
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 20

Quantum Computation

“Turning to quantum mechanics.... secret, secret, close the doors! we always have
had a great deal of difficulty in understanding the world view that quantum mechanics
represents ... It has not yet become obvious to me that there’s no real problem. I
cannot define the real problem, therefore I suspect there’s no real problem, but I’m
not sure there’s no real problem. So that’s why I like to investigate things.”
Richard Feynman 1964

“The only difference between a probabilistic classical world and the equations of the
quantum world is that somehow or other it appears as if the probabilities would have
to go negative..”
Richard Feynman, in “Simulating physics with computers”, 1982

Quantum computers are a new computational model that may be physically realizable and
may have an exponential advantage over ‘classical” computational models such as probabilistic
and deterministic Turing machines. In this chapter we survey the basic principles of quantum
computation and some of the important algorithms in this model.

As complexity theorists, the main reason to study quantum computers is that they pose a
serious challenge to the strong Church-Turing thesis that stipulates that any physically reasonable
computation device can be simulated by a Turing machine with polynomial overhead. Quantum
computers seem to violate no fundamental laws of physics and yet currently we do not know any
such simulation. In fact, there is some evidence to the contrary: as we will see in Section 20.7,
there is a polynomial-time algorithm for quantum computers to factor integers, where despite
much effort no such algorithm is known for deterministic or probabilistic Turing machines. In fact,
the conjectured hardness of this problem underlies of several cryptographic schemes (such as the
RSA cryptosystem) that are currently widely used for electronic commerce and other applications.
Physicists are also interested in quantum computers as studying them may shed light on quantum
mechanics, a theory which, despite its great success in predicting experiments, is still not fully
understood.
This chapter utilizes some basic facts of linear algebra, and the space Cn. These are reviewed in
Appendix A. See also Note 20.8 for a quick reminder of our notations.

Web draft 2007-01-08 22:04
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p20.1 (395)

DRAFT

p20.2 (396) 20.1. QUANTUM WEIRDNESS

20.1 Quantum weirdness

It is beyond this book (and its authors) to fully survey quantum mechanics. Fortunately, only
very little physics is needed to understand the main results of quantum computing. However,
these results do use some of the more counterintuitive notions of quantum mechanics such as the
following:

Any object in the universe, whether it is a particle or a cat, does not have definite
properties (such as location, state, etc..) but rather has a kind of probability wave over
its potential properties. The object only achieves a definite property when it is observed,
at which point we say that the probability wave collapses to a single value.

At first this may seem like philosophical pontification analogous to questions such as “if a tree
falls and no one hears, does it make a sound?” but these probability waves are in fact very real, in
the sense that they can interact and interfere with one another, creating experimentally measurable
effects. Below we describe two of the experiments that led physicists to accept this counterintuitive
theory.

20.1.1 The 2-slit experiment

In the 2-slit experiment a source that fires electrons one by one (say, at the rate of one electron per
second) is placed in front of a wall containing two tiny slits (see Figure ??). Beyond the wall we
place an array of detectors that light up whenever an electron hits them. We measure the number
of times each detector lights up during an hour.

When we cover one of the slits, we would expect that the detectors that are directly behind the
open slit will receive the largest number of hits, and as Figure ?? shows, this is indeed the case.
When both slits are uncovered we expect that the number of times each detector is hit is the sum
of the number of times it is hit when the first slit is open and the number of times it is hit when the
second slit is open. In particular, uncovering both slits should only increase the number of times
each location is hit.

Surprisingly, this is not what happens. The pattern of hits exhibits the “interference” phenom-
ena depicted in Figure ??. In particular, at several detectors the total electron flux is lower when
both slits are open as compared to when a single slit is open. This defies explanation if electrons
behave as particles or “little balls”.

According to Quantum mechanics, the explanation is that it is wrong to think of an electron has
a “little ball” that can either go through the first slit or the second (i.e., has a definite property).
Rather, somehow the electron instantaneously explores all possible paths to the detectors (and so
“finds out” how many slits are open) and then decides on a distribution among the possible paths
that it will take.

You might be curious to see this “path exploration” in action, and so place a detector at each
slit that light up whenever an electron passes through that slit. When this is done, one can see
that every electron passes through only one of the slits like a nice little ball. But furthermore, the
interference phenomenon disappears and the graph of electron hits becomes, as originally expected,
the sum of the hits when each slit is open. The explanation is that, as stated above, observing an

Web draft 2007-01-08 22:04

DRAFT

20.1. QUANTUM WEIRDNESS p20.3 (397)

Note 20.1 (Physically implementing quantum computers.)

object “collapses” their distribution of possibilities, and so changes the result of the experiment.
(One moral to draw from this is that quantum computers, if they are ever built, will have to be
carefully isolated from external influences and noise, since noise may be viewed as a “measurement”
performed by the environment on the system. Of course, we can never completely isolate the system,
which means we have to make quantum computation tolerant of a little noise. This seems to be
possible under some noise models, see the chapter notes.)

20.1.2 Quantum entanglement and the Bell inequalities.

Even after seeing the results of the 2-slit experiment, you might still be quite skeptical of the
explanation that quantum mechanics offers. If you do, you are in excellent company. Albert
Einstein didn’t buy it either. While he agreed that the 2-slit experiment means that electrons
are not exactly “little balls”, he didn’t think that it is sufficient reason to give up such basic
notions of physics such as the existence of an independent reality, with objects having definite
properties that do not depend on whether one is observing them. To show the dangerous outcomes
of giving up such notions, in a 1951 paper with Podosky and Rosen (EPR for short) he described a
thought experiment showing that accepting Quantum mechanics leads to the seemingly completely
ridiculous conclusion that systems in two far corners of the universe can instantaneously coordinate
their actions.

In 1964 John Bell showed how the principles behind EPR thought experiment can be turned into
an actual experiment. In the years since, Bell’s experiment has been repeated again and again with
the same results: quantum mechanics’ predictions were verified and, contrary to Einstein’s expec-
tations, the experiments refuted his intuitions about how the universe operates. In an interesting
twist, in recent years the ideas behind EPR’s and Bell’s experiments were used for a practical goal:
encryption schemes whose security depends only on the principles of quantum mechanics, rather
than any unproven conjectures such as P 6= NP.

For complexity theorists, probably the best way to understand Bell’s experiment is as a two
prover game. Recall that in the two prover setting, two provers are allowed to decide on a strategy
and then interact separately with a polynomial-time verifier which then decides whether to accept
or reject the interaction (see Chapters 8 and 18). The provers’ strategy can involve arbitrary
computation and even be randomized, with the only constraint being that the provers are not
allowed to communicate during their interaction with the verifier.

Bell’s game. In Bell’s setting, we have an extremely simple interaction between the verifier and
two provers (that we’ll name Alice and Bob): there is no statement that is being proven, and all the
communication involves the verifier sending and receiving one bit from each prover. The protocol
is as follows:

Web draft 2007-01-08 22:04

DRAFT

p20.4 (398) 20.1. QUANTUM WEIRDNESS

1. The verifier chooses two random bits x, y ∈R {0, 1}.

2. It sends x to Alice and y to Bob.

3. Let a denote Alice’s answer and b Bob’s answer.

4. The verifier accepts if and only if a⊕ b = x ∧ y.

It is easy for Alice and Bob to ensure the verifier accepts with probability 3/4 (e.g., by always
sending a = b = 0). It turns out this is the best they can do:

Theorem 20.2 ([?])
Regardless of the strategy the provers use, the verifier will accept with probability at most 3/4.

Proof: Assume for the sake of contradiction that there is a (possibly probabilistic) strategy that
causes the verifier to accept with probability more than 3/4. By a standard averaging argument
there is a fixed set of provers’ coins (and hence a deterministic strategy) that causes the verifier to
accept with at least the same probability, and hence we may assume without loss of generality that
the provers’ strategy is deterministic.

A deterministic strategy for the two provers is a pair of functions f, g : {0, 1} → {0, 1} such as
the provers’ answers a, b are computed as a = f(x) and b = g(y). The function f can be one of only
four possible functions: it can be either the constant function zero or one, the function f(x) = x
or the function f(y) = 1− y. We analyze the case that f(x) = x; the other case are similar.

If f(x) = x then the verifier accepts iff b = (x ∧ y) ⊕ x. On input y, Bob needs to find b that
makes the verifier accept. If y = 1 then x ∧ y = x and hence b = 0 will ensure the verifier accepts
with probability 1. However, if y = 0 then (x ∧ y) ⊕ x = x and since Bob does not know x, the
probability that his output b is equal to x is at most 1/2. Thus the total acceptance probability is
at most 3/4. �

What does this game have to do with quantum mechanics? The main point is that according
to “classical” pre-quantum physics, it is possible to ensure that Alice and Bob are isolated from
one another. Suppose that you are given a pair of boxes that implement some arbitrary strategy
for Bell’s game. How can you ensure that these boxes don’t have some secret communication
mechanism that allows them to coordinate their answers? We might try to enclose the devices
in lead boxes, but even this does not ensure complete isolation. However, Einstein’s theory of
relativity allows us a foolproof way to ensure complete isolation: place the two devices very far
apart (say at a distance of a 1000 miles from one another), and perform the interaction with each
prover at a breakneck speed: toss each of the coins x, y and demand the answer within less than
one millisecond. Since according to the theory of relativity, nothing travels faster than light (that
only covers about 200 miles in a millisecond), there is no way for the provers to communicate and
coordinate their answers, no matter what is inside the box.

The upshot is that if someone provides you with such devices that consistently succeed in this
experiment with more than 3/4 = 0.75 probability, then she has refuted Einstein’s theory. As we
will see later in Section 20.3.2, quantum mechanics, with its instantaneous effects of measurements,
can be used to actually build devices that succeed in this game with probability at least 0.8 (there
are other games with more dramatic differences of probabilities) and this has been experimentally
demonstrated.

Web draft 2007-01-08 22:04

DRAFT

20.2. A NEW VIEW OF PROBABILISTIC COMPUTATION. p20.5 (399)

20.2 A new view of probabilistic computation.

To understand quantum computation, it is helpful to first take a different viewpoint of a process
we are already familiar with: probabilistic computation.

Suppose that we have an m-bit register. Normally, we think of such a register as having
some definite value x ∈ {0, 1}m. However, in the context of probabilistic computation, we can
also think of the register’s state as actually being a probability distribution over its possible val-
ues. That is, we think of the register’s state as being described by a 2m-dimensional vector
v = 〈v0m ,v0m−11, . . . ,v1m〉, where for every x ∈ {0, 1}m, vx ∈ [0, 1] and

∑
x vx = 1. When

we read, or measure, the register, we will obtain the value x with probability vx.
For every x ∈ {0, 1}n, we denote by |x〉 the vector that corresponds to the degenerate distribu-

tion that takes the value x with probability 1. That is, |x〉 is the 2m-dimensional vector that has
zeroes in all the coordinates except a single 1 in the xth coordinate. Note that v =

∑
x∈{0,1}m vx |x〉.

(We think of all these vectors as column vectors in the space Rm.)

Example 20.3
If a 1-bit register’s state is the distribution that takes the value 0 with probability p and 1 with
probability 1− p, then we describe the state as the vector p |0〉+ (1− p) |1〉.

The uniform distribution over the possible values of a 2-bit register is represented by 1/4 (|00〉+ |01〉+ |10〉+ |11〉).
The distribution that is uniform on every individual bit, but always satisfies that the two bits are
equal is represented by 1/2 (|00〉+ |11〉).

An probabilistic operation on the register involves reading its value, and, based on the value
read, modifying it in some deterministic or probabilistic way. If F is some probabilistic operation,
then we can think of F as a function from R2m

to R2m
that maps the previous state of the register

to its new state after the operation is performed. There are certain properties that every such
operation must satisfy:

• Since F depends only on the contents of the register, and not on the overall distribution, for
every v, F (v) =

∑
x∈{0,1}m vxF (|v 〉). That is, F is a linear function. (Note that this means

that F can be described by a 2n × 2n matrix.)

• If v is a distribution vector (i.e., a vector of non-negative entries that sum up to one), then so
is F (v). That is, F is a stochastic function. (Note that this means that viewed as a matrix,
F has non-negative entries with each column summing up to 1.)

Example 20.4
The operation that, regardless of the register’s value, writes into it a uniformly chosen random
string, is described by the function F such that F (|x〉) = 2−m

∑
x∈{0,1}m |x〉 for every x ∈ {0, 1}m.

(Because the set {|x〉}x∈{0,1}n is a basis for R2m
, a linear function is completely determined by its

output on these vectors.)

Web draft 2007-01-08 22:04

DRAFT

p20.6 (400) 20.2. A NEW VIEW OF PROBABILISTIC COMPUTATION.

The operation that flips the first bit of the register is described by the function F such that
F (|x1 . . . xm 〉) = |(1− x1)x2 . . . xm 〉 for every x1, . . . , xm ∈ {0, 1}.

Of course there are many probabilistic operations that cannot be efficiently computed, but there
are very simple operations that can certainly be computed. An operation F is elementary if it only
reads and modifies at most three bits of the register, leaving the rest of the register untouched.
That is, there is some operation G : R23 → R23

and three indices j, k, ` ∈ [m] such that for every
x1, . . . , xm ∈ {0, 1}, F (|x1 . . . xm 〉) = |y1 . . . ym 〉 where |yjyky` 〉 = G(|xjxkx` 〉) and yi = xi for
every i 6∈ {j, k, `}. Note that such an operation can be represented by a 23 × 23 matrix and three
indices in [m].

Example 20.5
Here are some examples for operations depending on at most three bits:

000 001 010 011 100 101 110 111

000 1 1 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
010 0 0 1 1 0 0 0 0
011 0 0 0 0 0 0 0 0
100 0 0 0 0 1 1 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 1 1

AND function
F|xyz> = |xy(x y)>

Coin Tossing
F|x> = 1/2|0>+1/2|1>

0 1
0 1/2 1/2

1 1/2 1/2

Constant zero function
F|x> = |0>

0 1
0 1 1

1 0 0

For example, if we apply the coin tossing operation to the second bit of the register, then
this means that for every z = z1 . . . zm ∈ {0, 1}m, the vector |z 〉 is mapped to 1/2 |z10z3 . . . zm 〉 +
1/2 |z11z3 . . . zm 〉.

We define a probabilistic computation to be a sequence of such elementary operations applied
one after the other (see Definition 20.6 below). We will later see this corresponds exactly to our
previous definition of probabilistic computation as in the class BPP defined in Chapter 7.

Definition 20.6 (Probabilistic Computation)
Let f : {0, 1}∗ → {0, 1}∗ and T : N → N be some functions. We say that f is computable in
probabilistic T (n)-time if for every n ∈ N and x ∈ {0, 1}n, f(x) can be computed by the following
process:

1. Initialize an m bit register to the state |x0n−m 〉 (i.e., x padded with zeroes), where m ≤ T (n).

2. Apply one after the other T (n) elementary operations F1, . . . , FT to the register (where we
require that there is a polynomial-time TM that on input 1n, 1T (n) outputs the descriptions
of F1, . . . , FT).

3. Measure the register and let Y denote the obtained value. (That is, if v is the final state of
the register, then Y is a random variable that takes the value y with probability vy for every
y ∈ {0, 1}n.)

Web draft 2007-01-08 22:04

DRAFT

20.2. A NEW VIEW OF PROBABILISTIC COMPUTATION. p20.7 (401)

Denoting ` = |f(x)|, we require that the first ` bits of Y are equal to f(x) with probability at
least 2/3.

Probabilistic computation: summary of notations.
The state of an m-bit register is represented by a vector v ∈ R2m

such that
the register takes the value x with probability vx.
An operation on the register is a function F : R2m → R2m

that is linear and
stochastic.
An elementary operation only reads and modifies at most three bits of the
register.
A computation of a function f on input x ∈ {0, 1}n involves initializing the
register to the state |x0m−n 〉, applying a sequence of elementary operations
to it, and then measuring its value.

Now, as promised, we show that our new notion of probabilistic computation is equivalent to
the one encountered in Chapter 7.

Theorem 20.7
A Boolean function f : {0, 1}∗ → {0, 1} is in BPP iff it is computable in probabilistic p(n)-time
for some polynomial p : N → N.

Proof: (⇒) Suppose that f ∈ BPP. As we saw before (e.g., in the proof of Theorem 6.7) this
means that f can be computed by a polynomial-sized Boolean circuit C (that can be found by
a deterministic poly-time TM) if we allow the circuit C access to random coins. Thus we can
compute f as follows: we will use a register of n+r+s bits, where r is the number of random coins
C uses, and s is the number of gates C uses. That is, we have a location in the register for every
coin and every gate of C. The elementary coin tossing operation (see Example 20.5) can transform
a location initialized to 0 into a random coin. In addition, we have an elementary operation that
transforms three bits x, y and z into x, y, x ∧ y and can similarly define elementary operations for
the OR and NOT functions. Thus, we can use these operations to ensure that for every gate of C,
the corresponding location in the register contains the result of applying this gate when the circuit
is evaluated on input x.
(⇐) We will show a probabilistic polynomial-time algorithm to execute an elementary operation
on a register. To simulate a p(n)-time probabilistic computation we can execute this algorithm
p(n) times one after the other. For concreteness, suppose that we need to execute an operation on
the first three bits of the register, that is specified by an 8× 8 matrix A. The algorithm will read
the three bits to obtain the value z ∈ {0, 1}3, and then write to them a value chosen according to
the distribution specified in the zth column of A.

The only issue remaining is how to pick a value from an arbitrary distribution (p1, . . . , p8) over
{0, 1}3 (which we identify with the set [8]). One case is simple: suppose that for every i ∈ [8],
pi = Ki/2` where ` is polynomial in ` and K1, . . . ,K8 ∈ [2`]. In this case, the algorithm will
choose using ` random coins a number X between 1 and 2` and output the largest i such that
X ≤

∑i
j=1 Ki.

However, this essentially captures general case as well: every number p ∈ [0, 1] can be ap-
proximated by a number of the form K/2` within 2−` accuracy. This means that every general

Web draft 2007-01-08 22:04

DRAFT

p20.8 (402) 20.3. QUANTUM SUPERPOSITION AND THE CLASS BQP

Note 20.8 (A few notions from linear algebra)
We use in this chapter several elementary facts and notations involving the
space CM . These are reviewed in Appendix A, but here is a quick reminder:

• If z = a + ib is a complex number (where i =
√
−1), then z = a − ib

denotes the complex conjugate of z. Note that zz = a2 + b2 = |z|2.
• The inner product of two vectors u,v ∈ Cm, denoted by 〈u,v〉, is equal

to
∑

x∈[M] uxvx.

• The norm of a vector u, denoted by ‖u‖2 , is equal to
√
〈u,u〉 =√∑

x∈[M] |ux|2.

• If 〈u,v〉 = 0 we say that u and v are orthogonal. More generally,
�u,v = cos θ‖u‖2‖v‖2 , where θ is the angle between the two vectors
u and v.

• If A is an M ×M matrix, then A† denotes the conjugate transpose of
A. That is, A†

x,y = Ay,x for every x, y ∈ [M].

• An M × M matrix A is unitary if AA† = I, where I is the M × M
identity matrix.

Note that if z is a real number (i.e., z has no imaginary component) then
z = z. Hence, if all vectors and matrices involved are real then the inner
product is equal to the standard inner product of Rn and the conjugate
transpose operation is equal to the standard transpose operation. Also a
real matrix is unitary if and only if it is symmetric.

distribution can be well approximated by a distribution over the form above, and so by choosing a
good enough approximation, we can simulate the probabilistic computation by a BPP algorithm.
�

20.3 Quantum superposition and the class BQP

A quantum register is also composed of m bits, but in quantum parlance they are called “qubits”.
In principle such a register can be implemented by any collection of m physical systems that can
have an ON and OFF states, although in practice there are significant challenges for such an
implementation (see Note 20.1). According to quantum mechanics, the state of such a register can
be described by a 2m-dimensional vector that, unlike the probabilistic case, can actually contain
negative and even complex numbers. That is, the state of the register is described by a vector
v ∈ C2m

. Once again, we denote v =
∑

x∈{0,1}n vx |x〉 (where again |x〉 is the column vector that
has all zeroes and a single one in the xth coordinate). However, according to quantum mechanics,

Web draft 2007-01-08 22:04

DRAFT

20.3. QUANTUM SUPERPOSITION AND THE CLASS BQP p20.9 (403)

when the register is measured, the probability that we see the value x is given not by vx but by
|vx|2. This means that v has to be a unit vector, satisfying

∑
x |vx|2 = 1 (see Note 20.8).

Example 20.9
The following are two legitimate state vectors for a two-qubit quantum register: 1√

2
|0〉 + 1√

2
|1〉

and 1√
2
|0〉 − 1√

2
|1〉. Even though in both cases, if the register is measured it will contain either 0

or 1 with probability 1/2, these are considered distinct states and we will see that it is possible to
differentiate between them using quantum operations.

Because states are always unit vectors, we often drop the normalization factor and so, say, use
|0〉 − |1〉 to denote the state 1√

2
|0〉 − 1√

2
|1〉.

We call the state where all coefficients are equal the uniform state. For example, the uniform
state for a 4-qubit register is

|00〉+ |01〉+ |10〉+ |11〉 ,

(where we dropped the normalization factor of 1
2 .) We will also use the notation |x〉 |y 〉 to denote

the standard basis vector |xy 〉. It is easily verified that this operation respects the distributive law,
and so we can also write the uniform state of a 4-qubit register as

(|0〉+ |1〉) (|0〉+ |1〉)

Once again, we can view an operation applied to the register as a function F that maps its
previous state to the new state. That is, F is a function from C2m

to C2m
. According to quantum

mechanics, such an operation must satisfy the following conditions:

1. F is a linear function. That is, for every v ∈ C2n
, F (v) =

∑
x vxF (|x〉).

2. F maps unit vectors to unit vectors. That is, for every v with ‖v‖2 = 1, ‖F (v)‖2 = 1.

Together, these two conditions imply that F can be described by a 2m × 2m unitary matrix.
That is, a matrix A satisfying AA† = I (see Note 20.8). We recall the following simple facts about
unitary matrices (left as Exercise 1):

Claim 20.11
For every M ×M complex matrix A, the following conditions are equivalent:

1. A is unitary (i.e., AA† = I).

2. For every vector v ∈ CM , ‖Av‖2 = ‖v‖2 .

3. For every orthonormal basis
{
vi

}
i∈[M]

of CM (see below), the set
{
Avi

}
i∈[M]

is an orthonor-

mal basis of CM .

4. The columns of A form an orthonormal basis of CM .

Web draft 2007-01-08 22:04

DRAFT

p20.10 (404) 20.3. QUANTUM SUPERPOSITION AND THE CLASS BQP

Note 20.10 (The geometry of quantum states)
It is often helpful to think of quantum states geometrically as vectors in
space. For example, consider a single qubit register, in which case the state is
a unit vector in the two-dimensional plane spanned by the orthogonal vectors
|0〉 and |1〉. For example, the state v = cos θ |0〉+ sin θ |1〉 corresponds to a
vector making an angle θ with the |0〉 vector and an angle π/2− θ with the
|1〉 vector. When v is measured it will yield 0 with probability cos2 θ and 1
with probability sin2 θ.

|1>

|0>
θ

cos θ

si
n

θ

v = cos θ |0> + sin θ |1>

Although it’s harder to visualize states with complex coefficients or more
than one qubit, geometric intuition can still be useful when reasoning about
such states.

Web draft 2007-01-08 22:04

DRAFT

20.3. QUANTUM SUPERPOSITION AND THE CLASS BQP p20.11 (405)

5. The rows of A form an orthonormal basis of CM .

(Recall that a set
{
vi

}
i∈[M]

of vectors in CM is an orthonormal basis of CM if for every i, j ∈ [M],
〈vi,vj〉 is equal to 1 if i = j and equal to 0 if i 6= j, where 〈v,u〉 is the standard inner product
over CM . That is, 〈v,u〉 =

∑M
j=1 viui.)

As before, we define an elementary quantum operation to be an operation that only depends
and modifies at most three qubits of the register.

Example 20.12
Here are some examples for quantum operations depending on at most three qubits. (Because all
the quantum operations are linear, it suffices to describe their behavior on any linear basis for the
space C2m

and so we often specify quantum operations by the way they map the standard basis.)

• The standard NOT operation on a single bit can be thought of as the unitary operation that
maps |0〉 to |1〉 and vice versa.

• The Hadamard operation is the single qubit operation that (up to normalization) maps |0〉
to |0〉+ |1〉 and |1〉 to |0〉− |1〉. (More succinctly, the state |b〉 is mapped to |0〉+(−1)b |1〉.)
It turns out to be a very useful operation in many algorithms for quantum computers. Note
that if we apply an Hadamard operation to every qubit of an n-qubit register, then for every
x ∈ {0, 1}n, the state |x〉 is mapped to

(|0〉+ (−1)x1 |1〉)(|0〉+ (−1)k2 |1〉) · · · (|0〉+ (−1)xn |1〉) =∑
y∈{0,1}n

(πi : yi=1(−1)x
i) |y 〉 =

∑
y∈{0,1}n

−1x�y |y 〉 ,

where x � y denotes the inner product modulo 2 of x and y. That is, x � y =
∑n

i=1 xiyi

(mod 2).1

• Since we can think of the state of a single qubit register as a vector in two dimensional space,
a natural operation is for any angle θ, to rotate the single qubit by θ. That is, map |0〉 to
cos θ |0〉+ sin θ |1〉, and map |1〉 to − sin θ |0〉+ cos θ |1〉. Note that rotation by an angle of π
(i.e., 180°) is equal to flipping the sign of the vector (i.e., the map v 7→ −v).

• One simple two qubit operation is exchanging the two bits with one another. That is, mapping
|01〉 7→ |10〉 and |10〉 7→ |01〉, with |00〉 and |11〉 being mapped to them selves. Note that by
combining these operations we can reorder the qubits of an n-bit register in any way we see
fit.

• Another two qubit operation is the controlled-NOT operation: it performs a NOT on the first
bit iff the second bit is equal to 1. That is, it maps |01〉 7→ |11〉 and |11〉 7→ |01〉, with |10〉
and |11〉 being mapped to themselves.

1Note the similarity to the definition of the Walsh-Hadamard code described in Chapter 17, Section 17.5.

Web draft 2007-01-08 22:04

DRAFT

p20.12 (406) 20.3. QUANTUM SUPERPOSITION AND THE CLASS BQP

• The Tofolli operation is the three qubit operation that can be called a “controlled-controlled-
NOT”: it performs a NOT on the first bit iff both the second and third bits are equal to 1.
That is, it maps |011〉 to |111〉 and vice versa, and maps all other basis states to themselves.

Exercise 2 asks you to write down explicitly the matrices for these operations.

We define quantum computation as consisting of a sequence of elementary operations in an
analogous way to our previous definition of probabilistic computation (Definition 20.6):

Definition 20.13 (Quantum Computation)
Let f : {0, 1}∗ → {0, 1}∗ and T : N → N be some functions. We say that f is
computable in quantum T (n)-time if for every n ∈ N and x ∈ {0, 1}n, f(x) can be
computed by the following process:

1. Initialize an m qubit quantum register to the state |x0n−m 〉 (i.e., x padded
with zeroes), where m ≤ T (n).

2. Apply one after the other T (n) elementary quantum operations F1, . . . , FT to
the register (where we require that there is a polynomial-time TM that on
input 1n, 1T (n) outputs the descriptions of F1, . . . , FT).

3. Measure the register and let Y denote the obtained value. (That is, if v is the
final state of the register, then Y is a random variable that takes the value y
with probability |vy|2 for every y ∈ {0, 1}n.)

Denoting ` = |f(x)|, we require that the first ` bits of Y are equal to f(x) with
probability at least 2/3.

The following class aims to capture the decision problems with efficient algorithms on quantum
computers:

Definition 20.14 (The class BQP)
A Boolean function f : {0, 1}∗ → {0, 1} is in BQP if there is some polynomial p : N → N such that
f is computable in quantum p(n)-time.

Web draft 2007-01-08 22:04

DRAFT

20.3. QUANTUM SUPERPOSITION AND THE CLASS BQP p20.13 (407)

Quantum computation: summary of notations.
The state of an m-qubit register is represented by a unit vector v ∈ C2m

such that the register takes the value x with probability |vx|2.
An operation on the register is a function F : C2m → C2m

that is unitary.
(i.e., linear and norm preserving).
An elementary operation only depends and modifies at most three bits of
the register.
A computation of a function f on input x ∈ {0, 1}n involves initializing the
register to the state |x0m−n 〉, applying a sequence of elementary operations
to it, and then measuring its value.

Remark 20.15
Readers familiar with quantum mechanics or quantum computing may notice that we did not allow
in our definition of quantum computation several features that are allowed by quantum mechanics.
These include mixed states, that involve both quantum superposition and probability, measuring
in different basis than the standard basis, and performing partial measurements during the com-
putation. However, none of these features adds to the computing power of quantum computers.

20.3.1 Universal quantum operations

Can we actually implement quantum computation? This is an excellent question, and no one really
knows. However, one hurdle can be overcome: even though there is an infinite set of possible
elementary operations, all of them can be generated (or at least sufficiently well approximated) by
the Hadamard and Tofolli operations described in Example 20.12. In fact, every operation that
depends on k qubits can be approximated by composing 2O(k) of these four operations (times an
additional small factor depending on the approximation’s quality). Using a counting/dimension
argument, it can be shown that some unitary transformations do indeed require an exponential
number of elementary operations to compute (or even approximate).

One useful consequence of universality is the following: when designing quantum algorithms we
can assume that we have at our disposal the all operations that depend on k qubits as elementary
operations, for every constant k (even if k > 3). This is since these can be implemented by 3 qubit
elementary operations incurring only a constant (depending on k) overhead.

20.3.2 Spooky coordination and Bell’s state

To get our first glimpse of how things behave differently in the quantum world, we will now show
how quantum registers and operations help us win the game described in Section 20.1.2 with higher
probability than can be achieved according to pre-quantum “classical” physics.
Recall that the game was the following:

1. The verifier chooses random x, y ∈R {0, 1} and sends x to Alice and y to Bob, collecting their
respective answers a and b.

2. It accepts iff x ∧ y = a ⊕ b. In other words, it accepts if either 〈x, y〉 6= 〈1, 1〉 and a = b or
x = y = 1 and a 6= b.

Web draft 2007-01-08 22:04

DRAFT

p20.14 (408) 20.3. QUANTUM SUPERPOSITION AND THE CLASS BQP

It was shown in Section 20.1.2 that if Alice and Bob can not coordinate their actions then the
verifier will accept with probability at most 3/4, but quantum effects can allow them to bypass this
bound as follows:

1. Alice and Bob prepare a 2-qubit quantum register containing the EPR state |00〉 + |11〉.
(They can start with a register initialized to |00〉 and then apply an elementary operation
that maps the initial state to the EPR state.)

2. Alice and Bob split the register - Alice takes the first qubit and Bob takes the second qubit.
(The components containing each qubit of a quantum register do not necessarily need to be
adjacent to one another.)

3. Alice receives the qubit x from the verifier, and if x = 1 then she applies a rotation by π/8
(22.5°) operation to her qubit. (Since the operation involves only her qubit, she can perform
it even after the register was split.)

4. Bob receives the qubit y from the verifier, and if y = 1 he applies a rotation by by −π/8
(−22.5°) operation to his qubit.

5. Both of them measure their respective qubits and output the values obtained as their answers
a and b.

Note that the order in which Alice and Bob perform their rotations and measurements does not
matter - it can be shown that all orders yield exactly the same distribution (e.g., see Exercise 3).
While splitting a quantum register and applying unitary transformations to the different parts
may sound far fetched, this experiment had been performed several times in practice, verifying the
following predictions of quantum mechanics:

Theorem 20.16
Given the above strategy for Alice and Bob, the verifier will accept with probability at least 0.8.

Proof: Recall that Alice and Bob win the game if they output the same answer when 〈x, y〉 6=
〈1, 1〉 and a different answer otherwise. The intuition behind the proof is that in the case that
〈x, y〉 6= 〈1, 1〉 then the states of the two qubits will be “close” to one another (the angle between
them is less than π/8 or 22.5°) and in the other case the states will be “far” (having angle π/4 or
45°). Specifically we will show that:

(1) If x = y = 0 then a = b with probability 1.

(2) If x 6= y then a = b with probability cos2(π/8) ≥ 0.85

(3) If x = y = 1 then a = b with probability 1/2.

Implying that the overall acceptance probability is at least 1
4 + 1

20.85 + 1
8 = 0.8.

In the case (1) both Alice and Bob perform no operation on their register, and so when measured
it will be either in the state |00〉 or |11〉, both resulting in Alice and Bob’s outputs being equal. To
analyze case (2), it suffices to consider the case that x = 0, y = 1 (the other case is symmetrical).

Web draft 2007-01-08 22:04

DRAFT

20.4. QUANTUM PROGRAMMER’S TOOLKIT p20.15 (409)

In this case Alice applies no transformation to her qubit, and Bob rotates his qubit in a −π/8 angle.
Imagine that Bob first makes the rotation, then Alice measures her qubit and then Bob measures
his (this is OK as the order of measurements does not change the outcome). With probability 1/2,
Alice will get the value 0 and Bob’s qubit will collapse to the state |0〉 rotated by a −π/8 angle,
meaning that when measuring Bob will obtain the value 0 with probability cos2(π/8). Similarly, if
Alice gets the value 1 then Bob will also output 1 with cos2(π/8) probability.

To analyze case (3), we just use direct computation. In this case, after both rotations are
performed, the register’s state is

(cos(π/8) |0〉+ sin(π/8) |1〉) (cos(π/8) |0〉 − sin(π/8) |1〉) +
(− sin(π/8) |0〉+ cos(π/8) |1〉) (sin(π/8) |0〉+ cos(π/8) |1〉) =(

cos2(π/8)− sin2(π/8)
)
|00〉 − 2 sin(π/8) cos(π/8) |01〉+

2 sin(π/8) cos(π/8) |10〉+
(
cos2(π/8)− sin2(π/8)

)
|11〉 .

But since

cos2(π/8)− sin2(π/8) = cos(π/4) = 1√
2

= sin(π/4) = 2 sin(π/8) cos(π/8) ,

all coefficients in this state have the same absolute value and hence when measured the register
will yield either one of the four values 00, 01, 10 and 11 with equal probability 1/4. �

20.4 Quantum programmer’s toolkit

Quantum algorithms have some peculiar features that classical algorithm designers are not used to.
The following observations can serve as a helpful “bag of tricks” for designing quantum algorithms:

• If we can compute an n-qubit unitary transformation U in T steps then we can compute the
transformation Controlled-U in O(T) steps, where Controlled-U maps a vector |x1 . . . xnxn+1 〉
to |U(x1 . . . xn)xn+1 〉 if xn+1 = 1 and to itself otherwise.

The reason is that we can transform every elementary operation F in the computation of U
to the analogous “Controlled-F” operation. Since the “Controlled-F” operation depends on
at most 4 qubits, it can be considered also as elementary.

For every two n-qubit transformations U,U ′, we can use this observation twice to compute
the transformation that invokes U on x1 . . . xn if xn+1 = 1 and invokes U ′ otherwise.

• Every permutation of the standard basis is unitary. That is, any operation that maps a vector
|x〉 into |π(x)〉 where π is a permutation of {0, 1}n is unitary. Of course, this does not mean
that all such permutations are efficiently computable in quantum polynomial time.

• For every function f : {0, 1}n → {0, 1}`, the function x, y 7→ x, (y ⊕ f(x)) is a permutation
on {0, 1}n+` (in fact, this function is its own inverse). In particular, this means that we
can use as elementary operations the following “permutation variants” of AND, OR and

Web draft 2007-01-08 22:04

DRAFT

p20.16 (410) 20.5. GROVER’S SEARCH ALGORITHM.

copying: (1) |x1x2x3 〉 7→ |x1x2(x3 ⊕ (x1∧x2))〉 , (2) |x1x2x3 〉 7→ |x1x2(x3 ⊕ (x1∨x2))〉, and
(3) |x1x2 〉 7→ |x1(x1 ⊕ x2)〉. Note that in all these cases we compute the “right” function if
the last qubit is initially equal to 0.

• If f : {0, 1}n → {0, 1}` is a function computable by a size-T Boolean circuit, then the
following transformation can be computed by a sequence of O(T) elementary operations: for
every x ∈ {0, 1}m , y ∈ {0, 1}` , z ∈ {0, 1}T

|x, y, z 〉 7→
∣∣x, (y ⊕ f(x)), 0T 〉 if z = 0T .

(We don’t care on what the mapping does for z 6= 0T .)

The reason is that by transforming every AND, OR or NOT gate into the corresponding
elementary permutation we can ensure that the ith qubit of z contains the result of the ith

gate of the circuit when executed on input x. We can then XOR the result of the circuit into
y using ` elementary operations and run the entire computation backward to return the state
of z to 0T . .

• We can assume that we are allowed to make a partial measurement in the course of the
algorithm, and then proceed differently according to its outcome. That is, we can measure a
some of the qubits of the register. Note that if the register is at state v and we measure its ith

qubit then with probability
∑

z:zi=1 |vz|2 we will get the answer “1” and the register’s state
will change to (the normalized version of) the vector

∑
z:zi=1 vz |z 〉. Symmetrically, with

probability
∑

z:zi=0 |vz|2 we will get the answer “0” and the new state will be
∑

z:zi=0 vz |z 〉.
This is allowed since an algorithm using partial measurement can be replaced with an algo-
rithm not using it with at most a constant overhead (see Exercise 4).

• Since the 1-qubit Hadamard operation maps |0〉 to the uniform state |0〉+ |1〉, it can be used
to simulate tossing a coin: we simply take a qubit in our workspace that is initialized to 0,
apply Hadamard to it, and measure the result.

Together, the last three observations imply that quantum computation is at least as powerful
as “classical” non-quantum computation:

Theorem 20.17
BPP ⊆ BQP.

20.5 Grover’s search algorithm.

Consider the NP-complete problem SAT of finding, given an n-variable Boolean formula ϕ, whether
there exists an assignment a ∈ {0, 1}n such that ϕ(a) = 1. Using “classical” deterministic or
probabilistic TM’s, we do not know how to solve this problem better than the trivial poly(n)2n-time
algorithm.2 We now show a beautiful algorithm due to Grover that solves SAT in poly(n)2n/2-time
on a quantum computer. This is a significant improvement over the classical case, even if it falls

2There are slightly better algorithms for special cases such as 3SAT.

Web draft 2007-01-08 22:04

DRAFT

20.5. GROVER’S SEARCH ALGORITHM. p20.17 (411)

way short of showing that NP ⊆ BQP. In fact, Grover’s algorithm solves an even more general
problem: for every polynomial-time computable function f : {0, 1}n → {0, 1} (even if f is not
expressed as a small Boolean formula3), it finds in poly(n)2n/2 time a string a such that f(a) = 1
(if such a string exists).

Grover’s algorithm is best described geometrically. We assume that the function f has a single
satisfying assignment a. (The techniques described in Chapter 9, Section 9.3.1 allow us to reduce
the general problem to this case.) Consider an n-qubit register, and let u denote the uniform state
vector of this register. That is, u = 1

2n/2

∑
x∈{0,1}n |x〉. The angle between u and |a〉 is equal to the

inverse cosine of their inner product 〈u, |a〉〉 = 1
2n/2 . Since this is a positive number, this angle is

smaller than π/2 (90°), and hence we denote it by π/2− θ, where sin θ = 1
2n/2 and hence, assuming

n is sufficiently large, θ ≥ 1
2·2n/2 (since for small θ, sin θ ∼ θ).

|a>

u

θ~2-n/2

2θ
w

Figure 20.1: Grover’s algorithm finds the string a such that f(a) = 1 as follows. It starts with the uniform vector
u whose angle with |a 〉 is π/2 − θ for θ ∼ 2−n/2 and at each step transforms the state of the register into a vector
that is 2θ radians closer to |a 〉. After O(1/θ) steps, the state is close enough so that measuring the register yields
|a 〉 with good probability.

The algorithm starts with the state u, and at each step it gets nearer the state |a〉 by trans-
forming its current state to a state whose angle with |a〉 is smaller by 2θ (see Figure 20.1). Thus,
in O(1/θ) = O(2n/2) steps it will get to a state v whose inner product with |a〉 is larger than, say,
1/2, implying that a measurement of the register will yield a with probability at least 1/4.

The main idea is that to rotate a vector w towards the unknown vector |a〉 by an angle of θ,
it suffices to take two reflections around the vector u and the vector e =

∑
x 6=a |a〉 (the latter is

the vector orthogonal to |a〉 on the plane spanned by u and |a〉). See Figure 20.2 for a “proof by
picture”.

To complete the algorithm’s description, we need to show how we can perform the reflections
around the vectors u and e. That is, we need to show how we can in polynomial time transform
a state w of the register into the state that is w’s reflection around u (respectively, e). In fact,
we will not work with an n-qubit register but with an m-qubit register for m that is polynomial in
n. However, the extra qubits will only serve as “scratch workspace” and will always contain zero
except during intermediate computations, and hence can be safely ignored.

3We may assume that f is given to the algorithm in the form of a polynomial-sized circuit.

Web draft 2007-01-08 22:04

DRAFT

p20.18 (412) 20.5. GROVER’S SEARCH ALGORITHM.

|a>

u
θ~2-n/2

w

α

e
α+θ

w’

|a>

u

θ~2-n/2
e

θ+α

w’

α+2θ

Step 1: Reflect around e Step 2: Reflect around u

w’’

Figure 20.2: We transform a vector w in the plane spanned by |a 〉 and u into a vector w′′ that is 2θ radians close
to |a 〉 by performing two reflections. First, we reflect around e =

∑
x6=a |x 〉 (the vector orthogonal to |a 〉 on this

plane), and then we reflect around u. If the original angle between w and |a 〉 was π/2 − θ − α then the new angle
will be π/2− θ − α− 2θ.

Reflecting around e. Recall that to reflect a vector w around a vector v, we express w as
αv + v⊥ (where v⊥ is orthogonal to v) and output αv− v⊥. Thus the reflection of w around e is
equal to

∑
x 6=a wx |x〉 −wa |a〉. Yet, it is easy to perform this transformation:

1. Since f is computable in polynomial time, we can compute the transformation |xσ 〉 7→
|x(σ ⊕ f(x))〉 in polynomial (this notation ignores the extra workspace that may be needed,
but this won’t make any difference). This transformation maps |x0〉 to |x0〉 for x 6= a and
|a0〉 to |a1〉.

2. Then, we apply the elementary transformation that multiplies the vector by −1 if σ = 1, and
does nothing otherwise. This maps |x0〉 to |x0〉 for x 6= a and maps |a1〉 to − |a1〉.

3. Then, we apply the transformation |xσ 〉 7→ |x(σ ⊕ f(x))〉 again, mapping |x0〉 to |x0〉 for
x 6= a and maps |a1〉 to |a0〉.

The final result is that the vector |x0〉 is mapped to itself for x 6= a, but |a0〉 is mapped to
− |a0〉. Ignoring the last qubit, this is exactly a reflection around |a〉.

Reflecting around u. To reflect around u, we first apply the Hadamard operation to each qubit,
mapping u to |0〉. Then, we reflect around |0〉 (this can be done in the same way as reflecting
around |a〉, just using the function g : {0, 1}n → {0, 1} that outputs 1 iff its input is all zeroes
instead of f). Then, we apply the Hadamard operation again, mapping |0〉 back to u.

Together these operations allow us to take a vector in the plane spanned by |a〉 and u and rotate
it 2θ radians closer to |a〉. Thus if we start with the vector u, we will only need to repeat them

Web draft 2007-01-08 22:04

DRAFT

20.5. GROVER’S SEARCH ALGORITHM. p20.19 (413)

O(1/θ) = O(2n/2) to obtain a vector that, when measured, yields |a〉 with constant probability.
For the sake of completeness, Figure 20.3 contains the full description of Grover’s algorithm. �

Web draft 2007-01-08 22:04

DRAFT

p20.20 (414) 20.5. GROVER’S SEARCH ALGORITHM.

Grover’s Search Algorithm.
Goal: Given a polynomial-time computable f : {0, 1}n → {0, 1} with a unique a ∈ {0, 1}n

such that f(a) = 1, find a.
Quantum register: We use an n + 1 + m-qubit register, where m is large enough so we
can compute the transformation |xσ0m 〉 7→ |x(σ ⊕ f(x))0m 〉.
Operation State (neglecting normalizing factors)

Initial state:
∣∣0n+m+1 〉

Apply Hadamard operation to first n qubits. u
∣∣0m+1 〉 (where u denotes

∑
x∈{0,1}n |x〉)

For i = 1, . . . , 2n/2 do: vi
∣∣0m+1 〉

We let v1 = u and maintain the invariant
that 〈vi, |a〉〉 = sin(iθ), where θ ∼ 2−n/2 is
such that 〈u, |a〉〉 = sin(θ)

Step 1: Reflect around e =
∑

x 6=a |x〉:
1.1 Compute

∣∣xσ0m+1 〉 7→
∣∣x(σ ⊕ f(x))0m+1 〉

∑
x 6=a vi

x |x〉
∣∣0m+1 〉+ vi

a |a〉
∣∣10m+1 〉

1.2 If σ = 1 then multiply vector by −1, otherwise
do not do anything.

∑
x 6=a vi

x |x〉
∣∣0m+1 〉 − vi

a |a〉
∣∣10m+1 〉

1.3 Compute
∣∣xσ0m+1 〉 7→

∣∣x(σ ⊕ f(x))0m+1 〉. wi
∣∣0m+1 〉 =

∑
x 6=a vi

x |x〉
∣∣0m+1 〉 −

vi
a |a〉 |00m 〉. (wi is vi reflected around∑
x 6=a |x〉.)

Step 2: Reflect around u:
2.1 Apply Hadamard operation to first n qubits. 〈wi,u〉 |0n 〉

∣∣0m+1 〉 +
∑

x6=0n αx |x〉
∣∣0m+1 〉,

for some coefficients αx’s (given by αx =∑
z(−1)x�zwi

z |z 〉).

2.2 Reflect around |0〉:
2.2.1 If first n-qubits are all zero then flip n + 1st

qubit.
〈wi,u〉 |0n 〉 |10m 〉+

∑
x 6=0n αx |x〉

∣∣0m+1 〉

2.2.2 If n + 1st qubit is 1 then multiply by −1 −〈wi,u〉 |0n 〉 |10m 〉+
∑

x 6=0n αx |x〉
∣∣0m+1 〉

2.2.3 If first n-qubits are all zero then flip n + 1st

qubit.
−〈wi,u〉 |0n 〉

∣∣0m+1 〉+
∑

x 6=0n αx |x〉
∣∣0m+1 〉

2.3 Apply Hadamard operation to first n qubits. vi+1
∣∣0m+1 〉 (where vi+1 is wi reflected

around u)

Measure register and let a′ be the obtained value in
the first n qubits. If f(a′) = 1 then output a′. Oth-
erwise, repeat.

Figure 20.3: Grover’s Search Algorithm

Web draft 2007-01-08 22:04

DRAFT

20.6. SIMON’S ALGORITHM p20.21 (415)

20.6 Simon’s Algorithm

Although beautiful, Grover’s algorithm still has a significant drawback: it is merely quadratically
faster than the best known classical algorithm for the same problem. In contrast, in this section we
show Simon’s algorithm that is a polynomial-time quantum algorithm solving a problem for which
the best known classical algorithm takes exponential time.

Simon’s algorithm solves the following problem: given a polynomial-time computable function
f : {0, 1}n → {0, 1}n such that there exists a ∈ {0, 1}∗ satisfying f(x) = f(y) iff x = y⊕a for every
x, y ∈ {0, 1}n, find this string a.

Two natural questions are (1) why is this problem interesting? and (2) why do we believe it is
hard to solve for classical computers? The best answer to (1) is that, as we will see in Section 20.7, a
generalization of Simon’s problem turns out to be crucial in the quantum polynomial-time algorithm
for famous integer factorization problem. Regarding (2), of course we do not know for certain that
this problem does not have a classical polynomial-time algorithm (in particular, if P = NP then
there obviously exists such an algorithm). However, some intuition why it may be hard can be
gleaned from the following black box model: suppose that you are given access to a black box (or
oracle) that on input x ∈ {0, 1}n, returns the value f(x). Would you be able to learn a by making
at most a subexponential number of queries to the black box? It is not hard to see that if a is chosen
at random from {0, 1}n and f is chosen at random subject to the condition that f(x) = f(y) iff
x = y⊕a then no algorithm can successfully recover a with reasonable probability using significantly
less than 2n/2 queries to the black box. Indeed, an algorithm using fewer queries is very likely to
never get the same answer to two distinct queries, in which case it gets no information about the
value of a.

20.6.1 The algorithm

Simon’s algorithm is actually quite simple. It uses a register of 2n + m qubits, where m is the
number of workspace bits needed to compute f . (Below we will ignore the last m qubits of the
register, since they will be always set to all zeroes except in intermediate steps of f ’s computation.)
The algorithm first uses n Hadamard operations to set the first n qubits to the uniform state and
then apply the operation |xz 〉 7→ |x(z ⊕ f(x)〉 to the register, resulting (up to normalization) in
the state ∑

x∈{0,1}n

|x〉 |f(x)〉 =
∑

x∈{0,1}n

(|x〉+ |x⊕ a〉) |f(x)〉 . (1)

We then measure the second n bits of the register, collapsing its state to

|xf(x)〉+ |(x⊕ a)f(x)〉 (2)

for some string x (that is chosen uniformly from {0, 1}n). You might think that we’re done as the
state (2) clearly encodes a, however we cannot directly learn a from this state: if we measure the
first n bits we will get with probability 1/2 the value x and with probability 1/2 the value x⊕a. Even
though a can be deduced from these two values combined, each one of them on its own yields no
information about a. (This point is well worth some contemplation, as it underlies the subtleties

Web draft 2007-01-08 22:04

DRAFT

p20.22 (416)

20.7. SHOR’S ALGORITHM: INTEGER FACTORIZATION USING QUANTUM
COMPUTERS.

involved in quantum computation and demonstrates why a quantum algorithm is not generally
equivalent to performing exponentially many classical computation in parallel.)

However, consider now what happens if we perform another n Hadamard operations on the first
n bits. Since this maps x to the vector

∑
y(−1)x�y |y 〉, the new state of the first n bits will be∑

y

(
(−1)x�y + (−1)(x⊕a)�y

)
|y 〉 =

∑
y

(
(−1)x�y + (−1)x�y(−1)a�y

)
|y 〉 . (3)

For every y ∈ {0, 1}m, the yth coefficient in the state (3) is nonzero if and only if if and only if
a� y = 0, and in fact if measured, the state (3) yields a uniform y ∈ {0, 1}n satisfying a� y = 0.

Repeating the entire process k times, we get k uniform strings y1, . . . , yk satisfying y � a = 0
or in other words, k linear equations (over the field GF(2)) on the variables a1, . . . , an. It can be
easily shown that if, say, k ≥ 2n then with high probability there will be n−1 linearly independent
equations among these (see Exercise 5), and hence we will be able to retrieve a from these equations
using Gaussian elimination. For completeness, a full description of Simon’s algorithm can be found
in Figure 20.4.

Simon’s Algorithm.
Goal: Given a polynomial-time computable f : {0, 1}n → {0, 1}n such that there is some
a ∈ {0, 1}n satisfying f(x) = f(y) iff y = x⊕ a for every x, y ∈ {0, 1}n, find a.
Quantum register: We use an 2n + m-qubit register, where m is large enough so we
can compute the transformation |xz0m 〉 7→ |x(z ⊕ f(x))0m 〉. (Below we ignore the last m
qubits of the register as they will always contain 0m except in intermediate computations
of f .)
Operation State (neglecting normalizing factors)

Initial state:
∣∣02n 〉

Apply Hadamard operation to first n qubits.
∑

x |x0n 〉
Compute |xz 〉 7→ |x(y ⊕ f(x))〉

∑
x |xf(x)〉 =

∑
x (|x〉+ |x⊕ a〉) |f(x)〉

Measure second n bits of register. (|x〉+ |x⊕ a〉) |f(x)〉
Apply Hadamard to first n bits.

(∑
y(−1)x�y(1 + (−1)a�y) |y 〉

)
|f(x)〉 =

2
∑

y:a�y=0(−1)x�y |y 〉 |f(x)〉

Measure first n qubits of register to obtain a value y
such that y � a = 0. Repeat until we get a sufficient
number of linearly independent equations on a.

Figure 20.4: Simon’s Algorithm

20.7 Shor’s algorithm: integer factorization using quantum com-
puters.

The integer factorization problem is to find, given an integer N , the set of all prime factors of N
(i.e., prime numbers that divide N). By a polynomial-time algorithm for this problem we mean an

Web draft 2007-01-08 22:04

DRAFT

20.7. SHOR’S ALGORITHM: INTEGER FACTORIZATION USING QUANTUM
COMPUTERS. p20.23 (417)

algorithm that runs in time polynomial in the description of N , i.e., poly(log(N)) time. Although
people have been thinking about the factorization problem in one form or another for at least 2000
years, we still do not know of a polynomial-time algorithm for it: the best classical algorithm takes
roughly 2(log N)1/3

steps to factor N [?]. In fact, the presumed difficulty of this problem underlies
many popular encryption schemes (such as RSA). Therefore, it was quite a surprise when in 1994
Peter Shor showed a quantum polynomial-time algorithm for this problem. To this day it remains
the most famous algorithm for quantum computers, and the strongest evidence that BQP may
contain problems outside of BPP.

The order-finding problem. Rather than showing an algorithm to factor a given number N ,
we will show an algorithm for a related problem: given a number A with gcd(A,N) = 1, find the
order of A modulo N , defined to be the smallest positive integer r such that Ar = 1 (mod N).
Using elementary number theory, it is fairly straightforward to reduce the task of factoring N to
solving this problem, and we defer the description of this reduction to Section 20.7.3.

Remark 20.18
It is easy to see that for every positive integer k, if Ak = 1 (mod N) then r divides k. (Indeed,
otherwise if k = cr + d for c ∈ Z and d ∈ {1, .., r − 1} then Ad = 1 (mod N), contradicting the
minimality of r.) Similarly, for every x, y it holds that Ax = Ay (mod N) iff x− y is a multiple of
r. Therefore, the order finding problem can be defined as follows: given the function f : N → N
that maps x to Ax (mod N) and satisfies that f(x) = f(y) iff r|x− y, find r. In this notation, the
similarity to Simon’s problem becomes more apparent.

20.7.1 Quantum Fourier Transform over ZM .

The main tool used to solve the order-finding problem is the quantum Fourier transform. We have
already encountered the Fourier transform in Chapter 19, but will now use a different variant, which
we call the Fourier transform over ZM where M = 2m for some integer M . Recall that ZM is the
group of all number in {0, . . . ,M − 1} with the group operation being addition modulo M . The
Fourier transform over this group, defined below, is a linear and in fact unitary operation from C2m

to C2m
. The quantum Fourier transform is a way to perform this operation by composing O(m2)

elementary quantum operations (operations that depend on at most three qubits). This means that
we can transform a quantum system whose register is in state f to a system whose register is in the
state corresponding to the Fourier transform f̂ of f . This does not mean that we can compute in
O(m2) the Fourier transform over ZM - indeed this is not sufficient time to even write the output!
Nonetheless, this transformation still turns out to be very useful, and is crucial to Shor’s factoring
algorithm in the same way that the Hadamard transformation (which is a Fourier transform over
the group {0, 1}n with the operation ⊕) was crucial to Simon’s algorithm.

Definition of the Fourier transform over ZM .

Let M = 2m and let ω = e2πi/M . Note that ωM = 1 and ωK 6= 1 for every positive integer K < N
(we call such a number ω a primitive M th root of unity). A function χ : ZM → C is called a
character of ZM if χ(y+z) = χ(y)χ(z) for every y, z ∈ ZM . ZM has M characters {χx}x∈ZM

where

Web draft 2007-01-08 22:04

DRAFT

p20.24 (418)

20.7. SHOR’S ALGORITHM: INTEGER FACTORIZATION USING QUANTUM
COMPUTERS.

χx(y) = ωxy. Let χ̃x = χx/
√

M (this factor is added for normalization), then the set {χ̃x}x∈ZM
is

an orthonormal basis of the space CM since

〈χ̃x, χ̃y〉 = 1
M

M−1∑
z=0

ωxzωyz = 1
M

M−1∑
z=0

ω(x−y)z

which is equal to 1 if x = y and to 1
M

1−ω(x−y)M

1−ωx−y = 0 if x 6= y (the latter equality follows by the
formula for the sum of a geometric series and the fact that ω`M = 1 for every `).

Definition 20.19
For f a vector in CM , the Fourier transform of f is the representation of f in the basis {χ̃x}.
We let f̂(x) denote the coefficient of χ̃−x in this representation. Thus f =

∑M−1
x=0 f̂(x)χ̃−x and so

f̂(x) = 〈f, χ−x〉 = 1√
M

∑M−1
y=0 ωxyf(x). We let FTM (f) denote the vector (f̂(0), . . . , f̂(M − 1)).

The function FTM is a unitary operation from CM to CM and is called the Fourier transform over
ZM .

Fast Fourier Transform

Note that

f̂(x) = 1√
M

∑
y∈ZM

f(y)ωxy = 1√
M

∑
y∈ZM ,y even

f(y)ω−2x(y/2) + ωx 1√
M

∑
y∈ZM ,y odd

f(y)ω2x(y−1)/2 .

Now since ω2 is an M/2th root of unity and ωM/2 = −1, letting W be the M/2 diagonal matrix
with diagonal ω0, . . . , ωM/2−1, we get that

FTM (f)low = FTM/2(feven) + WFTM/2(fodd) (4)

FTM (f)high = FTM/2(feven)−WFTM/2(fodd) (5)

where for an M -dimensional vector v, we denote by veven (resp. vodd) the M/2-dimensional vector
obtained by restricting v to the coordinates whose indices have least significant bit equal to 0 (resp.
1) and by vlow (resp. vhigh) the restriction of v to coordinates with most significant bit 0 (resp.
1).

Equations (4) and (5) are the crux of the well known Fast Fourier Transform (FFT) algorithm
that computes the Fourier transform in O(M log M) (as opposed to the naive O(M2)) time. We
will use them for the quantum Fourier transform algorithm, obtaining the following lemma:

Lemma 20.20
There is an O(m2)-step quantum algorithm that transforms a state f =

∑
x∈Zm

f(x) |x〉 into the

state f̂ =
∑

x∈Zm
f̂(x) |x〉, where f̂(x) = 1√

M

∑
y∈Zm

ωxyf(x).

Quantum Fourier transform: proof of Lemma 20.20

To prove Lemma 20.20, we use the following algorithm:

Web draft 2007-01-08 22:04

DRAFT

20.7. SHOR’S ALGORITHM: INTEGER FACTORIZATION USING QUANTUM
COMPUTERS. p20.25 (419)

Quantum Fourier Transform FTM

Initial state: f =
∑

x∈ZM
f(x) |x〉

Final state: f̂ =
∑

x∈ZM
f̂(x) |x〉.

Operation State (neglecting normalizing factors)

f =
∑

x∈ZM
f(x) |x〉

Recursively run FTM/2 on m−1 most
significant qubits

(FTM/2feven) |0〉+ (FTM/2fodd) |1〉

If LSB is 1 then compute W on m− 1
most significant qubits (see below).

(FTM/2feven) |0〉+ (WFTM/2fodd) |1〉

Apply Hadmard gate H to least sig-
nificant qubit.

(FTM/2feven)(|0〉 + |1〉) +
(WWFTM/2fodd)(|0〉 − |1〉) =
(FTM/2feven + FTM/2fodd) |0〉 +
(FTM/2feven −WFTM/2fodd) |1〉

Move LSB to the most significant po-
sition

|0〉(FTM/2feven + FTM/2fodd) +
|1〉(FTM/2feven −WFTM/2fodd) = f̂

The transformation W on m− 1 qubits can be defined by |x〉 7→ ωx = ω
∑m−2

i=0 2ixi (where xi is
the ith qubit of x). It can be easily seen to be the result of applying for every i ∈ {0, . . . ,m− 2}
the following elementary operation on the ith qubit of the register: |0〉 7→ |0〉 and |1〉 7→ ω2i |1〉.

The final state is equal to f̂ by (4) and (5). (We leave verifying this and the running time to
Exercise 9.) �

20.7.2 The Order-Finding Algorithm.

We now present a quantum algorithm that on input a number A < N , finds the order of A
modulo N (i.e., the smallest r such that Ar = 1 (mod N)). We let m = 3 log N and M = 2m.
Our register will consist of m + log(N) qubits. Note that the function x 7→ Ax (mod N) can
be computed in polylog(N) time (see Exercise 6) and so we will assume that we can compute
the map |x〉 |y 〉 7→ |x〉 |y ⊕ xA

x (mod N)y 〉 (where xXy denotes the representation of the number
X ∈ {0, . . . , N − 1} as a binary string of length log N).4 The order-finding algorithm is as follows:

4To compute this map we may need to extend the register by some additional qubits, but we can ignore them as
they will always be equal to zero except in intermediate computations.

Web draft 2007-01-08 22:04

DRAFT

p20.26 (420)

20.7. SHOR’S ALGORITHM: INTEGER FACTORIZATION USING QUANTUM
COMPUTERS.

Order finding algorithm.
Goal: Given numbers N and A < N such that gcd(A,N) = 1, find the smallest r such
that Ar = 1 (mod N).
Quantum register: We use an m + n-qubit register, where m = 3 log N (and hence in
particular M ≥ N3). Below we treat the first m bits of the register as encoding a number
in ZM .
Operation State (including normalizing factors)

Apply Fourier transform to the first m bits. 1√
M

∑
x∈ZM

|x〉) |0n 〉
Compute the transformation |x〉 |y 〉 7→
|x〉 |y ⊕ (Ax (mod N))〉.

∑
x∈ZM

|x〉 |Ax (mod N)〉

Measure the second register to get a value y0. 1√
dM/r e

∑dM/r e−1
`=0 |x0 + `r 〉 |y0 〉 where x0

is the smallest number such that Ax0 = y0

(mod N).
Apply the Fourier transform to the first register. 1√

M
√
dM/r e

(∑
x∈Zn

∑dM/r e−1
`=0 ω(x0+`r)x |x〉

)
|y0 〉

Measure the first register to obtain a number x ∈ ZM . Find the best rational approxi-
mation a/b (with a, b coprime) for the fraction x

M with denominator b at most 40M (see
Section 20.A). If Ab = A (mod M) then output b.

In the analysis, it will suffice to show that this algorithm outputs the order r with probability
at least 1/poly(log(N)) (we can always amplify the algorithm’s success by running it several times
and taking the smallest output).

Analysis: the case that r|M

We start by analyzing the algorithm in the (rather unrealistic) case that M = rc for some integer
c. In this case we claim that the value x measured will be equal to c′c for random c′ ∈ 0, . . . , r. In
this case, x/M = c′/r. However, with probability at least Ω(1/ log(r)), the number c′ will be prime
(and in particular coprime to r). In this case, the denominator of the rational approximation for
x/M is indeed equal to r.

Indeed, for every x ∈ ZM , the absolute value of |x〉’s coefficient before the measurement is equal
(up to some normalization factor) to∣∣∣∣∣

c−1∑
`=0

ω(x0+`r)x

∣∣∣∣∣ =
∣∣∣ωx0c′c

∣∣∣ ∣∣∣∣∣
c−1∑
`=0

ωr`x

∣∣∣∣∣ = 1 ·

∣∣∣∣∣
c−1∑
`=0

ωr`x

∣∣∣∣∣ . (6)

But if x = cc′ then ωr`cc′ = ωMc′ = 1, and hence the coefficients of all such x’s are equal to the
same positive number. On the other hand, if c does not divide x then then since ωr is a cth root
of unity,

∑c−1
`=0 wr`x = 0 by the formula for sums of geometric progressions. Thus, such a number

x would be measured with zero probability.

The case that r 6 |M

In the general case, we will not be able to show that the value x measured satisfies M |xr. However,
we will show that with Ω(1/ log r) probability, (1) xr will be “almost divisible” by M in the sense

Web draft 2007-01-08 22:04

DRAFT

20.7. SHOR’S ALGORITHM: INTEGER FACTORIZATION USING QUANTUM
COMPUTERS. p20.27 (421)

1

i

β=eiθ

1-β

βk=eiθk

θ
(k-1)θ

1-βk
α

α/2

α/2

1

1

si
n(

α/
2)

si
n(

α/
2)

Figure 20.5: A complex number z = a + ib can be thought of as the two-dimensional vector (a, b) of length
|z| =

√
a2 + b2. The number β = eiθ corresponds to a unit vector of angle θ from the x axis.For any such β, if k is

not too large (say k < 1/θ) then by elementary geometric considerations |1−βk|
|1−β| = 2 sin(θ/2)

2 sin(kθ/2)
. We use here the fact

(proved in the boxed figure) that in a unit cycle, the chord corresponding to an angle α is of length 2 sin(α/2).

that 0 ≤ xr (mod M) < r/10 and (2) dxr/M e is coprime to r. Condition (1) implies that
|xr − cM | < r/10 for c = dxr/M e. Dividing by rM gives

∣∣ x
M − c

r

∣∣ < 1
10M . Therefore, c

r is a
rational number with denominator at most N that approximates x

M to within 1/(10M) < 1/(2N2).
It is not hard to see that such an approximation is unique (Exercise 7) and hence in this case the
algorithm will come up with c/r and output the denominator r.

Thus all that is left is to prove the following two lemmas:
Lemma 20.21
There exist Ω(r/ log r) values x ∈ ZM such that:

1. 0 ≤ xr (mod M) < r/10

2. dxr/M e and r are coprime

Lemma 20.22
If x satisfies 0 ≤ xr (mod M) < r/10 then, before the measurement in the final step of the order-
finding algorithm, the coefficient of |x〉 is at least Ω(1√

r
).

Proof of Lemma 20.21: We prove the lemma for the case that r is coprime to M , leaving the
general case as Exercise 10. In this case, the map x 7→ rx (mod M) is a permutation of Z∗

M and
we have a set of at least r/(20 log r) x’s such that xr (mod M) is a prime number p between 0 and
r/10. For every such x, xr + d r/M eM = p which means that d r/M e can not have a nontrivial
shared factor with r, as otherwise this factor would be shared with p as well. �

Proof of Lemma 20.22: Let x be such that 0 ≤ xr (mod M) < r/10. The absolute value of
|x〉’s coefficient in the state before the measurement is

1√
dM/r e

√
M

∣∣∣∣∣∣
dM/r e−1∑

`=0

ω`rx

∣∣∣∣∣∣ . (7)

Setting β = ωrx (note that since M 6 |rx, β 6= 1) and using the formula for the sum of a geometric
series, this is at least √

r
2M

∣∣∣1−βdM/r e

1−β

∣∣∣ =
√

r
2M

sin(θdM/r e/2)
sin(θ/2) , (8)

Web draft 2007-01-08 22:04

DRAFT

p20.28 (422)

20.7. SHOR’S ALGORITHM: INTEGER FACTORIZATION USING QUANTUM
COMPUTERS.

where θ = rx (mod M)
M is the angle such that β = eiθ (see Figure 20.5 for a proof by picture of the

last equality). Under our assumptions dM/r eθ < 1/10 and hence (using the fact that sinα ∼ α

for small angles α), the coefficient of x is at least
√

r
4M dM/r e ≥ 1

8
√

r
�

20.7.3 Reducing factoring to order finding.

The reduction of the factoring problem to the order-finding problem follows immediately from the
following two Lemmas:

Lemma 20.23
For every nonprime N , the probability that a random X in the set Z∗

N = {X ∈ [N − 1] : gcd(X, N) = 1}
has an even order r and furthermore, Xr/2 6= +1 (mod N) and X 6= −1 (mod N) is at least 1/4.

Lemma 20.24
For every N and Y , if Y 2 = 1 (mod N) but Y 6= +1 (mod N) and Y 6= −1 (mod N), then
gcd(Y − 1, N) > 1.

Together, Lemmas 20.23 and 20.24 show that the following algorithm will output a prime factor
P of N with high probability: (once we have a single prime factor P , we can run the algorithm
again on N/P)

1. Choose X at random from [N − 1].

2. If gcd(X, N) > 1 then let K = gcd(X, N), otherwise compute the order r of X, and if r is
even let K = gcd(Xr/2 − 1, N).

3. If K ∈ {1, N} then go back to Step 1. If K is a prime then output K and halt. Otherwise,
use recursion to output a factor of K.

Note that if T (N) is the running time of the algorithm then it satisfies the equation T (N) ≤
T (N/2) + polylog(N) leading to polylog(N) running time.
Proof of Lemma 20.24: Under our assumptions, N divides Y 2 − 1 = (Y − 1)(X + 1) but does
not divide neither Y − 1 or Y + 1. But this means that gcd(Y − 1, N) > 1Z since if Y − 1 and N
were coprime, then since N divides (Y − 1)(Y + 1), it would have to divide X + 1 (Exercise 8). �

Proof of Lemma 20.23: We prove this for the case that N = PQ for two primes P,Q (the proof
for the general case is similar and is left as Exercise ??). In this case, by the Chinese Reminder
Theorem, if we map every number X ∈ Z∗

N to the pair 〈X (mod P), X (mod Q)〉 then this map
is one-to-one. Also, the groups Z∗

P and Z∗
Q are known to by cyclic which means that there is a

number g ∈ [P − 1] such that the map j 7→ gj (mod P) is a permutation of [P − 1] and similarly
there is a number h ∈ [Q− 1] such that the map k 7→ hk (mod P) is a permutation of [Q− 1].

This means that instead of choosing X at random, we can think of choosing two numbers j, k at
random from [P−1] and [Q−1] respectively and consider the pair 〈gj (mod P), hk (mod Q)〉 which
is in one-to-one correspondence with the set of X’s in Z∗

N . The order of this pair (or equivalently,
of X) is the smallest positive integer r such that gjr = 1 (mod P) and hkr = 1 (mod Q), which

Web draft 2007-01-08 22:04

DRAFT

20.8. BQP AND CLASSICAL COMPLEXITY CLASSES p20.29 (423)

means that P − 1|jr and Q − 1|kr. Now suppose that j is odd and k is even (this happens with
probability 1/4). In this case r is of the form 2r′ where r′ is the smallest number such that P−1|2jr′

and Q−1|kr′ (the latter holds since we can divide the two even numbers k and Q−1 by two). But
this means that gj(r/2) 6= 1 (mod Q) and hk(r/2) = 1 (mod Q). In other words, if we let X be the
number corresponding to 〈gj (mod P), hk (mod Q)〉 then Xr/2 corresponds to a pair of the form
〈a, 1〉 where a 6= 1. However, since +1 (mod N) corresponds to the pair 〈+1,+1〉 and −1 (mod N)
corresponds to the pair 〈−1 (mod P),−1 (mod Q)〉 it follows that Xr/2 6= ±1 (mod N). �

20.8 BQP and classical complexity classes

What is the relation between BQP and the classes we already encountered such as P, BPP and
NP? This is very much an open questions. It not hard to show that quantum computers are at
least not infinitely powerful compared to classical algorithms:
Theorem 20.25
BQP ⊆ PSPACE

Proof Sketch: To simulate a T -step quantum computation on an m bit register, we need to
come up with a procedure Coeff that for every i ∈ [T] and x ∈ {0, 1}m, the xth coefficient (up to
some accuracy) of the register’s state in the ith execution. We can compute Coeff on inputs x, i
using at most 8 recursive calls to Coeff on inputs x′, i − 1 (for the at most 8 strings that agree
with x on the three bits that the Fi’s operation reads and modifies). Since we can reuse the space
used by the recursive operations, if we let S(i) denote the space needed to compute Coeff(x, i)
then S(i) ≤ S(i− 1) + O(`) (where ` is the number of bits used to store each coefficient).

To compute, say, the probability that if measured after the final step the first bit of the register
is equal to 1, just compute the sum of Coeff(x, T) for every x ∈ {0, 1}n. Again, by reusing the
space of each computation this can be done using polynomial space. �

Theorem 20.25 can be improved to show that BQP ⊆ P#P (where #P is the counting version
of NP described in Chapter 9), but this is currently the best upper bound we know on BQP.

Does BQP = BPP? The main reason to believe this is false is the polynomial-time algorithm
for integer factorization. Although this is not as strong as the evidence for, say NP * BPP
(after all NP contains thousands of well-studied problems that have resisted efficient algorithms),
the factorization problem is one of the oldest and most well-studied computational problems, and
the fact that we still know no efficient algorithm for it makes the conjecture that none exists
appealing. Also note that unlike other famous problems that eventually found an algorithm (e.g.,
linear programming [?] and primality testing [?]), we do not even have a heuristic algorithm that
is conjectured to work (even without proof) or experimentally works on, say, numbers that are
product of two random large primes.

What is the relation between BQP and NP? It seems that quantum computers only offer
a quadratic speedup (using Grover’s search) on NP-complete problems, and so most researchers
believe that NP * BPP. On the other hand, there is a problem in BQP (the Recursive Fourier
Sampling or RFS problem [?]) that is not known to be in the polynomial-hierarchy , and so at the
moment we do not know that BQP = BPP even if we were given a polynomial-time algorithm for
SAT.

Web draft 2007-01-08 22:04

DRAFT

p20.30 (424) 20.8. BQP AND CLASSICAL COMPLEXITY CLASSES

Chapter notes and history

We did not include treatment of many fascinating aspects of quantum information and computation.
Many of these are covered in the book by Nielsen and Chuang [?]. See also Umesh Vazirani’s
excellent lecture notes on the topic (available from his home page).

One such area is quantum error correction, that tackles the following important issue: how can
we run a quantum algorithm when at every possible step there is a probability of noise interfering
with the computation? It turns out that under reasonable noise models, one can prove the following
threshold theorem: as long as the probability of noise at a single step is lower than some constant
threshold, one can perform arbitrarily long computations and get the correct answer with high
probability [?].

Quantum computing has a complicated but interesting relation to cryptography. Although
Shor’s algorithm and its variants break many of the well known public key cryptosystems (those
based on the hardness of integer factorization and discrete log), the features of quantum mechanics
can actually be used for cryptographic purposes, a research area called quantum cryptography (see
[?]). Shor’s algorithm also spurred research on basing public key encryption scheme on other
computational problems (as far as we know, quantum computers do not make the task of breaking
most known private key cryptosystems significantly easier). Perhaps the most promising direction
is basing such schemes on certain problems on integer lattices (see the book [?] and [?]).

While quantum mechanics has had fantastic success in predicting experiments, some would
require more from a physical theory. Namely, to tell us what is the “actual reality” of our world.
Many physicists are understandably uncomfortable with the description of nature as maintaining
a huge array of possible states, and changing its behavior when it is observed. The popular science
book [?] contains a good (even if a bit biased) review of physicists’ and philosophers’ attempts at
providing more palatable descriptions that still manage to predict experiments.

On a more technical level, while no one doubts that quantum effects exist at microscopic scales,
scientists questioned why they do not manifest themselves at the macrosopic level (or at least not to
human consciousness). A Scientific American article by Yam [?] describes various explanations that
have been advanced over the years. The leading theory is decoherence, which tries to use quantum
theory to explain the absence of macroscopic quantum effects. Researchers are not completely
comfortable with this explanation. The issue is undoubtedly important to quantum computing,
which requires hundreds of thousands of particles to stay in quantum superposition for large-ish
periods of time. Thus far it is an open question whether this is practically achievable. One
theoretical idea is to treat decoherence as a form of noise, and to build noise-tolerance into the
computation —a nontrivial process. For details of this and many other topics, see the books by
Kitaev, Shen, and Vyalyi [?].

The original motivation for quantum computing was to construct computers that are able to
simulate quantum mechanical systems, and this still might be their most important application if
they are ever built. Feynman [?] was the first to suggest the possibility that quantum mechanics
might allow Turing Machines more computational power than classical TMs. In 1985 Deutsch [?]
defined a quantum Turing machine, though in retrospect his definition is unsatisfactory. Better
definitions then appeared in Deutsch-Josza [?], Bernstein-Vazirani [?] and Yao [?], at which point
quantum computation was firmly established as a field.

Web draft 2007-01-08 22:04

DRAFT

20.8. BQP AND CLASSICAL COMPLEXITY CLASSES p20.31 (425)

Exercises

§1 Prove Claim 20.11.

Hint:FirstprovethatCondition3holdsiffCondition1holdsiff
Condition4holds.Thisfollowsalmostdirectlyfromthedefinition
oftheinnerproductandthefactthatforeverymatricesA,B

itholdsthat(AB)∗=B∗A∗and(A∗)∗=A.Thenprovethat
Condition3impliesCondition2,whichfollowsfromthefactthat
thenormisinvariantunderachangeofbasis.Finally,provethat
Condition2impliesCondition3byshowingthatiftwoorthogonal
unitvectorsv,uaremappedtonon-orthogonalunitvectorsv′,u′,
thenthenormofthevectoru+visnotpreserved.

§2 For each one of the following operations: Hadamard, NOT, controlled-NOT, rotation by π/4,
and Tofolli, write down the 8×8 matrix that describes the mapping induced by applying this
operation on the first qubits of a 3-qubit register.

§3 Suppose that a two-bit quantum register is in an arbitrary state v. Show that the following
three experiments will yield the same probability of output:

(a) Measure the register and output the result.

(b) First measure the first bit and output it, then measure the second bit and output it.

(c) First measure the second bit and output it, then measure the first bit and output it.

§4 Suppose that f is computed in T time by a quantum algorithm that uses a partial measure-
ments in the middle of the computation, and then proceeds differently according to the result
of that measurement. Show that f is computable by O(T) elementary operations.

§5 Prove that if for some a ∈ {0, 1}n, the strings y1, . . . , yn−1 are chosen uniformly at random
from {0, 1}n subject to yi � a = 0 for every i ∈ [n − 1], then with probability at least 1/10,
there exists no nonzero string a′ 6= a such that yi � a′ = 0 for every i ∈ [n − 1]. (In other
words, the vectors y1, . . . , yn−1 are linearly independent.)

§6 Prove that given A, x ∈ {0, . . . ,M − 1}, we can compute Ax (mod M) in time polynomial in
log M .

Hint:Startbysolvingthecasethatx=2
k

forsomek.Then,
showanalgorithmforgeneralxbyusingx’sbinaryexpansion.

§7 Prove that for every α < 1, there is at most a single rational number a/b such that b < N
and |α− a/b| < 1/(2N2).

§8 Prove that if A,B are numbers such that N and A are coprime but N divides AB, then N
divides B.

Web draft 2007-01-08 22:04

DRAFT

p20.32 (426) 20.A. RATIONAL APPROXIMATION OF REAL NUMBERS

Hint:UsethefactthatifNandAareco-primethenthereare
wholenumbersα,βsuchthatαN+βA=1andmultiplythis
equationbyB.

§9 Prove Lemma 20.20.

§10 Complete the proof of Lemma ?? for the case that r and M are not coprime. That is,
prove that also in this case there exist at least Ω(r/ log r) values x’s such that 0 ≤ rx
(mod M) ≤ r/2 and dM/x e and r are coprime.

Hint:letd=gcd(r,M),r′=r/dandM′=M/d.Nowusethe
sameargumentasinthecasethatMandrarecoprimetoargue
thatthereexistΩ(

r
dlogr)valuesx∈ZM′satisfyingthiscondition,

andthatifxsatisfiesitthensodoesx+cMforeveryc.

§11 (Uses knowledge of continued fractions) Suppose j, r ≤ N are mutually coprime and unknown
to us. Show that if we know the first 2 log N bits of j/r then we can recover j, r in polynomial
time.

20.A Rational approximation of real numbers

A continued fraction is a number of the following form:

α1 +
1

α2 + 1

α2+
1

α3+...

Given a real number α > 0, we can find its representation as an infinite fraction as follows: split
α into the integer part bα c and fractional part α − bα c, find recursively the representation R of
1/(α− bα c), and then write

α = bα c+
1
R

.

If we stop after ` steps, we get a rational number that can be represented as a/b with a, b coprime.
It can be verified that b ∈ [2`/2, 22`]. The following theorem is also known:

Theorem 20.26
[?] If a/b is a rational number obtained by running the continued fraction algorithm on α for a
finite number of steps then |α − a/b| > |α − c/d for every rational number c/d with denominator
d ≤ b.

This means that given any number α and bound N , we can use the continued fraction algorithm
to find in polylog(N) steps a rational number a/b such that b ≤ 16N and a/b approximates α better
than any other rational number with denominator at most b.

Web draft 2007-01-08 22:04

	Quantum Computation
	Quantum weirdness
	The 2-slit experiment
	Quantum entanglement and the Bell inequalities.

	A new view of probabilistic computation.
	Quantum superposition and the class BQP
	Universal quantum operations
	Spooky coordination and Bell's state

	Quantum programmer's toolkit
	Grover's search algorithm.
	Simon's Algorithm
	The algorithm

	Shor's algorithm: integer factorization using quantum computers.
	Quantum Fourier Transform over ZM.
	Definition of the Fourier transform over ZM.
	Fast Fourier Transform
	Quantum Fourier transform: proof of Lemma 20.20

	The Order-Finding Algorithm.
	Analysis: the case that r|M
	The case that r|M

	Reducing factoring to order finding.

	BQP and classical complexity classes
	Chapter notes and history
	Exercises
	Rational approximation of real numbers

