
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 22

Why are circuit lowerbounds so
difficult?

Why have we not been able to prove strong lower bounds for circuits? In 1994 Razborov and Rudich
formalized the notion of a “natural mathematical proof,” for a circuit lowerbound. They pointed out
that current lowerbound arguments involve “natural” mathematical proofs, and show that obtaining
strong lowerbound with such techniques would violate a widely believed cryptographic assumption
(namely, that factoring integers requires time 2nε

for some fixed ε > 0). Thus presumably we
need to develop mathematical arguments that are not natural. This result may be viewed as a
modern analogue of the Baker, Gill, Solovay result from the 1970s (see Chapter ??) that showed
that diagonalization alone cannot resolve P versus NP and other questions.

Basically, a natural technique is one that proves a lowerbound for a random function and is
“constructive.” We formalize “constructive” later but first consider why lowerbound proofs may
need to work for random functions.

22.1 Formal Complexity Measures

Let us imagine at a high level how one might approach the project of proving circuit lower bounds.
For concreteness, focus on formulas, which are boolean circuits where gates have indegree 2 and
outdegree 1. It is tempting to use some kind of induction. Suppose we have a function like the one
in Figure 22.1 that we believe to be “complicated.” Since the function computed at the output is
“complicated”, intuition says that at least one of the functions on the incoming edges to the output
gate should also be “pretty complicated” (after all those two functions can be combined with a
single gate to produce a “complicated” function). Now we try to formalize this intuition, and point
out why one ends up proving a lowerbound on the formula complexity of random functions.

The most obvious way to formalize a “complicatedness” is as a function µ that maps every
boolean function on {0, 1}n to a nonnegative integer. (The input to µ is the truth table of the
function.) We say that µ is a formal complexity measure if it satisfies the following properties:
First, the measure is low for trivial functions: µ(xi) ≤ 1 and µ(x̄i) ≤ 1 for all i. Second, we require
that

Web draft 2007-01-08 22:04
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p22.1 (431)

DRAFT

p22.2 (432) 22.1. FORMAL COMPLEXITY MEASURES

Figure unavailable in pdf file.

Figure 22.1: A formula for a hard function.

• µ(f ∧ g) ≤ µ(f) + µ(g) for all f, g; and

• µ(f ∨ g) ≤ µ(f) + µ(g) for all f, g.

For instance, the following function ρ is trivially a formal complexity measure

ρ(f) = 1 + the smallest formula size for f. (1)

In fact, it is easy to prove the following by induction.

Theorem 22.1
If µ is any formal complexity measure, then µ(f) is a lowerbound on the formula complexity of f .

Thus to formalize the inductive approach outlined earlier, it suffices to define a measure µ such
that µ(CLIQUE) is high (say superpolynomial). For example, one could try “fraction of inputs for
which the function agrees with the CLIQUE function” or some suitably modified version of this. In
general, one imagines that defining a measure that lets us prove a good lowerbound for CLIQUE
would involve some deep observation about the CLIQUE function. The next lemma seems to show,
however, that even though all we care about is the CLIQUE function, our lowerbound necessarily
must reason about random functions.
Lemma 22.2
Suppose µ is a formal complexity measure and there exists a function f : {0, 1}n → {0, 1} such
that µ(f) ≥ c for some large number c. Then for at least 1/4 of all functions g : {0, 1}n → {0, 1}
we must have µ(g) ≥ c/4.

Proof: Let g : {0, 1}n → {0, 1} be any function. Write f as f = h ⊕ g where h = f ⊕ g. So
f = (h̄ ∧ g) ∨ (h ∧ ḡ) and µ(f) ≤ µ(g) + µ(g) + µ(h) + µ(h).

Now suppose for contradiction’s sake that {g : µ(g) < c/4} contains more than 3/4 of all boolean
functions on n-bit inputs. If we pick the above function g randomly, then g, h, h are also random
(though not independent). Using the trivial union bound we have Pr[All of h, h̄, g, ḡ have µ <
c/4] > 0. Hence µ(f) < c, which contradicts the assumption. Thus the lemma is proved. �

In fact, the following stronger theorem holds:

Theorem 22.3
If µ(f) > c then for all ε > 0 and for at least 1− ε of all functions g we have that,

µ(g) ≥ Ω
(

c

(n + log(1/ε))2

)
.

The idea behind the proof of the theorem is to write f as the boolean combination of a small
number of functions and then proceed similarly as in the proof of the lemma.

Web draft 2007-01-08 22:04

DRAFT

22.2. NATURAL PROPERTIES p22.3 (433)

22.2 Natural Properties

Moving the above discussion forward, we think of a lowerbound proof as identifying some property
of “hard” functions that is not shared by “easy” functions.

Definition 22.4
A property Φ is a map from boolean functions to {0, 1}. A P-natural property useful against P/poly
is a property Φ such that:

1. Φ(f) = 1 for at least a 1/2n fraction of all boolean functions on n bits (recall that there are
22n

functions on n bits);

2. Φ(f) = 1 implies that f 6∈ P/poly (or more concretely, that f has circuit complexity at least
nlog n, say); and

3. Φ is computable on n-bit functions in 2O(n) time (i.e., polynomial in the length of the function’s
truth table).

The term P-natural refers to requirement (3). The property is useful against P/poly because of
requirement (2). (Note that this requirement also ensures that Φ is not trivial, since it must be 0 for
functions in P/poly.) Requirement (1) corresponds to our above intuition that circuit lowerbounds
should prove the hardness of a random function.

By suitably modifying (2) and (3) we can analogously define, for any complexity class C1 and
circuit class C2, a C1-natural property that is useful against circuit class C2. We emphasize that
when the property is computed, the input is the truth table of a function, whose size is 2n. Thus
a P-natural property is computed in time 2cn for some constant c > 1 and a PSPACE-natural
property is computed in space 2cn.

Example 22.5
The result that PARITY is not computable in AC0 (Section ??) involved the following steps. (a)
Show that every AC0 circuit can be simplified by restricting at most n−nε input bits so that it then
becomes a constant function. (b) Show that the PARITY function does not have this property.

Thus the natural property lurking in this proof is the following: Φ(f) = 1 iff for every way of
assigning values to at most n − nε input bits the function does not become a constant function.
Clearly, if Φ(f) = 1 then f 6∈ AC0, so f is useful against AC0. Furthermore, Φ can be computed in
2O(n) time — just enumerate all possible choices for the subsets of variables and all ways of setting
them to 0/1. This running time is polynomial in the length of the truth-table, so Φ is P-natural.
Finally, requirement (1) is also met since almost all boolean functions satisfy Φ(f) = 1 (easy to
check using a simple probability calculation; left as exercise).

Thinking further, we see that Φ is a AC0-natural property that is useful against AC0.

Web draft 2007-01-08 22:04

DRAFT

p22.4 (434) 22.2. NATURAL PROPERTIES

Example 22.6
The lowerbound for ACC0 circuits described in Section ?? is not natural per se. Razborov and
Rudich show how to naturalize the proof, in other words change it —while retaining its essence—so
that it does use a natural property. Recall that every boolean function on n bits can be represented
by a multilinear polynomial over GF (3). The space of all n-variate multilinear polynomials forms
a vector space, whose dimension is N = 2n. Then all multilinear polynomials in n variables of total
degree less than n/2 form a subspace of dimension N/2 (this assumes n is even), and we denote this
space by L. For a boolean function f let f̂ be a multilinear polynomial over GF (3) that represents
f . Then define Φ(F) = 1 iff the dimension of the space{

f̂ l1 + l2 : l1, l2 ∈ L
}

is at least 3N/4. It can be checked that Φ is 1 for the parity function, as well as for most ran-
dom functions. Furthermore, rank computations can be done in NC2 so it is NC2-natural. The
technique of Section ?? can be used to show that if Φ(f) = 1 then f 6∈ ACC0[3]; thus Φ is useful
against ACC0[3].

Example 22.7
The lowerbound for monotone circuits in Section ?? does use constructive methods, but it is
challenging to show that it applies to a random function since a random function is not monotone.
Nobody has formulated a good definition of a random monotone function.

In the definition of natural proofs, requirement (3) is the most controversial in that there is no
inherent reason why mathematical proofs should go hand in hand with efficient algorithms.

Remark 22.8
“Constructive mathematics” was a movement within mathematics that rejected any proofs of exis-
tence that did not yield an algorithm for constructing the object. Today this viewpoint is considered
quaint; nonconstructive proofs are integral to mathematics.

In our context, “constructive” has a stricter meaning, namely the proof has to yield a polynomial-
time algorithm. Many proofs that would be “constructive” for a mathematician would be noncon-
structive under our definition. Surprisingly, even with this stricter definition, proofs in combinato-
rial mathematics are usually constructive, and —as Razborov and Rudich are pointing out —the
same is true of current circuit lowerbounds as well.

In a few cases, combinatorial results initially proved “nonconstructively” later turned out to have
constructive proofs: a famous example is the Lovàsz Local Lemma (discovered in 1974; algorithmic
version is in Beck [?]). The same is true for several circuit lowerbounds—cf. the “naturalized”
version of the Razborov-Smolensky lowerbound for ACC0[q] mentioned earlier, and Raz’s proof [?]
of the Babai-Nisan-Szegedy [?] lowerbound on multiparty communication complexity.

Web draft 2007-01-08 22:04

DRAFT

22.3. LIMITATIONS OF NATURAL PROOFS p22.5 (435)

22.3 Limitations of Natural Proofs

The following theorem by Razborov and Rudich explains why we have not been able to use the
same techniques to obtain an upper bound on P/poly: constructing a P-natural property useful
against P/poly violates widely believed cryptographic assumptions.

Theorem 22.9 (Razborov, Rudich [?])
Suppose a P-natural property Φ exists that is useful against P/poly. Then there are no strong
pseudorandom function generators. In particular, FACTORING and DISCRETE LOG can be
solved in less than 2nε

time for all ε > 0.

Pseudorandom function generators were defined in Section ??. The definition used a distin-
guisher polynomial-time machine that is given oracle access to either a truly random function or a
function from the pseudorandom family. The family is termed pseudorandom if the distinguisher
cannot distinguish between the two oracles. Now we tailor that more general definition for our nar-
row purposes in this section. We allow the distinguisher 2O(n) time and even allow it to examine the
truth table of the function! This is without loss of generality since in 2O(n) time the distinguisher
could construct the truth table using 2n queries to the oracle.

Definition 22.10
A pseudorandom function generator is a function f(k, x) computable in polynomial time where the
input x has n bits and the “key” k has nc bits, where c > 2 is a fixed constant. Denoting by Fn

the function obtained by uniformly selecting k ∈ {0, 1}nc
and setting Fn to f(k, ·), we have the

property that the function ensemble F = {Fn}∞n=1 is “pseudorandom,” namely, for each Turing
machine M running in time 2O(n), and for all sufficiently large n,

|Pr[M(Fn) = 1]− Pr[M(Hn) = 1]| < 1
2n2 ,

where Hn is a random function on {0, 1}n.
We will denote f(k, ·) by fk.

Intuitively, the above definition says that if f is a pseudorandom function generator, then for
a random k, the probability is high that fk “looks like a random function” to all Turing machines
running in time 2O(n). Note that fk cannot look random to machines that run in 2O(nc) time since
they can just guess the key k. Thus restricting the running time to 2O(n) (or to some other fixed
exponential function such as 2O(n2)) is crucial.

Recall that Section ?? described the Goldreich-Goldwasser-Micali construction of pseudorandom
function generators f(k, x) using a pseudorandom generator g that stretches nc random bits to 2nc

pseudorandom (also see Figure 22.2): Let g0(k) and g1(k) denote, respectively, the first and last
nc bits of g(k). Then the following function is a pseudorandom function generator, where MSB(x)
refers to the first bit of a string x:

f(k, x) = MSB(gxn ◦ gxn−1 ◦ · · · ◦ gx2 ◦ gx1(k)).

The exercises in Chapter 10 explored the security of this construction as a function of the
security parameter of g; basically, the two are essentially the same. By the Goldreich-Levin theorem

Web draft 2007-01-08 22:04

DRAFT

p22.6 (436) 22.4. MY PERSONAL VIEW

Figure unavailable in pdf file.

Figure 22.2: Constructing a pseudorandom function generator from a pseudorandom generator.

of Section ??, a pseudorandom generator with such a high security parameter exists if a oneway
permutation exists and some ε > 0, such that every 2nε

time algorithm has inversion probability
less than 2−nε

. The DISCRETE LOG function —a permutation— is conjectured to satisfy this
property. As mentioned in Chapter 10, researchers believe that there is a small ε > 0 such that the
worst-case complexity of DISCRETE LOG is 2nε

, which by random self-reducibility also implies the
hardness of the average case. (One can also obtain pseudorandom generators using FACTORING,
versions of which are also believed to be just as hard as DISCRETE LOG.) If this belief is correct,
then pseudorandom function generators exist as outlined above. (Exercise.)

Now we can prove the above theorem.

Theorem 22.9: Suppose the property Φ exists, and f is a pseudorandom function generator. We
show that a Turing machine can use Φ to distinguish fk from a random function. First note that
fk ∈ P/poly for every k (just hardwire k into the circuit for fk) so the contrapositive of property
(2) implies that Φ(fk) = 0. In addition, property (1) implies that PrHn [Φ(Hn) = 1] ≥ 1/2n. Hence,

Pr
Hn

[Φ(Hn)]− Pr
k∈{0,1}nc

[Φ(fk)] ≥ 1/2n,

and thus Φ is a distinguisher against f . �

22.4 My personal view

Discouraged by the Razborov-Rudich result, researchers (myself included) hardly ever work on
circuit lowerbounds. Lately, I have begun to think this reaction was extreme. I still agree that
a circuit lowerbound for say CLIQUE, if and when we prove it, will very likely apply to random
functions as well. Thus the way to get around the Razborov-Rudich observation is to define
properties that are not P-natural; in other words, are nonconstructive. I feel that this need not be
such an insurmountable barrier since a host of mathematical results are nonconstructive.

Concretely, consider the question of separating NEXP from ACC0, one of the (admittedly
not very ambitious) frontiers of circuit complexity outlined in Chapter 13. As observed there,
NEXP 6= ACC0 will follow if we can improve the Babai-Nisan-Szegedy lowerbound of Ω(n/2k)
for k-party communication complexity to Ω(n/poly(k)) for some function in NEXP. One line of
attack is to lowerbound the discrepancy of all large cylinder intersections in the truth table, as we
saw in Raz’s proof of the BNS lowerbound1. (In other words, the “unnatural” property we are
defining is Φ where Φ(f) = 1 iff f has high discrepancy and thus high multiparty communication
complexity.) For a long time, I found this question intimidating because the problem of computing
the discrepancy given the truth table of the function is coNP-hard (even for k = 2). This seemed

1Interestingly, Raz discovered this naturalization of the BNS proof after being briefly hopeful that the original
BNS proof—which is not natural— may allow a way around the Razborov-Rudich result.

Web draft 2007-01-08 22:04

DRAFT

22.4. MY PERSONAL VIEW p22.7 (437)

to suggest that a proof that the discrepancy is high for an explicit function (which presumably will
also show that it is high for random functions) must have a nonconstructive nature, and hence will
be very difficult. Lately, I have begun to suspect this intuition.

A relevant example is Lovàsz’s lowerbound of the chromatic number of the Kneser graph [?].
Lowerbounding the chromatic number is coNP-complete in general. Lovàsz gives a topological
proof (using the famous Borsuk-Ulam fixed point theorem) that determines the chromatic number of
the Kneser graph exactly. From his proof one can indeed obtain an algorithm for solving chromatic
number on all graphs([?]) —but it runs in PSPACE for general graphs! So if this were a circuit
lowerbound we could call it PSPACE-natural, and thus “nonconstructive.” Nevertheless, Lovàsz’s
reasoning for the particular case of the Kneser graph is not overly complicated because the graph is
highly symmetrical. This suggests we should not blindly trust the intuition that “nonconstructive
≡ difficult.”

I fervently hope that the next generation of researchers will view the Razborov-Rudich theorem
as a guide rather than as a big obstacle!

Exercises

§1 Prove Theorem 22.3.

§2 Prove that a random function satisfies Φ(f) = 1 with high probability, where Φ is the property
defined in Example 22.5.

§3 Show that if the hardness assumption for discrete log is true, then pseudorandom function
generators as defined in this chapter exist.

§4 Prove Wigderson’s observation: P-natural properties cannot prove that DISCRETE LOG
requires circuits of 2nε

size.

Hint:IfDISCRETELOGishardonworst-caseinputsthenitis
hardonmostinputs,andthenitcanbeusedtoconstructpseudo-
randomfunctions.

§5 (Razborov [?]) A submodular complexity measure is a complexity measure that satisfies µ(f ∨
g) + µ(f ∧ g) ≤ µ(f) + µ(g) for all functions f, g. Show that for every n-bit function fn, such
a measure satisfies µ(fn) = O(n).

Hint:Itsufficestoprovethiswhenfnisarandomfunction.Use
inductiononthenumberofvariables,andthefactthatbothfn

andfnarerandomfunctions.

Chapter notes and history

The observation that circuit lowerbounds may unwittingly end up reasoning about random functions
first appears in Razborov [?]’s result about the limitations of the method of approximation.

Web draft 2007-01-08 22:04

DRAFT

p22.8 (438) 22.4. MY PERSONAL VIEW

We did not cover the full spectrum of ideas in the Razborov-Rudich paper [?], where it is
observed that candidate pseudorandom function generators exist even in the class TC0, which lies
between ACC0 and NC1. Thus natural proofs will probably not allow us to separate even TC0

from P.
Razborov’s observation about submodular measures in Problem 5 is important because many

existing approaches for formula complexity use submodular measures; thus they will fail to even
prove superlinear lowerbounds.

In contrast with my limited optimism, Razborov himself expresses (in the introduction to [?])
a view that the obstacle posed by the natural proofs observation is very serious. He observes that
existing lowerbound approaches use weak theories of arithmetic such as Bounded Arithmetic. He
conjectures that any circuit lowerbound attempt in such a logical system must be natural (and
hence unlikely to work). But as I mentioned, several theorems even in discrete mathematics use
reasoning (e.g., fixed point theorems like Borsuk-Ulam) that does not seem to be formalizable in
Bounded Arithmetic. Thus is my reason for optimism.

However, somen other researchers are far more pessimistic: they fear that P versus NP may
be independent of mathematics (say, of Zermelo-Fraenkel set theory). Razborov says that he has
no intuition about this.

Web draft 2007-01-08 22:04

	Why are circuit lowerbounds so difficult?
	Formal Complexity Measures
	Natural Properties
	Limitations of Natural Proofs
	My personal view
	Exercises
	Chapter notes and history

