
DRAFT

Chapter 16

Random and
Pseudo-Random Walks on
Graphs

Random walks on graphs have turned out to be a powerful tool in the de-
sign of algorithms and other applications. In particular, expander graphs,
which are graphs on which random walks have particularly good proper-
ties, are extremely useful in complexity and other areas of computer sci-
ence. In this chapter we study random walks on general regular graphs,
leading to a the randomized logspace algorithm for undirected connectivity
alluded to in Chapter 7. We then show the definition and constructions
of expander graphs, and their application for randomness-efficient error re-
duction of probabilistic algorithms. Finally we use the ideas behind that
construction to show a deterministic logspace algorithm for undirected con-
nectivity.

*
1/31/3

1/3

Figure 16.1: A random walk on a graph can be thought of as placing a token on some
vertex, and at each step move the token to random neighbor of its current location.

Web draft 2006-09-28 18:10
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

301

DRAFT

30216.1. UNDIRECTED CONNECTIVITY IN RANDOMIZED LOGSPACE

The idea of a random walk is simple (see Figure 16.1): let G be a graph
(in this chapter we restrict ourselves to undirected graphs) and let v be a
vertex in G. A T -step random walk from v in G is the sequence of dependent
random variables X0, . . . , XT defined as follows: X0 = v with probability
one, and for i ∈ [T], Xi is chosen at random from Γ(Xi−1), where for any
vertex u, Γ(u) denotes the set of neighbors of u in the graph G. That is,
a random walk involves starting at a vertex and then at each step going
to a random neighbor of this vertex. A probabilistic process of this form,
where there is a fixed distribution specifying the dependence of Xi on Xi−1,
is often called a Markov chain.

16.1 Undirected connectivity in randomized logspace

Recall the language PATH of the triplets 〈G, s, t〉 where G is a (directed)
graph and s and t are vertices in G with a path from s to t. In Chapter 3 we
showed that PATH is NL-complete. Consider the problem UPATH where G
is restricted to be undirected (or equivalently, we place the condition that
there is an edge from i to j in G iff there’s an edge from j to i: the adjacency
matrix is symmetric). It turns out that UPATH can be solved by a logspace
probabilistic TM.

Theorem 16.1 ([?])
UPATH ∈ RL.

Theorem 16.1 is proven by a simple algorithm. Given an input G, s, t to
UPATH, we first use an implicitly logspace computable reduction to trans-
form the graph into a degree 4-regular graph G′ such that s is connected
to t in G′ if and only if they are connected in G (see Claim 16.1.1).1 We
then take a random walk of length T = 100n3 log n from s on the graph G′

(where n is the number of vertices in G′). We accept if at the end of the
walk we reach the vertex t. Otherwise, reject. The algorithm can be im-
plemented in O(log n) space since it only requires space to store the current
and next vertex in the walk, and a counter. Clearly, it never accepts if t
is not connected to s. We show in the next section that if t is connected
to s, then the algorithm accepts with probability 1

Ω(n) , which can be easily
amplified using the standard error reduction techniques (see Section 7.4.1).

1It can be shown, via a slightly different analysis, that the algorithm will work even
without this step, see Exercise 9 of Chapter 9.

Web draft 2006-09-28 18:10

DRAFT

16.1. UNDIRECTED CONNECTIVITY IN RANDOMIZED LOGSPACE303

Figure 16.2: To reduce a graph G to a degree 3 regular graph that has the same
connectivity properties, we replace each vertex with a cycle, making every vertex have
degree 2 or 3. We then add self loops on some vertices to make the graph 3 regular. To
ensure every vertex has a self loop, we add such a loop for every vertex, making the graph
4-regular.

Reducing to the regular constant-degree case. As mentioned above,
we start by reducing to the case that every vertex in G has degree 4 (i.e., G is
4-regular) and that every vertex has a self-loop (i.e., an edge to itself). This
claim not strictly necessary for this algorithm but will somewhat simplify the
analysis and be useful for us later on. We note that here and throughout
this chapter all graphs may have parallel edges (i.e., more than one edge
between the same pair of vertices i, j).

Claim 16.1.1
There exists an implicitly logspace computable function f that maps every
triple 〈G, s, t〉 to a triple 〈G′, s′, t′〉 such that:

1. G′ is a 4-regular graph with a self loop at each vertex.

2. s is connected to t in G iff s′ is connected to t′ in G′.

Proof sketch: We sketch the proof, leaving verifying the details as an
exercise. We transform G to G′ as shown in Figure 16.2: for every vertex
i in G, the graph G′ will have n vertices arranged in a cycle. For every
two neighbors i, j in G, we connect in an edge the jth vertex from the cycle
corresponding to i, and the ith vertex from the cycle corresponding to j.
Thus, every vertex in G′ has either degree two (if it’s only connected to its
neighbors on the cycle) or three (if it also has a neighbor in a different cycle).
We add to each vertex either one or two self loops to make the degree four.
It can be easily seen that determining the value of an entry in the adjacency
matrix of G′ can be computed in log space using read-only access to the
adjacency matrix of G. �

Web draft 2006-09-28 18:10

DRAFT

304 16.2. RANDOM WALK ON GRAPHS

16.2 Random walk on graphs

In this section we study random walks on (undirected regular) graphs. As
a corollary we obtain the proof of correctness for the above algorithm for
UPATH. We will see that we can use elementary linear algebra to relate
parameters of the graph’s adjacency matrix to the behavior of the random
walk on that graph. The following definitions and notations will be widely
used in this and later sections of this chapter:

16.2.1 Distributions as vectors and the parameter λ(G).

Let G be a d-regular n-vertex graph. Let p be some probability distribution
over the vertices of G. We can think of p as a (column) vector in Rn where
pi is the probability that vertex i is obtained by the distribution. Note that
the L1-norm of p (see Note 16.2), defined as |p|1 =

∑n
i=1 |pi|, is equal to 1.

(In this case the absolute value is redundant since pi is always between 0
and 1.)

Now let q represent the distribution of the following random variable:
choose a vertex i in G according to p, then take a random neighbor of i in
G. We can compute q as a function of p: the probability qj that j is chosen
is equal to the sum over all j’s neighbors i of the probability pi that i is
chosen times 1/d (where 1/d is the probability that, conditioned on i being
chosen, the walk moves to q). Thus q = Ap, where A = A(G) which is the
normalized adjacency matrix of G. That is, for every two vertices i, j, Ai,j

is equal to the number of edges between i and j divided by d. Note that A
is a symmetric matrix,2 where each entry is between 0 and 1, and the sum
of entries in each row and column is exactly one (such a matrix is called a
symmetric stochastic matrix).

Let {ei}n
i=1 be the standard basis of Rn (i.e. ei has 1 in the ith coordinate

and zero everywhere else). Then, ATes represents the distribution XT of
taking a T -step random walk from the vertex s. This already suggests
that considering the adjacency matrix of a graph G could be very useful in
analyzing random walks on G.

2A matrix A is symmetric if A = A†, where A† denotes the transpose of A. That is,
(A†)i,j = Aj,i for every i, j.

Web draft 2006-09-28 18:10

DRAFT

16.2. RANDOM WALK ON GRAPHS 305

Note 16.2 (Lp Norms)
A norm is a function mapping a vector v into a real number ‖v‖ satisfying
(1) ‖v‖ ≥ 0 with ‖v‖ = 0 if and only v is the all zero vector, (2) ‖αv‖ =
|α| · ‖v‖ for every α ∈ R, and (3) ‖v + u‖ ≤ ‖v‖+ ‖u‖ for every vector u.
The third inequality implies that for every norm, if we define the distance
between two vectors u,v as ‖u−v‖ then this notion of distance satisfies the
triangle inequality.

For every v ∈ Rn and number p ≥ 1, the Lp norm of v, denoted ‖v‖p , is equal
to (

∑n
i=1 |vi|p)1/p. One particularly interesting case is p = 2, the so-called

Euclidean norm, in which ‖v‖2 =
√∑n

i=1 v2
i =

√
〈v,v〉. Another interesting

case is p = 1, where we use the single bar notation and denote |v|1 =∑n
i=1 |vi|. Another case is p = ∞, where we denote ‖v‖∞ = limp→∞ ‖v‖p =

maxi∈[n] |vi|.

The Hölder inequality says that for every p, q with 1
p + 1

q = 1, ‖u‖p‖v‖q ≥∑n
i=1 |uivi|. To prove it, note that by simple scaling, it suffices to con-

sider norm one vectors, and so it enough to show that if ‖u‖p = ‖v‖q = 1
then

∑n
i=1 |ui||vi| ≤ 1. But

∑n
i=1 |ui||vi| =

∑n
i=1 |ui|p(1/p)|vi|q(1/q) ≤∑n

i=1
1
p |ui|p + 1

q |vi|q = 1
p + 1

q = 1, where the last inequality uses the fact
that for every a, b > 0 and α ∈ [0, 1], aαb1−α ≤ αa + (1 − α)b. This fact is
due to the log function being concave— having negative second derivative,
implying that α log a + (1− α) log b ≤ log(αa + (1− α)b).
Setting p = 1 and q = ∞, the Hölder inequality implies that

‖v‖2 ≤ |v|1‖v‖∞

Setting p = q = 2, the Hölder inequality becomes the Cauchy-
Schwartz Inequality stating that

∑n
i=1 |uivi| ≤ ‖u‖2‖v‖2 . Setting u =

(1/
√

n, 1/
√

n, . . . , 1/
√

n), we get that

|v|1/
√

n =
n∑

i=1

1√
n
|vi| ≤ ‖v‖2

Web draft 2006-09-28 18:10

DRAFT

306 16.2. RANDOM WALK ON GRAPHS

Definition 16.3 (The parameter λ(G).)
Denote by 1 the vector (1/n, 1/n, . . . , 1/n) corresponding to the uniform distri-
bution. Denote by 1⊥ the set of vectors perpendicular to 1 (i.e., v ∈ 1⊥ if
〈v,1〉 = (1/n)

∑
i vi = 0).

The parameter λ(A), denoted also as λ(G), is the maximum value of ‖Av‖2 over all
vectors v ∈ 1⊥ with ‖v‖2 = 1.

Remark 16.4
The value λ(G) is often called the second largest eigenvalue of G. The reason
is that since A is a symmetric matrix, we can find an orthogonal basis of
eigenvectors v1, . . . ,vn with corresponding eigenvalues λ1, . . . , λn which we
can sort to ensure |λ1| ≥ |λ2| . . . ≥ |λn|. Note that A1 = 1. Indeed, for
every i, (A1)i is equal to the inner product of the ith row of A and the
vector 1 which (since the sum of entries in the row is one) is equal to 1/n.
Thus, 1 is an eigenvector of A with the corresponding eigenvalue equal to 1.
One can show that a symmetric stochastic matrix has all eigenvalues with
absolute value at most 1 (see Exercise 1) and hence we can assume λ1 = 1
and v1 = 1. Also, because 1⊥ = Span{v2, . . . ,vn}, the value λ above will
be maximized by (the normalized version of) v2, and hence λ(G) = |λ2|.
The quantity 1− λ(G) is called the spectral gap of the graph. We note that
some texts use un-normalized adjacency matrices, in which case λ(G) is a
number between 0 and d and the spectral gap is defined to be d− λ(G).

One reason that λ(G) is an important parameter is the following lemma:

Lemma 16.5
For every regular n vertex graph G = (V,E) let p be any probability distri-
bution over V , then

‖ATp− 1‖2 ≤ λT

Proof: By the definition of λ(G), ‖Av‖2 ≤ λ‖v‖2 for every v ⊥ 1. Note
that if v ⊥ 1 then Av ⊥ 1 since 〈1, Av〉 = 〈A†1,v〉 = 〈1,v〉 = 0 (as A = A†

and A1 = 1). Thus A maps the space 1⊥ to itself and since it shrinks any
member of this space by at least λ, λ(AT) ≤ λ(A)T . (In fact, using the
eigenvalue definition of λ, it can be shown that λ(AT) = λ(A).)

Let p be some vector. We can break p into its components in the spaces
parallel and orthogonal to 1 and express it as p = α1 + p′ where p′ ⊥ 1

Web draft 2006-09-28 18:10

DRAFT

16.2. RANDOM WALK ON GRAPHS 307

and α is some number. If p is a probability distribution then α = 1 since
the sum of coordinates in p′ is zero. Therefore,

ATp = AT (1 + p′) = 1 + ATp′

Since 1 and p′ are orthogonal, ‖p‖2
2

= ‖1‖2
2

+ ‖p′‖2
2

and in particular
‖p′‖2 ≤ ‖p‖2 . Since p is a probability vector, ‖p‖2 ≤ |p|1 · 1 ≤ 1 (see
Note 16.2). Hence ‖p′‖2 ≤ 1 and

‖ATp− 1‖2 = ‖ATp′‖2 ≤ λT

�

It turns out that every connected graph has a noticeable spectral gap:
Lemma 16.6
For every d-regular connected G with self-loops at each vertex, λ(G) ≤
1− 1

8dn3 .

Proof: Let u ⊥ 1 be a unit vector and let v = Au. We’ll show that
1− ‖v‖2

2
≥ 1

d4n3 which implies ‖v‖2
2
≤ 1− 1

d4n3 and hence ‖v‖2 ≤ 1− 1
d8n3 .

Since ‖u‖2 = 1, 1− ‖v‖2
2

= ‖u‖2
2
− ‖v‖2

2
. We claim that this is equal to∑

i,j Ai,j(ui − vj)2 where i, j range from 1 to n. Indeed,∑
i,j

Ai,j(ui − vj)2 =
∑
i,j

Ai,ju2
i − 2

∑
i,j

Ai,juivj +
∑
i,j

Ai,jv2
j =

‖u‖2
2
− 2〈Au,v〉+ ‖v‖2

2
= ‖u‖2

2
− 2‖v‖2

2
+ ‖v‖2

2
,

where these equalities are due to the sum of each row and column in A
equalling one, and because ‖v‖2

2
= 〈v,v〉 = 〈Au,v〉 =

∑
i,j Ai,juivj .

Thus it suffices to show
∑

i,j Ai,j(ui−vj)2 ≥ 1
d4n3 . This is a sum of non-

negative terms so it suffices to show that for some i, j, Ai,j(ui−vj)2 ≥ 1
d4n3 .

First, because we have all the self-loops, Ai,i ≥ 1/d for all i, and so we can
assume |ui − vi| < 1

2n1.5 for every i ∈ [n], as otherwise we’d be done.
Now sort the coordinates of u from the largest to the smallest, ensuring

that u1 ≥ u2 ≥ · · ·un. Since
∑

i ui = 0 it must hold that u1 ≥ 0 ≥ un.
In fact, since u is a unit vector, either u1 ≥ 1/

√
n or un ≤ 1/

√
n and

so u1 − un ≥ 1/
√

n. One of the n − 1 differences between consecutive
coordinates ui − ui+1 must be at least 1/n1.5 and so there must be an i0
such that if we let S = {1, . . . , i0} and S = [n] \ Si, then for every i ∈ S
and j ∈ S, ui − uj ≥ 1/n1.5. Since G is connected there exists an edge
(i, j) between S and S. Since |vj − uj | ≤ 1

2n1.5 , for this choice of i, j,
|ui − vj | ≥ |ui − uj | − 1

2n1.5 ≥ 1
2n1.5 . Thus Ai,j(ui − vj)2 ≥ 1

d
1

4n3 . �

Web draft 2006-09-28 18:10

DRAFT

308 16.3. EXPANDER GRAPHS AND SOME APPLICATIONS.

Remark 16.7
The proof can be strengthened to show a similar result for every connected
non-bipartite graph (not just those with self-loops at every vertex). Note
that this condition is essential: if A is the adjacency matrix of a bipartite
graph then one can find a vector v such that Av = −v.

16.2.2 Analysis of the randomized algorithm for undirected
connectivity.

Together, Lemmas 16.5 and 16.6 imply that our algorithm for UPATH out-
puts “accept” with probability 1/Ω(n) if s is connected to t in the graph:

Corollary 16.8
Let G be a d-regular n-vertex graph with all vertices having a self-loop. Let
s be a vertex in G. Let T > 10dn3 log n and let XT denote the distribution
of the vertex of the T th step in a random walk from s. Then, for every j
connected to s, Pr[XT = j] > 1

2n .

Proof: By these Lemmas, if we consider the restriction of an n-vertex
graph G to the connected component of s, then for every probability vector
p over this component and T ≥ 10dn3 log n, ‖ATp − 1‖2 < 1

2n1.5 (where 1
here is the uniform distribution over this component). Using the relations
between the L1 and L2 norms (see Note 16.2), |ATp − 1|1 < 1

2n and hence
every element in the connected component appears in ATp with at least
1/n− 1/(2n) ≥ 1/(2n) probability. �

16.3 Expander graphs and some applications.

Expander graphs have played a crucial role in numerous computer science
applications, including routing networks, error correcting codes, hardness
of approximation and the PCP theorem, derandomization, and more. In
this chapter we will see their definition, constructions, and two applica-
tions, including a deterministic logspace algorithm for the problem UPATH
of undirected connectivity.

Expanders can be defined in several roughly equivalent ways. One is
that these are graphs where every set of vertices has a very large boundary.
That is, for every subset S of vertices, the number of S’s neighbors outside
S is (up to a constant factor) roughly equal to the number of vertices inside
S. (Of course this condition cannot hold if S is too big and already contains
most of the vertices in the graph.) For example, the n by n grid (where a

Web draft 2006-09-28 18:10

DRAFT

16.3. EXPANDER GRAPHS AND SOME APPLICATIONS. 309

vertex is a pair (i, j) and is connected to the four neighbors (i ± 1, j ± 1))
is not an expander, as any k by k square (which is a set of size k2) in this
graph only has a boundary of size O(k) (see Figure 16.3). Another way to
define expanders is as graphs where the random walks rapidly converges to
the uniform distribution. That is, unlike in the general case that (in regular
graphs) the random walk may take a polynomial number of steps to converge
to the uniform distribution, in an n-vertex regular expander this will only
take O(log n) steps.

Expander: no. of S’s neighbors = Omega(|S|) Grid is not an expander:
no. of S’s neighbors = O(|S|1/2)

Figure 16.3: In a combinatorial expander, every subset S of the vertices that is not too
big has at least Ω(|S|) neighbors outside the set. The grid (and every other planar graph)
is not a combinatorial expander as a k × k square in the grid has only O(k) neighbors
outside it.

Given the previous section, it is not surprising that we can define ex-
panders also in an algebraic way, based on the parameter λ(G) of Defini-
tion 16.9. That is, we will say that G is an expander if λ(G) is bounded away
from 1. By Lemma 16.5, this does indeed imply that the random walk on
G converges to the uniform distribution (in the sense that regardless of the
starting distribution, every vertex will be obtained with probability between
1
2n and 3

2n) within O(log n) steps. We will also see later (Theorem 16.18)
the relation between the parameter λ(G) and the combinatorial definition
of set expansion mentioned above.

Definition 16.9 ((n, d, λ)-graphs.)
If G is an n-vertex d-regular G with λ(G) ≤ λ for some number λ < 1 then we say
that G is an (n, d, λ)-graph.

Web draft 2006-09-28 18:10

DRAFT

310 16.3. EXPANDER GRAPHS AND SOME APPLICATIONS.

Expander families. For every d and λ < 1 a (d, λ)-expander graph family
is a sequence {Gn}n∈I of graphs such that Gn is an (n, d, λ)-graph and I is
an infinite set. We sometimes drop the qualifiers d, λ and simply call such
a family an expander graph family, referring to a particular graph in the
sequence as an expander graph.

Explicit constructions. We say that an expander family {Gn}n∈I is ex-
plicit if (1) the set I is polynomially dense in the sense that there exists a
polynomial time algorithm A and a polynomial p such that for every m ∈ N,
A(m) outputs a number n ∈ I such that m ≤ n ≤ p(m) and (2) there is a
polynomial-time algorithm that on input 1n with n ∈ I outputs the adja-
cency matrix of Gn. We say that the family is strongly explicit if (1) I is
polynomially dense and (2) there is a polynomial-time algorithm that for
every n ∈ I on inputs 〈n, v, i〉 where 1 ≤ v ≤ n′ and 1 ≤ i ≤ d outputs the
ith neighbor of v. (Note that the algorithm runs in time polynomial in the
its input length which is polylogarithmic in n.)

As we will see below it is not hard to show that expander families exist
using the probabilistic method. But this does not yield explicit (or very
explicit) constructions of such graphs. In fact, there are also several explicit
and strongly explicit constructions of expander graphs known. The smallest
λ can be for a d-regular n-vertex graph is Ω(1√

d)
and there are constructions

meeting this bound (specifically the bound is (1 − o(1))2
√

d−1
d where by

o(1) we mean a function that tends to 0 as the number of vertices grows;
graphs meeting this bound are called Ramanujan graphs). However, for most
applications in Computer Science, any family with constant d and λ < 1
will suffice (see also Remark 16.10 below). Some of these constructions are
very simple and efficient, but their analysis is highly non-trivial and uses
relatively deep mathematics.3 We show in Section 16.5 a strongly explicit
construction of expanders with elementary analysis. This construction also
introduces a tool that is useful to derandomize the algorithm for UPATH.

Remark 16.10
One reason that the particular constants of an expander family are not
extremely crucial is that we can improve the constant λ (make it arbitrarily
smaller) at the expense of increasing the degree: this follows from the fact,
observed above in the proof of Lemma 16.5, that λ(GT) = λ(G)T , where
GT denotes the graph obtained by taking the adjacency matrix to the T th

3An example for such an expander is the following 3-regular graph: the vertices are
the numbers 1 to p− 1 for some prime p, and each number x is connected to x + 1,x− 1
and x−1 (mod p).

Web draft 2006-09-28 18:10

DRAFT

16.3. EXPANDER GRAPHS AND SOME APPLICATIONS. 311

Note 16.11 (Explicit construction of pseudorandom objects)
Expanders are one instance of a recurring theme in complexity theory (and
other areas of math and computer science): it is often the case that a ran-
dom object can be easily proven to satisfy some nice property, but the ap-
plications require an explicit object satisfying this property. In our case,
a random d-regular graph is an expander, but to use it for, say, reducing
the error of probabilistic algorithms, we need an explicit construction of an
expander family, with an efficient deterministic algorithm to compute the
neighborhood relations. Such explicit constructions can be sometimes hard
to come by, but are often surprisingly useful. For example, in our case the
explicit construction of expander graphs turns out to yield a deterministic
logspace algorithm for undirected connectivity.
We will see another instance of this theme in Chapter 18, which discusses
error correcting codes.

power, or equivalently, having an edge for every length-T path in G. Thus,
we can transform an (n, d, λ) graph into an (n, dT , λT)-graph for every T ≥ 1.
Later we will see a different transformation called the replacement product
to decrease the degree at the expense of increasing λ somewhat (and also
increasing the number of vertices).

16.3.1 Using expanders to reduce error in probabilistic algo-
rithms

Before constructing expanders, let us see one application for them in the
area of probabilistic algorithms. Recall that in Section 7.4.1 we saw that
we can reduce the error of a probabilistic algorithm from, say, 1/3 to 2−Ω(k)

by executing it k times independently and taking the majority value. If
the algorithm utilized m random coins, this procedure will use m ·k random
coins, and intuitively it seems hard to think of a way to save on randomness.
Nonetheless, we will show that using expanders we can obtain such error
reduction using only m + O(k) random coins. The idea is simple: take an
expander graph G from a very explicit family that is an (N = 2m, d, 1/10)-
graph for some constant d.4 Choose a vertex v1 at random, and take a

4In our definition of an expander family, we did not require that there is an N -vertex
graph in the family for every N , however typical constructions can be tweaked to ensure

Web draft 2006-09-28 18:10

DRAFT

312 16.3. EXPANDER GRAPHS AND SOME APPLICATIONS.

length k− 1 long random walk on G to obtain vertices v2, . . . , vk (note that
choosing a random neighbor of a vertex requires O(log d) = O(1) random
bits). Invoke the algorithm k times using v1, . . . , vk as random coins (we
identify the set [N] of vertices with the set {0, 1}m of possible random coins
for the algorithm) and output the majority answer.

The analysis is also not too difficult, but to make it even simpler, we
analyze here only the case of algorithms with one-sided error. For example,
consider an RP algorithm that will never output “accept” if the input is not
in the language, and for inputs in the language will output “accept” with
probability 2/3 (the case of a coRP algorithm is analogous). For such an
algorithm the procedure will output “accept” if the algorithm accepts even
on a single set of coins vi. If the input is not in the language, the procedure
will never accept. If the input is in the language, then let B ⊆ [N] denote the
“bad” set of coins on which the algorithms rejects. We know that |B| ≤ N

3 .
To show the procedure outputs “reject” with at most 2−Ω(k) probability, we
prove the following theorem:

Theorem 16.12 (Expander walks)
Let G be an (N, d, λ) graph, and let B ⊆ [N] be a set with |B| ≤ βN . Let X1, . . . , Xk

be random variables denoting a k−1-step random walk from X1, where X1 is chosen
uniformly in [N]. Then,

Pr[∀1≤i≤kXi ∈ B]
(∗)

≤ ((1− λ)
√

β + λ)k−1

Note that if λ and β are both constants smaller than 1 then so is the
expression (1− λ)

√
β + λ.

Proof: For 1 ≤ i ≤ k, let Bi be the event that Xi ∈ B. Note that the prob-
ability (∗) we’re trying to bound is Pr[B1] Pr[B2|B1] · · ·Pr[Bk|B1, . . . , Bk−1].
Let pi ∈ RN be the vector representing the distribution of Xi, conditioned
on the events B1, . . . , Bi. Denote by B̂ the following linear transformation
from Rn to Rn: for every u ∈ RN , and j ∈ [N], (B̂u)j = uj if j ∈ B and
(B̂u)j = 0 otherwise. It’s not hard to verify that p1 = 1

Pr[B1]B̂1 (recall that
1 = (1/N, . . . , 1/N) is the vector representing the uniform distribution over
[N]). Similarly, p2 = 1

Pr[B2|B1]
1

Pr[B1]B̂AB̂1 where A = A(G) is the adjacency

this (see Theorem 16.24 below) and so we ignore this issue and assume we have such a
2m-vertex graph in the family. Note that we can use powering improve the parameter λ
of the family to be smaller than 1/10 (see Remark 16.10).

Web draft 2006-09-28 18:10

DRAFT

16.3. EXPANDER GRAPHS AND SOME APPLICATIONS. 313

matrix of G. Since every probability vector p satisfies |p|1 = 1,

(∗) = |(B̂A)k−1B̂1|1

We bound this norm by showing that

‖(B̂A)k−1B̂1‖2 ≤
((1−λ)

√
β+λ)k−1

√
N

(1)

which suffices since for every v ∈ RN , |v|1 ≤
√

N‖v‖2 (see Note 16.2).
To prove (1), we use the following definition and lemma:

Definition 16.13 (Matrix Norm)
If A is an m by n matrix, then ‖A‖ is the maximum number α such that
‖Av‖2 ≤ α‖v‖2 for every v ∈ Rn.

Note that if A is a normalized adjacency matrix then ‖A‖ = 1 (as A1 = 1
and ‖Av‖2 ≤ ‖v‖2 for every v). Also note that the matrix norm satisfies
that for every two n by n matrices A,B, ‖A+B‖ ≤ ‖A‖+‖B‖ and ‖AB‖ ≤
‖A‖‖B‖.

Lemma 16.14
Let A be a normalized adjacency matrix of an (n, d, λ)-graph G. Let J be
the adjacency matrix of the n-clique with self loops (i.e., Ji,j = 1/n for every
i, j). Then

A = (1− λ)J + λC (2)

where ‖C‖ ≤ 1.

Note that for every probability vector p, Jp is the uniform distribution,
and so this lemma tells us that in some sense, we can think of a step on a
(n, d, λ)-graph as going to the uniform distribution with probability 1 − λ,
and to a different distribution with probability λ. This is of course not
completely accurate, as a step on a d-regular graph will only go the one of
the d neighbors of the current vertex, but we’ll see that for the purposes of
our analysis, the condition (2) will be just as good.5

Proof of Lemma 16.14: Indeed, simply define C = 1
λ(A− (1−λ)J). We

need to prove ‖Cv‖2 ≤ ‖v‖2 for very v. Decompose v as v = u + w where
u is α1 for some α and w ⊥ 1, and ‖v‖2

2
= ‖u‖2

2
+ ‖w‖2

2
. Since A1 = 1

and J1 = 1 we get that Cu = 1
λ(u − (1 − λ)u) = u. Now, let w′ = Aw.

5Algebraically, the reason (2) is not equivalent to going to the uniform distribution in
each step with probability 1− λ is that C is not necessarily a stochastic matrix, and may
have negative entries.

Web draft 2006-09-28 18:10

DRAFT

314 16.3. EXPANDER GRAPHS AND SOME APPLICATIONS.

Then ‖w′‖2 ≤ λ‖w‖2 and, as we saw in the proof of Lemma 16.5, w′ ⊥ 1.
Furthermore, since the sum of the coordinates of w is zero, Jw = 0. We get
that Cw = 1

λw′. Since w′ ⊥ u, ‖Cw‖2
2

= ‖u + 1
λw′‖2

2
= ‖u‖2

2
+ ‖ 1

λw′‖2
2
≤

‖u‖2
2
+ ‖w‖2

2
= ‖w‖2

2
. �

Returning to the proof of Theorem 16.12, we can write B̂A = B̂
(
(1 −

λ)J + λC
)
, and hence ‖B̂A‖ ≤ (1 − λ)‖B̂J‖ + λ‖B̂C‖. Since J ’s output

is always a vector of the form α1, ‖B̂J‖ ≤
√

β. Also, because B̂ is an
operation that merely zeros out some parts of its input, ‖B̂‖ ≤ 1 implying
‖B̂C‖ ≤ 1. Thus, ‖B̂A‖ ≤ (1−λ)

√
β+λ. Since B1 has the value 1/N in |B|

places, ‖B1‖2 =
√

β√
N

, and hence ‖(B̂A)k−1B̂1‖2 ≤ ((1 − λ)
√

β + λ)k−1
√

β√
N

,
establishing (1). �

The analysis of the error reduction procedure for algorithms with two-
sided errors uses the following theorem, whose proof we omit:

Theorem 16.15 (Expander Chernoff Bound [?])
Let G be an (N, d, λ)-graph and B ⊆ [N] with |B| = βN . Let X1, . . . , Xk be random
variables denoting a k − 1-step random walk in G (where X1 is chosen uniformly).
For every i ∈ [k], define Bi to be 1 if Xi ∈ B and 0 otherwise. Then, for every δ > 0,

Pr
[
|
∑k

i=1 Bi

k − β| > δ
]

< 2e(1−λ)δ2k/60

16.3.2 Combinatorial expansion and existence of expanders.

We describe now a combinatorial criteria that is roughly equivalent to Def-
inition 16.9. One advantage of this criteria is that it makes it easy to prove
that a non-explicit expander family exists using the probabilistic method.
It is also quite useful in several applications.6

Definition 16.16 (Combinatorial (edge) expansion)
An n-vertex d-regular graph G = (V,E) is called an (n, d, ρ)-combinatorial
expander if for every subset S ⊆ V with |S| ≤ n/2, |E(S, S)| ≥ ρd|S|, where

6In our informal discussion above we defined combinatorial expansion by counting the
number of neighboring vertices of a set S of vertices that are outside the set (this is known
as vertex expansion). In contrast, Definition 16.16 below counts the number of edges that
lie between S and its complement (this is known as edge expansion). However, these two
numbers are clearly related by a factor of up to the degree d, which is not significant for
our purposes.

Web draft 2006-09-28 18:10

DRAFT

16.3. EXPANDER GRAPHS AND SOME APPLICATIONS. 315

for subsets S, T of V , E(S, T) denotes the set of edges (s, t) with s ∈ S and
t ∈ T .

Note that in this case the bigger ρ is the better the expander. We’ll
loosely use the term expander for any (n, d, ρ)-combinatorial expander with
c a positive constant. Using the probabilistic method, one can prove the
following theorem: (Exercise 3 asks you to prove a slightly weaker version)

Theorem 16.17 (Existence of expanders)
Let ε > 0 be some constant. Then there exists d = d(ε) and N ∈ N such
that for every n > N there exists an (n, d, 1− ε)-combinatorial expander.

The following theorem related combinatorial expansion with our previous
Definition 16.9

Theorem 16.18 (Combinatorial and algebraic expansion)
1. If G is an (n, d, λ)-graph then it is an (n, d, (1−λ)/2)-combinatorial expander.

2. If G is an (n, d, ρ)-combinatorial expander then it is an (n, d, 1− ρ2

2)-graph.

The first part of Theorem 16.18 follows by plugging T = S into the
following lemma:

Lemma 16.19 (Expander Mixing Lemma)
Let G = (V,E) be an (n, d, λ)-graph. Let S, T ⊆ V , then∣∣∣∣|E(S, T)| − d

n
|S||T |

∣∣∣∣ ≤ λd
√
|S||T |

Proof: Let s denote the vector such that si is equal to 1 if i ∈ S and
equal to 0 otherwise, and let t denote the corresponding vector for the set
S. Thinking of s as a row vector and of t as a column vector, the Lemma’s
statement is equivalent to∣∣∣sAt− |S||T |

n

∣∣∣ ≤ λ
√
|S||T | , (3)

where A is G’s normalized adjacency matrix. Yet by Lemma 16.14, we can
write A as (1 − λ)J + λC, where J is the matrix with all entries equal to
1/n and C has norm at most one. Hence,

sAt = (1− λ)sJt + λsCt ≤ |S||T |
n + λ

√
|S||T | ,

Web draft 2006-09-28 18:10

DRAFT

316 16.3. EXPANDER GRAPHS AND SOME APPLICATIONS.

where the last inequality follows from sJt = |S||T |/n and sCt = 〈s, Ct〉 ≤
‖s‖2‖t‖2 =

√
|S||T |. �

Proof of second part of Theorem 16.18.: We prove a slightly relaxed
version, replacing the constant 2 with 8. Let G = (V,E) be an n-vertex d-
regular graph such that for every subset S ⊆ V with |S| ≤ n/2, there are
ρ|S| edges between S and S = V \S, and let A be G’s normalized adjacency
matrix.

Let λ = λ(G). We need to prove that λ ≤ 1 − ρ2/8. Using the fact
that λ is the second eigenvalue of A, there exists a vector u ⊥ 1 such that
Au = λu. Write u = v + w where v is equal to u on the coordinates on
which u is positive and equal to 0 otherwise, and w is equal to u on the
coordinates on which u is negative, and equal to 0 otherwise. Note that,
since u ⊥ 1, both v and w are nonzero. We can assume that u is nonzero
on at most n/2 of its coordinates (as otherwise we can take −u instead of
u).

Since Au = λu and 〈v,w〉 = 0,

〈Av,v〉+ 〈Aw,v〉 = 〈A(v + w),v〉 = 〈Au,v〉 = 〈λ(v + w),v〉 = λ‖v‖2
2
.

Since 〈Aw,v〉 is negative, we get that 〈Av,v〉/‖v‖2
2
≥ λ or

1− λ ≥ 1− 〈Av,v〉
‖v‖2

2

=
‖v‖2

2
− 〈Av,v〉
‖v‖2

2

=

∑
i,j Ai,j(vi − vj)2

2‖v‖2
2

,

where the last equality is due to
∑

i,j Ai,j(vi−vj)2 =
∑

i,j Ai,jv2
i−2

∑
i,j Ai,jvivj+∑

i,j Ai,jv2
j = 2‖v‖2

2
− 2〈Av,v〉. (We use here the fact that each row and

column of A sums to one.) Multiply both numerator and denominator by∑
i,j Ai,j(v2

i + v2
j). By the Cauchy-Schwartz inequality,7 we can bound the

new numerator as follows:∑
i,j

Ai,j(vi − vj)2

 ∑
i,j

Ai,j(vi + vj)2

 ≤

∑
i,j

Ai,j(vi − vj)(vi + vj)

2

.

7The Cauchy-Schwartz inequality is typically stated as saying that for x,y ∈ Rn,∑
i xiyi ≤

√
(
∑

i x
2
i)(

∑
i y

2
i). However, it is easily generalized to show that for every

non-negative µ1, . . . , µn,
∑

i µixiyi ≤
√

(
∑

i µix2
i)(

∑
i µiy2

i) (this can be proven from the
standard Cauchy-Schwartz by multiplying each coordinate of x and y by

√
µi. It is this

variant that we use here with the Ai,j ’s playing the role of µ1, . . . , µn.

Web draft 2006-09-28 18:10

DRAFT

16.4. GRAPH PRODUCTS AND EXPANSION 317

Hence, using (a− b)(a + b) = a2 − b2,

1−λ ≥

(∑
i,j Ai,j(v2

i − v2
j)

)2

2‖v‖2
2

∑
i,j Ai,j(vi + vj)2

=

(∑
i,j Ai,j(v2

i − v2
j)

)2

2‖v‖2
2

(∑
i,j Ai,jv2

i + 2
∑

i,j Ai,jvivj +
∑

i,j Ai,jv2
j

) =

(∑
i,j Ai,j(v2

i − v2
j)

)2

2‖v‖2
2

(
2‖v‖2

2
+ 2〈Av,v〉

) ≥
(∑

i,j Ai,j(v2
i − v2

j)
)2

8‖v‖4
2

,

where the last inequality is due to A having matrix norm at most 1, implying
〈Av,v〉 ≤ ‖v‖2

2
. We conclude the proof by showing that∑

i,j

Ai,j(v2
i − v2

j) ≥ ρ‖v‖2
2
, (4)

which indeed implies that 1− λ ≥ ρ2‖v‖4
2

8‖v‖4
2

= ρ2

8 .

To prove (4) sort the coordinates of v so that v1 ≥ v2 ≥ · · · ≥ vn (with
vi = 0 for i > n/2). Then

∑
i,j

Ai,j(v2
i − v2

j) ≥
n/2∑
i=1

n∑
j=i+1

Ai,j(v2
i − v2

i+1) =
n/2∑
i=1

ci(v2
i − v2

i+1) ,

where ci denotes
∑

j>i Ai,j . But ci is equal to the number of edges in G from
the set {k : k ≤ i} to its complement, divided by d. Hence, by the expansion
of G, ci ≥ ρi, implying (using the fact that vi = 0 for i ≥ n/2):

∑
i,j

Ai,j(v2
i − v2

j) ≥
n/2∑
i=1

ρi(v2
i − v2

i+1) =
n/2∑
i=1

(ρiv2
i − ρ · (i− 1)v2

i) = ρ‖v‖2
2
,

establishing (4). �

16.4 Graph products and expansion

A graph product is an operation that takes two graphs G, G′ and outputs a
graph H. Typically we’re interested in the relation between properties of
the graphs G, G′ to the properties of the resulting graph H. In this section
we will mainly be interested in three parameters: the number of vertices
(denoted n), the degree (denoted d), and the 2nd largest eigenvalue of the

Web draft 2006-09-28 18:10

DRAFT

318 16.4. GRAPH PRODUCTS AND EXPANSION

normalized adjacency matrix (denoted λ), and study how different products
affect these parameters. In the next sections we will use these products
for two applications: (1) A construction of a strongly explicit expander
graph family and (2) A deterministic logspace algorithm for undirected
connectivity.

16.4.1 Rotation maps.

In addition to the adjacency matrix representation, we can also represent
an n-vertex degree-d graph G as a function Ĝ from [n]× [d] to [n] that given
a pair 〈v, i〉 outputs u where the ith neighbor of v in G. In fact, it will be
convenient for us to have Ĝ output an additional value j ∈ [d] where j is
the index of v as a neighbor of u. Given this definition of Ĝ it is clear that
we can invert it by applying it again, and so it is a permutation on [n]× [d].
We call Ĝ the rotation map of G. For starters, one may think of the case
that Ĝ(u, i) = (v, i) (i.e., v is the ith neighbor of u iff u is the ith neighbor of
v). In this case we can think of Ĝ as operating only on the vertex. However,
we will need the more general notion of a rotation map later on.

We can describe a graph product in the language of graphs, adjacency
matrices, or rotation maps. Whenever you see the description of a product
in one of this forms (e.g., as a way to map two graphs into one), it is a useful
exercise to work out the equivalent descriptions in the other forms (e.g., in
terms of adjacency matrices and rotation maps).

16.4.2 The matrix/path product

G: (n,d,λ)-graph G’: (n,d’,λ’)-graph G’G: (n,dd’,λλ’)-graph

For every two n vertex graphs G, G′ with degrees d, d′ and adjacency
matrices A,A′, the graph G′G is the graph described by the adjacency matrix
A′A. That is, G′G has an edge (u, v) for every length 2-path from u to v
where the first step in the path is taken on en edge of G and the second is
on an edge of G′. Note that G has n vertices and degree dd′. Typically, we
are interested in the case G = G′, where it is called graph squaring. More
generally, we denote by Gk the graph G · G · · ·G (k times). We already

Web draft 2006-09-28 18:10

DRAFT

16.4. GRAPH PRODUCTS AND EXPANSION 319

encountered this case before in Lemma 16.5, and similar analysis yields the
following lemma (whose proof we leave as exercise):

Lemma 16.20 (Matrix product improves expansion)
λ(G′G) ≤ λ(G′)λ(G′)

It is also not hard to compute the rotation map of G′G from the rotation
maps of G and G′. Again, we leave verifying this to the reader.

16.4.3 The tensor product

G: (n,d,λ)-graph G’: (n’,d’,λ’)-graph GOG’: (nn’,dd’,max{λ,λ’})-graphx

Let G and G′ be two graphs with n (resp n′) vertices and d (resp. d′)
degree, and let Ĝ : [n]× [d] → [n]× [d] and Ĝ′ : [n′]× [d′] → [n′]× [d′] denote
their respective rotation maps. The tensor product of G and G′, denoted
G ⊗ G′, is the graph over nn′ vertices and degree dd′ whose rotation map

ˆG⊗G′ is the permutation over ([n]× [n′])× ([d]× [d′]) defined as follows

ˆG⊗G′(〈u, v〉, 〈i, j〉) = 〈u′, v′〉, 〈i′, j′〉 ,

where (u′, i′) = Ĝ(u, i) and (v′, j′) = Ĝ′(v, j). That is, the vertex set of
G ⊗ G′ is pairs of vertices, one from G and the other from G′, and taking
a the step 〈i, j〉 on G ⊗ G′ from the vertex 〈u, v〉 is akin to taking two
independent steps: move to the pair 〈u′, v′〉 where u′ is the ith neighbor of
u in G and v′ is the ith neighbor of v in G′.

In terms of adjacency matrices, the tensor product is also quite easy to
describe. If A = (ai,j) is the n × n adjacency matrix of G and A′ = (a′i′,j′)
is the n′ × n′ adjacency matrix of G′, then the adjacency matrix of G⊗G′,
denoted as A⊗A′, will be an nn′ × nn′ matrix that in the 〈i, i′〉th row and
the 〈j, j′〉 column has the value ai,j · a′i′,j′ . That is, A ⊗ A′ consists of n2

Web draft 2006-09-28 18:10

DRAFT

320 16.4. GRAPH PRODUCTS AND EXPANSION

copies of A′, with the (i, j)th copy scaled by ai,j :

A⊗A′ =

a1,1A

′ a1,2A
′ . . . a1,nA′

a2,1A
′ a2,2A

′ . . . a2,nA′

...
...

an,1A
′ an,2A

′ . . . an,nA′

The tensor product can also be described in the language of graphs as

having a cluster of n′ vertices in G ⊗ G′ for every vertex of G. Now if, u
and v are two neighboring vertices in G, we will put a bipartite version of
G′ between the cluster corresponding to u and the cluster corresponding to
v in G. That is, if (i, j) is an edge in G′ then there is an edge between the
ith vertex in the cluster corresponding to u and the jth vertex in the cluster
corresponding to v.
Lemma 16.21 (Tensor product preserves expansion)
Let λ = λ(G) and λ′ = λ(G′) then λ(G⊗G′) ≤ max{λ, λ′}.

One intuition for this bound is the following: taking a T step random
walk on the graph G⊗G′ is akin to taking two independent random walks
on the graphs G and G′. Hence, if both walks converge to the uniform
distribution within T steps, then so will the walk on G⊗G′.
Proof: Given some basic facts about tensor products and eigenvalues this
is immediate since if λ1, . . . , λn are the eigenvalues of A (where A is the
adjacency matrix of G) and λ′1, . . . , λ

′
n′ are the eigenvalues of A (where A′ is

the adjacency matrix of G′), then the eigenvalues of A⊗A′ are all numbers
of the form λi · λ′j , and hence the largest ones apart from 1 are of the form
1 · λ(G′) or λ(G) · 1 (see also Exercise 4). �

We note that one can show that λ(G⊗G′) ≤ λ(G)+λ(G′) without relying
on any knowledge of eigenvalues (see Exercise 5). This weaker bound suffices
for our applications.

16.4.4 The replacement product

G: (n,D,1-ε)-graph G’: (D,d,1-ε’)-graph GOG’: (nD,2d,1-εε’/4)-graphR

Web draft 2006-09-28 18:10

DRAFT

16.4. GRAPH PRODUCTS AND EXPANSION 321

In both the matric and tensor products, the degree of the resulting graph
is larger than the degree of the input graphs. The following product will
enable us to reduce the degree of one of the graphs. Let G, G′ be two graphs
such that G has n vertices and degree D, and G′ has D vertices and degree d.
The balanced replacement product (below we use simply replacement product
for short) of G and G′ is denoted by G©R G′ is the nn′-vertex 2d-degree graph
obtained as follows:

1. For every vertex u of G, the graph G©R G′ has a copy of G′ (including
both edges and vertices).

2. If u, v are two neighboring vertices in G then we place d parallel edges
between the ith vertex in the copy of G′ corresponding to u and the
jth vertex in the copy of G′ corresponding to v, where i is the index
of v as a neighbor of u and j is the index of u as a neighbor of v in
G. (That is, taking the ith edge out of u leads to v and taking the jth

edge out of v leads to u.)

Note that we essentially already encountered this product in the proof
of Claim 16.1.1 (see also Figure 16.2), where we reduced the degree of an
arbitrary graph by taking its replacement product with a cycle (although
there we did not use parallel edges).8 The replacement product also has a
simple description in terms of rotation maps: since G©R G′ has nD vertices
and 2d degree, its rotation map ˆG©R G′ is a permutation over ([n]× [D])×
([d]× {0, 1}) and so can be thought of as taking four inputs u, v, i, b where
u ∈ [n], v ∈ [D], i ∈ [d] and b ∈ {0, 1}. If b = 0 then it outputs u, Ĝ′(v, i), b
and if b = 1 then it outputs Ĝ(u, v), i, b. That is, depending on whether b is
equal to 0 or 1, the rotation map either treats v as a vertex of G′ or as an
edge label of G.

In the language of adjacency matrices the replacement product can be
easily seen to be described as follows: A©R A′ = 1/2(A⊗ ID) + 1/2(In ⊗ A′),
where A,A′ are the adjacency matrices of the graphs G and G′ respectively,
and Ik is the k × k identity matrix.

If D � d then the replacement product’s degree will be significantly
smaller than G’s degree. The following Lemma shows that this dramatic
degree reduction does not cause too much of a deterioration in the graph’s
expansion:

8The addition of parallel edges ensures that a random step from a vertex v in G©R G′

will move to a neighbor within the same cluster and a neighbor outside the cluster with the
same probability. For this reason, we call this product the balanced replacement product.

Web draft 2006-09-28 18:10

DRAFT

322 16.4. GRAPH PRODUCTS AND EXPANSION

Lemma 16.22 (Expansion of replacement product)
If λ(G) ≤ 1− ε and λ(G′) ≤ 1− ε′ then λ(G©R G′) ≤ 1− εε′/4.

The intuition behind Lemma 16.22 is the following: Think of the input
graph G as a good expander whose only drawback is that it has a too high
degree D. This means that a k step random walk on G′ requires O(k log D)
random bits. However, as we saw in Section 16.3.1, sometimes we can use
fewer random bits if we use an expander. So a natural idea is to generate the
edge labels for the walk by taking a walk using a smaller expander G′ that
has D vertices and degree d � D. The definition of G©R G′ is motivated by
this intuition: a random walk on G©R G′ is roughly equivalent to using an
expander walk on G′ to generate labels for a walk on G. In particular, each
step a walk over G©R G′ can be thought of as tossing a coin and then, based
on its outcome, either taking a a random step on G′, or using the current
vertex of G′ as an edge label to take a step on G. Another way to gain
intuition on the replacement product is to solve Exercise 6, that analyzes
the combinatorial (edge) expansion of the resulting graph as a function of
the edge expansion of the input graphs.

Proof of Lemma 16.22: Let A (resp. A′) denote the n×n (resp. D×D)
adjacency matrix of G (resp. G′) and let λ(A) = 1 − ε and λ(A′) = 1 − ε′.
Then by Lemma 16.14, A = (1− ε)C + Jn and A′ = (1− ε′)C ′ + JD, where
Jk is the k × k matrix with all entries equal to 1/k.

The adjacency matrix of G©R G′ is equal to

1
2(A⊗ ID) + 1

2(In⊗A′) = 1−ε
2 C ⊗ ID + ε

2Jn⊗ ID + 1−ε′

2 In⊗C ′ + ε′

2 In⊗ JD ,

where Ik is the k × k identity matrix.
Thus, the adjacency matrix of (G©R G′)2 is equal to(
1−ε
2 C ⊗ ID + ε

2Jn ⊗ ID + 1−ε′

2 In ⊗ C ′ + ε′

2 In ⊗ JD

)2
=

εε′

4 (Jn ⊗ ID)(In ⊗ JD) + ε′ε
4 (In ⊗ JD)(Jn ⊗ ID) + (1− εε′

2)F ,

where F is some nD×nD matrix of norm at most 1 (obtained by collecting
together all the other terms in the expression). But

(Jn ⊗ ID)(In ⊗ JD) = (In ⊗ JD)(Jn ⊗ ID) = Jn ⊗ JD = JnD .

(This can be verified by either direct calculation or by going through the
graphical representation or the rotation map representation of the tensor
and matrix products.)

Web draft 2006-09-28 18:10

DRAFT

16.5. EXPLICIT CONSTRUCTION OF EXPANDER GRAPHS. 323

Since every vector v ∈ RnD that is orthogonal to 1 satisfies JnDv = 0,
we get that(

λ(G©R G′)
)2 = λ

(
(G©R G′)2

)
= λ

(
(1− εε′

2)F + εε′

2 JnD

)
≤ 1− εε′

2 ,

and hence
λ(G©R G′) ≤ 1− εε′

4 .

�

16.5 Explicit construction of expander graphs.

We now use the three graph products of Section 16.4 to show a strongly
explicit construction of an expander graph family. Recall This is an infinite
family {Gk} of graphs (with efficient way to compute neighbors) that has
a constant degree and an expansion parameter λ. The construction is re-
cursive: we start by a finite size graph G1 (which we can find using brute
force search), and construct the graph Gk from the graph Gk−1. On a high
level the construction is as follows: each of the three product will serve a
different purpose in the construction. The Tensor product allows us to take
Gk−1 and increase its number of vertices, at the expense of increasing the
degree and possibly some deterioration in the expansion. The replacement
product allows us to dramatically reduce the degree at the expense of ad-
ditional deterioration in the expansion. Finally, we use the Matrix/Path
product to regain the loss in the expansion at the expense of a mild increase
in the degree.

Theorem 16.23 (Explicit construction of expanders)
There exists a strongly-explicit λ, d-expander family for some constants d and λ < 1.

Proof: Our expander family will be the following family {Gk}k∈N of graphs:

• Let H be a (D = d40, d, 0.01)-graph, which we can find using brute
force search. (We choose d to be a large enough constant that such a
graph exists)

• Let G1 be a (D, d20, 1/2)-graph, which we can find using brute force
search.

Web draft 2006-09-28 18:10

DRAFT

324 16.5. EXPLICIT CONSTRUCTION OF EXPANDER GRAPHS.

• For k > 1, let Gk = ((Gk−1 ⊗Gk−1)©z H)20.

The proof follows by noting the following points:

1. For every k, Gk has at least 22k
vertices.

Indeed, if nk denotes the number of vertices of Gk, then nk = (nk−1)2D.

If nk−1 ≥ 22k−1
then nk ≥

(
22k−1

)2
= 22k

.

2. For every k, the degree of Gk is d20.

Indeed, taking a replacement produce with H reduces the degree to d,
which is then increased to d20 by taking the 20th power of the graph
(using the matrix/path product).

3. There is a 2O(k)-time algorithm that given a label of a vertex u in Gk

and an index i ∈ [d20], outputs the ith neighbor of u in Gk. (Note that
this is polylogarithmic in the number of vertices.)

Indeed, such a recursive algorithm can be directly obtained from the
definition of Gk. To compute Gk’s neighborhood function, the algo-
rithm will make 40 recursive calls to Gk−1’s neighborhood function,
resulting in 2O(k) running time.

4. For every k, λ(Gk) ≤ 1/3.

Indeed, by Lemmas 16.20, 16.21, and 16.22 If λ(Gk−1) ≤ 1/3 then
λ(Gk−1 ⊗Gk−1) ≤ 2/3 and hence λ((Gk−1 ⊗Gk−1)©R H) ≤ 1− 0.99

12 ≤
1− 1/13. Thus, λ(Gk) ≤ (1− 1/13)20 ∼ e−20/13 ≤ 1/3.

�

Using graph powering we can obtain such a construction for every con-
stant λ ∈ (0, 1), at the expense of a larger degree. There is a variant of
the above construction supplying a denser family of graphs that contains
an n-vertex graph for every n that is a power of c, for some constant c.
Since one can transform an (n, d, λ)-graph to an (n′, cd′, λ)-graph for any
n/c ≤ n′ ≤ n by making a single “mega-vertex” out of a set of at most c
vertices, the following theorem is also known:

Theorem 16.24
There exist constants d ∈ N , λ < 1 and a strongly-explicit graph family
{Gn}n∈N such that Gn is an (n, d, λ)-graph for every n ∈ N.

Web draft 2006-09-28 18:10

DRAFT

16.6. DETERMINISTIC LOGSPACE ALGORITHM FOR
UNDIRECTED CONNECTIVITY. 325

Remark 16.25
As mentioned above, there are known constructions of expanders (typically
based on number theory) that are more efficient in terms of computation
time and relation between degree and the parameter λ than the product-
based construction above. However, the proofs for these constructions are
more complicated and require deeper mathematical tools. Also, the replace-
ment product (and its close cousin, the zig-zag product) have found applica-
tions beyond the constructions of expander graphs. One such application is
the deterministic logspace algorithm for undirected connectivity described
in the next section. Another application is a construction of combinatorial
expanders with greater expansion that what is implied by the parameter
λ. (Note that even for for the impossible to achieve value of λ = 0, Theo-
rem 16.1.1 implies combinatorial expansion only 1/2 while it can be shown
that a random graph has combinatorial expansion close to 1.)

16.6 Deterministic logspace algorithm for undirected
connectivity.

The replacement product has a surprising consequence: a deterministic al-
gorithm to determine whether two vertices are connected in a graph using
only logarithmic space.

Theorem 16.26 (Reingold’s theorem [?])
UPATH ∈ L.

The underlying intuition behind the logspace algorithm for UPATH is
that checking connectivity in expander graphs is easy. More accurately, if
every connected component in G is an expander, then there is a number
` = O(log n) such that if s and t are connected then they are connected
within a path of length at most `. (Indeed, in this case an `-step random
walk from s will reach t with reasonable probability.) We can enumerate over
all `-step random walks of a d-degree graph in O(d`) space by enumerating
over all sequences of indices i1, . . . , i` ∈ [d]. Thus, in a constant-degree graph
where all connected components are expanders we can check connectivity in
logarithmic space. The idea behind the algorithm will be to transform the
graph G (in an implicitly computable in logspace way) to a graph G′ such
that every connected component in G becomes an expander in G′, but two
vertices that were not connected will stay unconnected. This transformation

Web draft 2006-09-28 18:10

DRAFT

326
16.6. DETERMINISTIC LOGSPACE ALGORITHM FOR

UNDIRECTED CONNECTIVITY.

is reminiscent of the expander construction of the previous section.
Proof of Theorem 16.26: Let G be the input graph and s, t two vertices
in G. Using the transformation of Claim 16.1.1, we may assume that G is
a regular degree-4 graphs with self loops on all vertices. By adding more
self-loops we may assume that the graph is of degree d20 for some constant
d that is sufficiently large so that there exists a (d20, d, 0.01)-graph H.

• Let H be a (d20, d, 0.01)-graph, which we can find using brute force
search.

• Let G0 = G.

• For k ≥ 1, we define Gk = (Gk−1©R H)20.

Note that these operations do not connect vertices that were discon-
nected in G. Thus, we can analyze their effect separately on each connected
component of G. By Lemmas 16.20 and 16.22, for every ε < 1/20 and
D-degree graph F , if λ(F) ≤ 1 − ε then λ(F ©R H) ≤ 1 − ε/5 and hence
λ

(
(F ©R H)20

)
≤ 1− 2ε.

By Lemma 16.6, every connected component of G has expansion param-
eter at most 1−1/(8Dn3), where n denotes the number of G’s vertices which
is at least as large as the number of vertices in the connect component. It fol-
lows that for k = 10 log D log N , in the graph Gk every connected component
has expansion parameter at most max{1− 1/20, 2k/(8Dn3)} = 1− 1/20.

The space required to enumerate over ` length walks from some vertex
s in Gk is O(`) bits to store ` indices and the space to compute the rotation
map of Gk. To finish the proof, we will show that we can compute this
map in O(k + log n) space. This map’s input length is O(k + log n) and
hence we can assume it is placed on a read/write tape, and will compute
the rotation map “in-place” changing the input to the output. Let sk be the
additional space (beyond the input) required to compute the rotation map
of Gk. Note that s0 = O(log n). We show a recursive algorithm to compute
Gk satisfying the equation sk = sk−1 +O(1). In fact, the algorithm will be a
pretty straightforward implementation of the definitions of the replacement
and matrix products.

The input to Ĝk is a vertex in (Gk−1©R H) and 20 labels of edges in this
graph. If we can compute the rotation map of Gk−1©R H in sk−1+O(1) space
then we can do so for Ĝk, since we can simply make 20 consecutive calls to
this procedure, each time reusing the space.9 Now, to compute the rotation

9One has to be slightly careful while making recursive calls, since we don’t want to

Web draft 2006-09-28 18:10

DRAFT

16.6. DETERMINISTIC LOGSPACE ALGORITHM FOR
UNDIRECTED CONNECTIVITY. 327

map of (Gk−1©R H) we simply follow the definition of the replacement prod-
uct. Given an input of the form u, v, i, b (which we think of as read/write
variables), if b = 0 then we apply the rotation map of H to (v, i) (can be
done in constant space), while if b = 1 then we apply the rotation map of
Gk−1 to (u, v) using a recursive call at the cost of sk−1 space (note that u, v
are conveniently located consecutively at the beginning of the input tape).
�

Chapter notes and history

still a lot missing
Expanders were well-studied for a variety of reasons in the 1970s but their

application to pseudorandomness was first described by Ajtai, Komlos, and
Szemeredi [?]. Then Cohen-Wigderson [?] and Impagliazzo-Zuckerman (1989)
showed how to use them to “recycle” random bits as described in Sec-
tion 16.3.1. The upcoming book by Hoory, Linial and Wigderson (draft
available from their web pages) provides an excellent introduction to ex-
pander graphs and their applications.

The explicit construction of expanders is due to Reingold, Vadhan and
Wigderson [?], although we chose to present it using the replacement prod-
uct as opposed to the closely related zig-zag product used there. The deter-
ministic logspace algorithm for undirected connectivity is due to Reingold
[?].

Exercises

§1 Let A be a symmetric stochastic matrix: A = A† and every row and
column of A has non-negative entries summing up to one. Prove that
‖A‖ ≤ 1.

Hint:firstshowthat‖A‖isatmostsayn
2
.Then,provethatfor

everyk≥1,A
k

isalsostochasticand‖A
2k

v‖2≥‖A
k
v‖

2
2usingthe

equality〈w,Bz〉=〈B†w,z〉andtheinequality〈w,z〉≤‖w‖2‖z‖2.

§2 Let A,B be two symmetric stochastic matrices. Prove that λ(A+B) ≤
λ(A) + λ(B).

lose even the O(log log n) bits of writing down k and keeping an index to the location in
the input we’re working on. However, this can be done by keeping k in global read/write
storage and since storing the identity of the current step among the 50 calls we’re making
only requires O(1) space.

Web draft 2006-09-28 18:10

DRAFT

328
16.6. DETERMINISTIC LOGSPACE ALGORITHM FOR

UNDIRECTED CONNECTIVITY.

§3 Let a n, d random graph be an n-vertex graph chosen as follows: choose
d random permutations π1, ldots, πd from [n] to [n]. Let the the graph
G contains an edge (u, v) for every pair u, v such that v = πi(u) for
some 1 ≤ i ≤ d. Prove that a random n, d graph is an (n, 2d, 2

3d)
combinatorial expander with probability 1− o(1) (i.e., tending to one
with n).

Hint:foreverysetS⊆nwith|S|≤n/2andsetT⊆[n]with
|T|≤(1+

2
3d)|S|,trytoboundtheprobabilitythatπi(S)⊆Tfor

everyi.

§4 Let A be an n×n matrix with eigenvectors u1, . . . ,un and correspond-
ing values λ1, . . . , λn. Let B be an m × m matrix with eigenvectors
v1, . . . ,vm and corresponding values α1, . . . , αm. Prove that the ma-
trix A⊗B has eigenvectors ui ⊗ vj and corresponding values λi · αj .

§5 Prove that for every two graphs G, G′, λ(G ⊗ G′) ≤ λ(G) + λ(G′)
without using the fact that every symmetric matrix is diagonalizable.

Hint:UseLemma16.14.
§6 Let G be an n-vertex D-degree graph with ρ combinatorial edge ex-

pansion for some ρ > 0. (That is, for every a subset S of G’s vertices
of size at most n/2, the number of edges between S and its comple-
ment is at least ρd|S|.) Let G′ be a D-vertex d-degree graph with ρ′

combinatorial edge expansion for some ρ′ > 0. Prove that G©R G′ has
at least ρ2ρ′/1000 edge expansion.

Hint:EverysubsetofG©RG′canbethoughtofasnsubsetsof
theindividualclusters.Treatdifferentlythesubsetsthattakeup
morethan1−ρ/10portionoftheirclustersandthosethattake
uplessthanthat.FortheformerusetheexpansionofG,whilefor
thelatterusetheexpansionofG′.

Web draft 2006-09-28 18:10

	Random and Pseudo-Random Walks on Graphs
	Undirected connectivity in randomized logspace
	Random walk on graphs
	Distributions as vectors and the parameter (G).
	Analysis of the randomized algorithm for undirected connectivity.

	Expander graphs and some applications.
	Using expanders to reduce error in probabilistic algorithms
	Combinatorial expansion and existence of expanders.

	Graph products and expansion
	Rotation maps.
	The matrix/path product
	The tensor product
	The replacement product

	Explicit construction of expander graphs.
	Deterministic logspace algorithm for undirected connectivity.
	Chapter notes and history
	Exercises

