shown in Figure 9 and
Figure 10, respectively. In the SC model, all facet read/write
events are synchronous with the instructions (lines 7-10 in
Figure 9), while in TSO model, the two write-facet events of a
store instruction follow the program order of the stores (lines
7-13 in Figure 10). Read-facet events are still synchronous
(lines 14-15). Fences ensure that previous writes are globally
visible at that point, and read-modify-write (RMW) is atomic
in the sense that its read and write facets are not breakable

(lines 17-21). We define additional functions to specify the
corresponding read-from, from-read, and coherence-order rela-
tions based on happens-before (HB) relations over facet events,
e.g., lines 13-15 in Figure 9 and lines 23-31 in Figure 10.
These functions are defined for use in the first axiom in both
models.

 
 
 
Axiom RF_CO_FR 1 
forall r:READ | exists w:WRITE |  2 
   SameAddress[w,r] /\ SameData[w,r]/\ w.decode /\  3 
      RF[w,r] /\( forall w2:WRITE (not w) |  4 
         ( SameAddress[w,w2] /\ w2.decode )=>  5 
            CO[w2,w] \/ FR[r,w2] ) 6 
Axiom SC_WriteFacetOrder 7 
forall w:WRITE | Sync[ w , w.wfe.global ] 8 
Axiom SC_ReadFacetOrder 9 
forall r: READ | Sync[ r , r.rfe.global ] 10 
 11 
Define RF[w,r] := HB[ w.wfe.global , r.rfe.global ]  12 
Define FR[r,w] := HB[ r.rfe.global , w.wfe.global ] 13 
Define CO[w1,w2] := HB[ w1.wfe.global , w2.wfe.global ]  14 

Fig. 9. Facet-Axioms for SC 
 
 
Axiom RF_CO_FR 1 
forall r:READ | exists w:WRITE |  2 
   SameAddress[w,r] /\ SameData[w,r]/\ w.decode /\  3 
      RF[w,r] /\( forall w2:WRITE (not w) |  4 
         ( SameAddress[w,w2] /\ w2.decode )=>  5 
            CO[w2,w] \/ FR[r,w2] ) 6 
Axiom TSO_WriteFacetOrder 7 
forall w:WRITE | HB[ w , w.wfe.local ]  /\  8 
   HB[ w.wfe.local , w.wfe.global ] 9 
Axiom TSO_Store 10 
forall w1:WRITE | forall w2: WRITE (not w1) |  11 
   PO[ w1, w2 ] => HB[ w1.wfe.local, w2.wfe.local] 12 
      /\ HB[ w1.wfe.global, w2.wfe.global] 13 
Axiom TSO_ReadFacetOrder 14 
forall r:READ | Sync[ r , r.rfe.local ] 15 
 16 
Axiom TSO_Fence 17 
forall f:FENCE | forall w: WRITE | PO[w,f] =>  18 
   HB[ w.wfe.global, f ] 19 
Axiom TSO_RMW 20 
forall i:RMW |  21 
   Sync[i.rfe.local, i.wfe.local, i.wfe.global] 22 
Define RF[w,r] :=  23 
   SameCore[w,r] => HB[w.wfe.local , r.rfe.local ] /\      24 
  ~SameCore[w,r] => HB[w.wfe.global, r.rfe.local ] 25 
Define FR[r,w] :=  26 
   SameCore[w,r] => HB[r.rfe.local , w.wfe.local ] /\  27 
  ~SameCore[w,r] => HB[r.rfe.local, w.wfe.global ]  28 
Define CO[w1,w2] :=  29 
   SameCore[w1,w2] => HB[w1.wfe.local, w2.wfe.local] /\  30 
  ~SameCore[w1,w2] => HB[w1.wfe.global, w2.wfe.global]  31 

Fig. 10. Facet-Axioms for TSO


