
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 1

The computational model —and why
it doesn’t matter

“The idea behind digital computers may be explained by saying that these machines
are intended to carry out any operations which could be done by a human computer.
The human computer is supposed to be following fixed rules; he has no authority to
deviate from them in any detail. We may suppose that these rules are supplied in a
book, which is altered whenever he is put on to a new job. He has also an unlimited
supply of paper on which he does his calculations.”
Alan Turing, 1950

“[Turing] has for the first time succeeded in giving an absolute definition of an in-
teresting epistemological notion, i.e., one not depending on the formalism chosen.”
Kurt Gödel, 1946

The previous chapter gave an informal introduction to computation and efficient computations
in context of arithmetic. IN this chapter we show a more rigorous and general definition. As
mentioned earlier, one of the surprising discoveries of the 1930s was that all known computational
models are able to simulate each other. Thus the set of computable problems does not depend upon
the computational model.

In this book we are interested in issues of computational efficiency, and therefore in classes of
“efficiently computable” problems. Here, at first glance, it seems that we have to be very careful
about our choice of a computational model, since even a kid knows that whether or not a new video
game program is “efficiently computable” depends upon his computer’s hardware. Surprisingly
though, we can restrict attention to a single abstract computational model for studying many
questions about efficiency—the Turing machine. The reason is that the Turing Machine seems able
to simulate all physically realizable computational models with very little loss of efficiency. Thus
the set of “efficiently computable” problems is at least as large for the Turing Machine as for any
other model. (One possible exception is the quantum computer model, but we do not currently
know if it is physically realizable.)

Web draft 2007-01-08 21:59
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p1.1 (9)

DRAFT

p1.2 (10) 1.1. ENCODINGS AND LANGUAGES: SOME CONVENTIONS

The Turing machine is a simple embodiment of the age-old intuition that computation consists
of applying mechanical rules to manipulate numbers, where the person/machine doing the manip-
ulation is allowed a scratch pad on which to write the intermediate results. The Turing Machine
can be also viewed as the equivalent of any modern programming language — albeit one with no
built-in prohibition about memory size1. In fact, this intuitive understanding of computation will
suffice for most of the book and most readers can skip many details of the model on a first reading,
returning to them later as needed.

The rest of the chapter formally defines the Turing Machine and the notion of running time,
which is one measure of computational effort. It also presents the important notion of the universal
Turing machine. Section 1.5 introduces a class of “efficiently computable” problems called P (which
stands for Polynomial time) and discuss its philosophical significance. The section also points out
how throughout the book the definition of the Turing Machine and the class P will be a starting
point for definitions of many other models, including nondeterministic, probabilistic and quantum
Turing machines, Boolean circuits, parallel computers, decision trees, and communication games.
Some of these models are introduced to study arguably realizable modes of physical computation,
while others are mainly used to gain insights on Turing machines.

1.1 Encodings and Languages: Some conventions

Below we specify some of the notations and conventions used throughout this chapter and this
book to represent computational problem. We make use of some notions from discrete math such
as strings, sets, functions, tuples, and graphs. All of these notions are reviewed in Appendix ??.

1.1.1 Representing objects as strings

In general we study the complexity of computing a function whose input and output are finite
strings of bits. (A string of bits is a finite sequence of zeroes and ones. The set of all strings of
length n is denoted by {0, 1}n, while the set of all strings is denoted by {0, 1}∗ = ∪n≥0 {0, 1}n; see
Appendix A.) Note that simple encodings can be used to represent general objects—integers, pairs
of integers, graphs, vectors, matrices, etc.— as strings of bits. For example, we can represent an
integer as a string using the binary expansion (e.g., 34 is represented as 100010) and a graph as
its adjacency matrix (i.e., an n vertex graph G is represented by an n × n 0/1-valued matrix A
such that Ai,j = 1 iff the edge (i, j) is present in G). We will typically avoid dealing explicitly with
such low level issues of representation, and will use xxy to denote some canonical (and unspecified)
binary representation of the object x. Often we will drop the symbols x y and simply use x to
denote both the object and its representation.

Representing pairs and tuples. We use the notation 〈x, y〉 to denote the ordered pair consisting
of x and y. A canonical representation for 〈x, y〉 can be easily obtained from the representations
of x and y. For example, we can first encode 〈x, y〉 as the string xxy ◦ # ◦ xyy over the alphabet

1Though the assumption of an infinite memory may seem unrealistic at first, in the complexity setting it is of no
consequence since we will restrict the machine to use a finite amount of tape cells for any given input (the number
allowed will depend upon the input size).

Web draft 2007-01-08 21:59

DRAFT

1.1. ENCODINGS AND LANGUAGES: SOME CONVENTIONS p1.3 (11)

{0, 1,#} (where ◦ denotes concatenation) and then use the mapping 0 7→ 00, 1 7→ 11,# 7→ 01 to
convert this into a string of bits. To reduce notational clutter, instead of x〈x, y〉y we use 〈x, y〉 to
denote not only the pair consisting of x and y but also the representation of this pair as a binary
string. Similarly, we use 〈x, y, z〉 to denote both the ordered triple consisting of x, y, z and its
representation, and use similar notation for 4-tuples, 5-tuples etc..

1.1.2 Decision problems / languages

An important special case of functions mapping strings to strings is the case of Boolean functions,
whose output is a single bit. We identify such a function f with the set Lf = {x : f(x) = 1} and
call such sets languages or decision problems (we use these terms interchangeably). We identify the
computational problem of computing f (i.e., given x compute f(x)) with the problem of deciding
the language Lf (i.e., given x, decide whether x ∈ Lf).

Example 1.1
By representing the possible invitees to a dinner party with the vertices of a graph having an edge
between any two people that can’t stand one another, the dinner party computational problem
from the introduction becomes the problem of finding a maximum sized independent set (set of
vertices not containing any edges) in a given graph. The corresponding language is:

INDSET = {〈G, k〉 : ∃S ⊆ V (G) s.t. |S| ≥ k and ∀u, v ∈ S, u v 6∈ E(G)}

An algorithm to solve this language will tell us, on input a graph G and a number k, whether
there exists a conflict-free set of invitees, called an independent set, of size at least k. It is not
immediately clear that such an algorithm can be used to actually find such a set, but we will see
this is the case in Chapter 2. For now, let’s take it on faith that this is a good formalization of this
problem.

1.1.3 Big-Oh notation

As mentioned above, we will typically measure the computational efficiency algorithm as the number
of a basic operations it performs as a function of its input length. That is, the efficiency of an
algorithm can be captured by a function T from the set of natural numbers N to itself such that
T (n) is equal to the maximum number of basic operations that the algorithm performs on inputs
of length n. However, this function is sometimes be overly dependant on the low-level details of
our definition of a basic operation. For example, the addition algorithm will take about three times
more operations if it uses addition of single digit binary (i.e., base 2) numbers as a basic operation,
as opposed to decimal (i.e., base 10) numbers. To help us ignore these low level details and focus
on the big picture, the following well known notation is very useful:

Web draft 2007-01-08 21:59

DRAFT

p1.4 (12) 1.2. MODELING COMPUTATION AND EFFICIENCY

Definition 1.2 (Big-Oh notation)
If f, g are two functions from N to N, then we (1) say that f = O(g) if there exists a constant c
such that f(n) ≤ c · g(n) for every sufficiently large n, (2) say that f = Ω(g) if g = O(f), (3) say
that f = Θ(g) is f = O(g) and g = O(f), (4) say that f = o(g) if for every ε > 0, f(n) ≤ ε · g(n)
for every sufficiently large n, and (5) say that f = ω(g) if g = o(f).

To emphasize the input parameter, we often write f(n) = O(g(n)) instead of f = O(g), and
use similar notation for o,Ω, ω,Θ.

Example 1.3
Here are some examples for use of big-Oh notation:

1. If f(n) = 100n log n and g(n) = n2 then we have the relations f = O(g), g = Ω(f), f = o(g),
g = ω(f).

2. If f(n) = 100n2 +24n+2logn and g(n) = n2 then f = O(g). We will often write this relation
as f(n) = O(n2). Note that we also have the relation g = O(f) and hence f = Θ(g) and
g = Θ(f).

3. If f(n) = min{n, 106} and g(n) = 1 for every n then f = O(g). We use the notation f = O(1)
to denote this. Similarly, if h is a function that tends to infinity with n (i.e., for every c it
holds that h(n) > c for n sufficiently large) then we write h = ω(1).

4. If f(n) = 2n then for every number c ∈ N, if g(n) = nc then g = o(f). We sometimes write
this as 2n = nω(1). Similarly, we also write h(n) = nO(1) to denote the fact that h is bounded
from above by some polynomial. That is, there exist a number c > 0 such that for sufficiently
large n, h(n) ≤ nc.

For more examples and explanations, see any undergraduate algorithms text such as [?, ?] or
Section 7.1 in Sipser’s book [?].

1.2 Modeling computation and efficiency

We start with an informal description of computation. Let f be a function that takes a string
of bits (i.e., a member of the set {0, 1}∗) and outputs, say, either 0 or 1. Informally speaking, an
algorithm for computing f is a set of mechanical rules, such that by following them we can compute
f(x) given any input x ∈ {0, 1}∗. The set of rules being followed is fixed (i.e., the same rules must
work for all possible inputs) though each rule in this set may be applied arbitrarily many times.
Each rule involves one or more of the following “elementary” operations:

1. Read a bit of the input.

Web draft 2007-01-08 21:59

DRAFT

1.2. MODELING COMPUTATION AND EFFICIENCY p1.5 (13)

2. Read a bit (or possibly a symbol from a slightly larger alphabet, say a digit in the set
{0, . . . , 9}) from the “scratch pad” or working space we allow the algorithm to use.

Based on the values read,

3. Write a bit/symbol to the scratch pad.

4. Either stop and output 0 or 1, or choose a new rule from the set that will be applied next.

Finally, the running time is the number of these basic operations performed.
Below, we formalize all of these notions.

1.2.1 The Turing Machine

The k-tape Turing machine is a concrete realization of the above informal notion, as follows (see
Figure 1.1).

Scratch Pad: The scratch pad consists of k tapes. A tape is an infinite one-directional line of
cells, each of which can hold a symbol from a finite set Γ called the alphabet of the machine. Each
tape is equipped with a tape head that can potentially read or write symbols to the tape one cell
at a time. The machine’s computation is divided into discrete time steps, and the head can move
left or right one cell in each step.

The first tape of the machine is designated as the input tape. The machine’s head can can only
read symbols from that tape, not write them —a so-called read-only head.

The k − 1 read-write tapes are called work tapes and the last one of them is designated as the
output tape of the machine, on which it writes its final answer before halting its computation.

Finite set of operations/rules: The machine has a finite set of states, denoted Q. The machine
contains a “register” that can hold a single element of Q; this is the ”state” of the machine at
that instant. This state determines its action at the next computational step, which consists of the
following: (1) read the symbols in the cells directly under the k heads (2) for the k− 1 read/write
tapes replace each symbol with a new symbol (it has the option of not changing the tape by writing
down the old symbol again), (3) change its register to contain another state from the finite set Q
(it has the option not to change its state by choosing the old state again) and (4) move each head
one cell to the left or to the right.

One can think of the Turing machine as a simplified modern computer, with the machine’s tape
corresponding to a computer’s memory, and the transition function and register corresponding to
the computer’s central processing unit (CPU). However, it’s best to think of Turing machines as
simply a formal way to describe algorithms. Even though algorithms are often best described
by plain English text, it is sometimes useful to express them by such a formalism in order to
argue about them mathematically. (Similarly, one needs to express an algorithm in a programming
language in order to execute it on a computer.)

Formal definition. Formally, a TM M is described by a tuple (Γ, Q, δ) containing:

Web draft 2007-01-08 21:59

DRAFT

p1.6 (14) 1.2. MODELING COMPUTATION AND EFFICIENCY

Input
tape

Work
tape

Output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

> 1 1 0 1 0 1 0 0 0 1

> 0 1

q7Register

read only head

read/write head

read/write head

Figure 1.1: A snapshot of the execution of a 3-tape Turing machine M with an input tape, a work tape, and an
output tape.

• A set Γ of the symbols that M ’s tapes can contain. We assume that Γ contains a designated
“blank” symbol, denoted �, a designated “start” symbol, denoted B and the numbers 0 and
1. We call Γ the alphabet of M .

• A set Q of possible states M ’s register can be in. We assume that Q contains a designated
start state, denoted qstart and a designated halting state, denoted qhalt.

• A function δ :Q× Γk → Q× Γk−1 × {L,S,R}k describing the rule M uses in performing each
step. This function is called the transition function of M (see Figure 1.2.)

IF THEN

input
symbol
read

work/
output
tape
symbol
read

current
state

move
input
head

new
work/
output
tape
symbol

move
work/
output
tape

new
state

...

...

a b q b’ q’

Figure 1.2: The transition function of a two tape TM (i.e., a TM with one input tape and one work/output tape).

If the machine is in state q ∈ Q and (σ1, σ2, . . . , σk) are the symbols currently being read in the
k tapes, and δ(q, (σ1, . . . , σk+1)) = (q′, (σ′2, . . . , σ

′
k), z) where z ∈ {L,SR}k then at the next step the

σ symbols in the last k − 1 tapes will be replaced by the σ′ symbols, the machine will be in state

Web draft 2007-01-08 21:59

DRAFT

1.2. MODELING COMPUTATION AND EFFICIENCY p1.7 (15)

q′, and the k + 1 heads will move Left, Right or Stay in place, as given by z. (If the machine tries
to move left from the leftmost position of a tape then it will stay in place.)

All tapes except for the input are initialized in their first location to the start symbol B and in
all other locations to the blank symbol �. The input tape contains initially the start symbol B, a
finite non-blank string (“the input”), and the rest of its cells are initialized with the blank symbol
�. All heads start at the left ends of the tapes and the machine is in the special starting state qstart.
This is called the start configuration of M on input x. Each step of the computation is performed
by applying the function δ as described above. The special halting state qhalt has the property that
once the machine is in qhalt, the transition function δ does not allow it to further modify the tape
or change states. Clearly, if the machine enters qhalt then it has halted. In complexity theory we
are typically only interested in machines that halt for every input in a finite number of steps.

Now we formalize the notion of running time. As every non-trivial algorithm needs to at least
read its entire input, by “quickly” we mean that the number of basic steps we use is small when
considered as a function of the input length.

Definition 1.4 (Computing a function and running time)
Let f : {0, 1}∗ → {0, 1}∗ and let T : N → N be some functions, and let M be a
Turing machine. We say that M computes f in T (n)-time2 if for every x ∈ {0, 1}∗,
if M is initialized to the start configuration on input x, then after at most T (|x|)
steps it halts with f(x) written on its output tape.
We say that M computes f if it computes f in T (n) time for some function T : N →
N.

Remark 1.5 (Time-constructible functions)
We say that a function T : N → N is time constructible if T (n) ≥ n and there is a TM M
that computes the function x 7→ xT (|x|)y in time T (n). (As usual, xT (|x|)y denotes the binary
representation of the number T (|x|).)

Examples for time-constructible functions are n, n log n, n2, 2n. Almost all functions encoun-
tered in this book will be time-constructible and, to avoid annoying anomalities, we will restrict
our attention to time bounds of this form. (The restriction T (n) ≥ n is to allow the algorithm time
to read its input.)

Example 1.6
Let PAL be the Boolean function defined as follows: for every x ∈ {0, 1}∗, PAL(x) is equal to 1 if
x is a palindrome and equal to 0 otherwise. That is, PAL(x) = 1 if and only if x reads the same
from left to right as from right to left (i.e., x1x2 . . . xn = xnxn−1 . . . x1). We now show a TM M
that computes PAL within less than 3n steps.

2Formally we should write “T -time” instead of “T (n)-time”, but we follow the convention of writing T (n) to
emphasize that T is applied to the input length.

Web draft 2007-01-08 21:59

DRAFT

p1.8 (16) 1.2. MODELING COMPUTATION AND EFFICIENCY

Our TM M will use 3 tapes (input, work and output) and the alphabet {B,�, 0, 1}. It operates
as follows:

1. Copy the input to the read/write work tape.

2. Move the input head to the beginning of the input.

3. Move the input-tape head to the right while moving the work-tape head to the left. If at any
moment the machine observes two different values, it halts and output 0.

4. Halt and output 1.

We now describe the machine more formally: The TM M uses 5 states denoted by {qstart, qcopy, qright, qtest, qhalt}.
Its transition function is defined as follows:

1. On state qstart, move the input-tape head to the right, and move the work-tape head to the
right while writing the start symbol B; change the state to qcopy. (Unless we mention this
explicitly, the function does not change the output tape’s contents or head position.)

2. On state qcopy:

• If the symbol read from the input tape is not the blank symbol � then move both the
input-tape and work-tape heads to the right, writing the symbol from the input-tape on
the work-tape; stay in the state qcopy.

• If the symbol read from the input tape is the blank symbol �, then move the input-tape
head to the left, while keeping the work-tape head in the same place (and not writing
anything); change the state to qright.

3. On state qright:

• If the symbol read from the input tape is not the start symbol B then move the input-
head to the left, keeping the work-tape head in the same place (and not writing anything);
stay in the state qright.

• If the symbol read from the input tape is the start symbol B then move the input-tape
to the right and the work-tape head to the left (not writing anything); change to the
state qtest.

4. On state qtest:

• If the symbol read from the input-tape is the blank symbol � and the symbol read from
the work-tape is the start symbol B then write 1 on the output tape and change state
to qhalt.

• Otherwise, if the symbols read from the input tape and the work tape are not the same
then write 0 on the output tape and change state to qhalt.

Web draft 2007-01-08 21:59

DRAFT

1.2. MODELING COMPUTATION AND EFFICIENCY p1.9 (17)

• Otherwise, if the symbols read from the input tape and the work tape are the same,
then move the input-tape head to the right and the work-tape head to the left; stay in
the state qtest.

As you can see, fully specifying a Turing machine is somewhat tedious and not always very
informative. While it is useful to work out one or two examples for yourself (see Exercise 4), in the
rest of the book we avoid such overly detailed descriptions and specify TM’s in a more high level
fashion.

Remark 1.7
Some texts use as their computational model single tape Turing machines, that have one read/write
tape that serves as input, work and output tape. This choice does not make any difference for most
of this book’s results (see Exercise 10). However, Example 1.6 is one exception: it can be shown
that such machines require Ω(n2) steps to compute the function PAL.

1.2.2 Robustness of our definition.

Most of the specific details of our definition of Turing machines are quite arbitrary. For example,
the following simple claims show that restricting the alphabet Γ to be {0, 1,�,B}, restricting the
machine to have a single work tape, or allowing the tapes to be infinite in both directions will not
have a significant effect on the time to compute functions: (Below we provide only proof sketches
for these claims; completing these sketches into full proofs is a very good way to gain intuition on
Turing machines, see Exercises 5, 6 and 7.)

Claim 1.8
For every f : {0, 1}∗ → {0, 1} and time-constructible T : N → N, if f is computable in time T (n)
by a TM M using alphabet Γ then it is computable in time 4 log |Γ|T (n) by a TM M̃ using the
alphabet {0, 1,�,B}.

M’s tape: > m a c h i n e

~
> 0 1 1 0 1 0 0 0 0 1 0 0 0 1 1M’s tape:

Figure 1.3: We can simulate a machine M using the alphabet {B, �, a, b, . . . , z} by a machine M ′ using {B, �, 0, 1}
via encoding every tape cell of M using 5 cells of M ′.

Proof Sketch: Let M be a TM with alphabet Γ, k tapes, and state set Q that computes the
function f in T (n) time. We will show a TM M̃ computing f with alphabet {0, 1,�,B}, k tapes
and a set Q′ of states which will be described below. The idea behind the proof is simple: one can
encode any member of Γ using log |Γ| bits.3 Thus, each of M̃ ’s work tapes will simply encode one

3Recall our conventions that log is taken to base 2, and non-integer numbers are rounded up when necessary.

Web draft 2007-01-08 21:59

DRAFT

p1.10 (18) 1.2. MODELING COMPUTATION AND EFFICIENCY

of M ’s tapes: for every cell in M ’s tape we will have log |Γ| cells in the corresponding tape of M̃
(see Figure 1.3).

To simulate one step of M , the machine M̃ will: (1) use log |Γ| steps to read from each tape the
log |Γ| bits encoding a symbol of Γ (2) use its state register to store the symbols read, (3) use M ’s
transition function to compute the symbols M writes and M ’s new state given this information,
(3) store this information in its state register, and (4) use log |Γ| steps to write the encodings of
these symbols on its tapes.

One can verify that this can be carried out if M̃ has access to registers that can store M ’s state,
k symbols in Γ and a counter from 1 to k. Thus, there is such a machine M̃ utilizing no more than
10|Q||Γ|kk states. (In general, we can always simulate several registers using one register with a
larger state space. For example, we can simulate three registers taking values in the sets A,B and
C respectively with one register taking a value in the set A×B × C which is of size |A||B||C|.)

It is not hard to see that for every input x ∈ {0, 1}n, if on input x the TM M outputs f(x)
within T (n) steps, then M̃ will output the same value within less than 4 log |Γ|T (n) steps. �

Claim 1.9
For every f : {0, 1}∗ → {0, 1}, time-constructible T : N → N, if f is computable in time T (n)
by a TM M using k tapes (plus additional input and output tapes) then it is computable in time
5kT (n)2 by a TM M̃ using only a single work tape (plus additional input and output tapes).

M’s 3 work tapes:

c o m p l e t e l y

r e p l a c e d

m a c h i n e s

Encoding this in one tape of M:

c r m o e a m p c p l h l a i e c n
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Tape 1:

Tape 2:

Tape 3:

~

^ ^ ^

Figure 1.4: Simulating a machine M with 3 work tapes using a machine M̃ with a single work tape (in addition to
the input and output tapes).

Proof Sketch: Again the idea is simple: the TM M̃ encodes the k tapes of M on a single tape
by using locations 1, k+1, 2k+1, . . . to encode the first tape, locations 2, k+2, 2k+2, . . . to encode
the second tape etc.. (see Figure 1.4). For every symbol a in M ’s alphabet, M̃ will contain both
the symbol a and the symbol â. In the encoding of each tape, exactly one symbol will be of the “̂
type”, indicating that the corresponding head of M is positioned in that location (see figure). M̃
uses the input and output tape in the same way M does. To simulate one step of M , the machine
M̃ makes two sweeps of its work tape: first it sweeps the tape in the left-to-right direction and

Web draft 2007-01-08 21:59

DRAFT

1.2. MODELING COMPUTATION AND EFFICIENCY p1.11 (19)

records to its register the k symbols that are marked by .̂ Then M̃ uses M ’s transition function
to determine the new state, symbols, and head movements and sweeps the tape back in the right-
to-left direction to update the encoding accordingly. Clearly, M̃ will have the same output as M .
Also, since on n-length inputs M never reaches more than location T (n) of any of its tapes, M̃ will
never need to reach more than location kT (n) of its work tape, meaning that for each the at most
T (n) steps of M , M̃ performs at most 5kT (n) work (sweeping back and forth requires about 2T (n)
steps, and some additional steps may be needed for updating head movement and book keeping).
�

Remark 1.10
With a bit of care, one can ensure that the proof of Claim 1.9 yields a TM M̃ with the following
property: the head movements of M̃ are independent of the contents of its tapes but only on the
input length (i.e., M̃ always performs a sequence of left to right and back sweeps of the same form
regardless of what is the input). A machine with this property is called oblivious and the fact that
every TM can be simulated by an oblivious TM will be useful for us later on (see Exercises 8 and 9
and the proof of Theorem 2.10).

Claim 1.11
Define a bidirectional TM to be a TM whose tapes are infinite in both directions. For every
f : {0, 1}∗ → {0, 1}∗ and time constructible T : N → N, if f is computable in time T (n) by a
bidirectional TM M then it is computable in time 4T (n) by a standard (unidirectional) TM M̃ .

c o m p l e t e l y

M’s tape is infinite in both directions:

e t e l y

compl

> e/l t/d e/m l/o y/c

M uses a larger alphabet to represent it on a standard tape:~

Figure 1.5: To simulate a machine M with alphabet Γ that has tapes infinite in both directions, we use a machine
M̃ with alphabet Γ2 whose tapes encode the “folded” version of M ’s tapes.

Proof Sketch: The idea behind the proof is illustrated in Figure 1.5. If M uses alphabet Γ then
M̃ will use the alphabet Γ2 (i.e., each symbol in M̃ ’s alphabet corresponds to a pair of symbols in
M ’s alphabet). We encode a tape of M that is infinite in both direction using a standard (infinite in
one direction) tape by “folding” it in an arbitrary location, with each location of M̃ ’s tape encoding
two locations of M ’s tape. At first, M̃ will ignore the second symbol in the cell it reads and act
according to M ’s transition function. However, if this transition function instructs M̃ to go “over
the edge” of its tape then instead it will start ignoring the first symbol in each cell and use only the
second symbol. When it is in this mode, it will translate left movements into right movements and
vice versa. If it needs to go “over the edge” again then it will go back to reading the first symbol
of each cell, and translating movements normally. �

Web draft 2007-01-08 21:59

DRAFT

p1.12 (20) 1.3. MACHINES AS STRINGS AND THE UNIVERSAL TURING MACHINES.

Other changes that will not have a very significant effect include having two or three dimensional
tapes, allowing the machine random access to its tape, and making the output tape write only (see
Exercises 11 and 12; also the texts [?, ?] contain more examples). In particular none of these
modifications will change the class P of polynomial-time computable decision problems defined
below in Section 1.5.

1.2.3 The expressive power of Turing machines.

When you encounter Turing machines for the first time, it may not be clear that they do indeed
fully encapsulate our intuitive notion of computation. It may be useful to work through some simple
examples, such as expressing the standard algorithms for addition and multiplication in terms of
Turing machines computing the corresponding functions (see Exercise 4). You can also verify that
you can simulate a program in your favorite programming language using a Turing machine. (The
reverse direction also holds: most programming languages can simulate a Turing machine.)

Example 1.12
(This example assumes some background in computing.) We give a hand-wavy proof that Turing
machines can simulate any program written in any of the familiar programming languages such
as C or Java. First, recall that programs in these programming languages can be translated (the
technical term is compiled) into an equivalent machine language program. This is a sequence of
simple instructions to read from memory into one of a finite number of registers, write a register’s
contents to memory, perform basic arithmetic operations, such as adding two registers, and control
instructions that perform actions conditioned on, say, whether a certain register is equal to zero.

All these operations can be easily simulated by a Turing machine. The memory and register can
be implemented using the machine’s tapes, while the instructions can be encoded by the machine’s
transition function. For example, it’s not hard to show TM’s that add or multiply two numbers,
or a two-tape TM that, if its first tape contains a number i in binary representation, can move the
head of its second tape to the ith location.

Exercise 13 asks you to give a more rigorous proof of such a simulation for a simple tailor-made
programming language.

1.3 Machines as strings and the universal Turing machines.

It is almost obvious that a Turing machine can be represented as a string: since we can write the
description of any TM M on paper, we can definitely encode this description as a sequence of zeros
and ones. Yet this simple observation— that we can treat programs as data— has had far reaching
consequences on both the theory and practice of computing. Without it, we would not have had
general purpose electronic computers, that, rather than fixed to performing one task, can execute
arbitrary programs.

Web draft 2007-01-08 21:59

DRAFT

1.3. MACHINES AS STRINGS AND THE UNIVERSAL TURING MACHINES. p1.13 (21)

Because we will use this notion of representing TM’s as strings quite extensively, it may be
worth to spell out our representation out a bit more concretely. Since the behavior of a Turing
machine is determined by its transition function, we will use the list of all inputs and outputs of
this function (which can be easily encoded as a string in {0, 1}∗) as the encoding of the Turing
machine.4 We will also find it convenient to assume that our representation scheme satisfies the
following properties:

1. Every string in {0, 1}∗ represents some Turing machine.

This is easy to ensure by mapping strings that are not valid encodings into some canonical
trivial TM, such as the TM that immediately halts and outputs zero on any input.

2. Every TM is represented by infinitely many strings.

This can be ensured by specifying that the representation can end with an arbitrary number of
1’s, that are ignored. This has somewhat similar effect as the comments of many programming
languages (e.g., the /*...*/ construct in C,C++ and Java) that allows to add superfluous
symbols to any program.

If M is a Turing machine, then we use xMy to denotes M ’s representation as a binary string.
If α is a string then we denote the TM that α represents by Mα. As is our convention, we will also
often use M to denote both the TM and its representation as a string. Exercise 14 asks you to
fully specify a representation scheme for Turing machines with the above properties.

1.3.1 The Universal Turing Machine

It was Turing that first observed that general purpose computers are possible, by showing a universal
Turing machine that can simulate the execution of every other TM M given M ’s description as
input. Of course, since we are so used to having a universal computer on our desktops or even
in our pockets, today we take this notion for granted. But it is good to remember why it was
once counterintuitive. The parameters of the universal TM are fixed —alphabet size, number
of states, and number of tapes. The corresponding parameters for the machine being simulated
could be much larger. The reason this is not a hurdle is, of course, the ability to use encodings.
Even if the universal TM has a very simple alphabet, say {0, 1}, this is sufficient to allow it to
represent the other machine’s state and and transition table on its tapes, and then follow along in
the computation step by step.

Now we state a computationally efficient version of Turing’s construction due to Hennie and
Stearns [?]. To give the essential idea we first prove a slightly relaxed variant where the term
T log T below is replaced with T 2. But since the efficient version is needed a few times in the book,
a full proof is also given at the end of the chapter (see Section 1.A).

4Note that the size of the alphabet, the number of tapes, and the size of the state space can be deduced from
the transition function’s table. We can also reorder the table to ensure that the special states qstart, qhalt are the first
2 states of the TM. Similarly, we may assume that the symbols B, �, 0, 1 are the first 4 symbols of the machine’s
alphabet.

Web draft 2007-01-08 21:59

DRAFT

p1.14 (22) 1.3. MACHINES AS STRINGS AND THE UNIVERSAL TURING MACHINES.

Theorem 1.13 (Efficient Universal Turing machine)
There exists a TM U such that for every x, α ∈ {0, 1}∗, U(x, α) = Mα(x), where Mα

denotes the TM represented by α.
Furthermore, if Mα halts on input x within T steps then U(x, α) halts within
CT log T steps, where C is a number independent of |x| and depending only on
Mα’s alphabet size, number of tapes, and number of states.

Remark 1.14
A common exercise in programming courses is to write an interpreter for a particular programming
language using the same language. (An interpreter takes a program P as input and outputs the
result of executing the program P .) Theorem 1.13 can be considered a variant of this exercise.

Proof: Our universal TM U is given an input x, α, where α represents some TM M , and needs
to output M(x). A crucial observation is that we may assume that M (1) has a single work tape
(in addition to the input and output tape) and (2) uses the alphabet {B,�, 0, 1}. The reason is
that U can transform a representation of every TM M into a representation of an equivalent TM
M̃ that satisfies these properties as shown in the proofs of Claims 1.8 and 1.9. Note that these
transformations may introduce a quadratic slowdown (i.e., transform M from running in T time to
running in C ′T 2 time where C ′ depends on M ’s alphabet size and number of tapes).

Input
tape

Work
tapes

Output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

> 0 1

Description of M

Current state of M

Simulation of M’s work tape.

(used in the same way as M)

(used in the same way as M)

(used in the same way as M)

Figure 1.6: The universal TM U has in addition to the input and output tape, three work tapes. One work tape
will have the same contents as the simulated machine M , another tape includes the description M (converted to an
equivalent one-work-tape form), and another tape contains the current state of M .

The TM U uses the alphabet {B,�, 0, 1} and three work tapes in addition to its input and
output tape (see Figure 1.6). U uses its input tape, output tape, and one of the work tapes in
the same way M uses its three tapes. In addition, U will use its first extra work tape to store the
table of values of M ’s transition function (after applying the transformations of Claims 1.8 and 1.9
as noted above), and its other extra work tape to store the current state of M . To simulate one
computational step of M , U scans the table of M ’s transition function and the current state to find
out the new state, symbols to be written and head movements, which it then executes. We see that
each computational step of M is simulated using C steps of U , where C is some number depending
on the size of the transition function’s table.

Web draft 2007-01-08 21:59

DRAFT

1.4. UNCOMPUTABLE FUNCTIONS. p1.15 (23)

This high level description can turned into an exact specification of the TM U , though we leave
this to the reader. If you are not sure how this can be done, think first of how you would program
these steps in your favorite programming language and then try to transform this into a description
of a Turing machine. �

Remark 1.15
It is sometimes useful to consider a variant of the universal TM U that gets a number t as an
extra input (in addition to x and α), and outputs Mα(x) if and only if Mα halts on x within t
steps (otherwise outputting some special failure symbol). By adding a counter to U , the proof of
Theorem 1.13 can be easily modified to give such a universal TM with the same efficiency.

1.4 Uncomputable functions.

It may seem “obvious” that every function can be computed, given sufficient time. However, this
turns out to be false: there exist functions that cannot be computed within any finite number of
steps!

Theorem 1.16
There exists a function UC : {0, 1}∗ → {0, 1} that is not computable by any TM.

Proof: The function UC is defined as follows: for every α ∈ {0, 1}∗, let M be the TM represented
by α. If on input α, M halts within a finite number of steps and outputs 1 then UC(α) is equal to
0, otherwise UC(α) is equal to 1.

Suppose for the sake of contradiction that there exists a TM M such that M(α) = UC(α) for
every α ∈ {0, 1}∗. Then, in particular, M(xMy) = UC(xMy). But this is impossible: by the
definition of UC, if UC(xMy) = 1 then M(xMy) cannot be equal to 1, and if UC(xMy) = 0 then
M(xMy) cannot be equal to 0. This proof technique is called “diagnoalization”, see Figure 1.7. �

1.4.1 The Halting Problem

One might ask why should we care whether or not the function UC described above is computable—
why would anyone want to compute such a contrived function anyway? We now show a more natural
uncomputable function. The function HALT takes as input a pair α, x and outputs 1 if and only if
the TM Mα represented by α halts on input x within a finite number of steps. This is definitely a
function we want to compute: given a computer program and an input we’d certainly like to know
if the program is going to enter an infinite loop on this input. Unfortunately, this is not possible,
even if we were willing to wait an arbitrary long time:

Theorem 1.17
HALT is not computable by any TM.

Proof: Suppose, for the sake of contradiction, that there was a TM MHALT computing HALT. We
will use MHALT to show a TM MUC computing UC, contradicting Theorem 1.16.

The TM MUC is simple: on input α, we run MHALT(α, α). If the result is 0 (meaning that the
machine represented by α does not halt on α) then we output 1. Otherwise, we use the universal

Web draft 2007-01-08 21:59

DRAFT

p1.16 (24) 1.4. UNCOMPUTABLE FUNCTIONS.

0 1 00 01 10 11 ... α

0

1

00

01

...

α
...

01 1 * 0 1 0 M0(α)

1 *1 0 1 * 1 ...

* 0 10 0 1 *

1 * 0 01 * 0

Mα(0) ... Mα(α) 1-Mα(α)

Figure 1.7: Suppose we order all strings in lexicographic order, and write in a table the value of Mα(x) for all
strings α, x, where Mα denotes the TM represented by the string α and we use ? to denote the case that Mα(x) is
not a value in {0, 1} or that Mα does not halt on input x. Then, UC is defined by “negating” the diagonal of this
table, and by its definition it cannot be computed by any TM.

TM U to compute M(α), where M is the TM represented by α. If M(α) = 0 we output 1, and
otherwise we output 1. Note that indeed, under the assumption that MHALT(α, x) outputs within
a finite number of steps HALT(α, x), the TM MUC(α) will output UC(α) within a finite number of
steps. �

Remark 1.18
The proof technique employed to show Theorem 1.17— namely showing that HALT is uncomputable
by showing an algorithm for UC using a hypothetical algorithm for HALT— is called a reduction.
We will see many reductions in this book, often used (as is the case here) to show that a problem
B is at least as hard as a problem A, by showing an algorithm that could solve A given a procedure
that solves B.

There are many other examples for interesting uncomputable (also known as undecidable) func-
tions, see Exercise 15. There are even uncomputable functions whose formulation has seemingly
nothing to do with Turing machines or algorithms. For example, the following problem cannot
be solved in finite time by any TM: given a set of polynomial equations with integer coefficients,
find out whether these equations have an integer solution (i.e., whether there is an assignment of
integers to the variables that satisfies the equations). This is known as the problem of solving
Diophantine equations, and in 1900 Hilbert mentioned finding such algorithm to solve it (which he
presumed to exist) as one of the top 23 open problems in mathematics.

For more on computability theory, see the chapter notes and the book’s website.

Web draft 2007-01-08 21:59

DRAFT

1.5. DETERMINISTIC TIME AND THE CLASS P. p1.17 (25)

1.5 Deterministic time and the class P.

A complexity class is a set of functions that can be computed within a given resource. We will
now introduce our first complexity classes. For reasons of technical convenience, throughout most
of this book we will pay special attention to Boolean functions (that have one bit output), also
known as decision problems or languages. (Recall that we identify a Boolean function f with the
language Lf = {x : f(x) = 1}.)

Definition 1.19 (The class DTIME.)
Let T : N → N be some function. We let DTIME(T (n)) be the set of all Boolean (one bit output)
functions that are computable in c · T (n)-time for some constant c > 0.

The following class will serve as our rough approximation for the class of decision problems that
are efficiently solvable.

Definition 1.20 (The class P)
P = ∪c≥1DTIME(nc)

Thus, we can phrase the question from the introduction as to whether the dinner party problem
has an efficient algorithm as follows: “Is INDSET in P?”, where INDSET is the language defined
in Example 1.6.

1.5.1 On the philosophical importance of P

The class P is felt to capture the notion of decision problems with “feasible” decision procedures.
Of course, one may argue whether DTIME(n100) really represents “feasible” computation in the
real world. However, in practice, whenever we show that a problem is in P, we usually find an n3

or n5 time algorithm (with reasonable constants), and not an n100 algorithm. (It has also happened
a few times that the first polynomial-time algorithm for a problem had high complexity, say n20,
but soon somebody simplified it to say an n5 algorithm.)

Note that the class P is useful only in a certain context. Turing machines are a poor model
if one is designing algorithms that must run in a fraction of a second on the latest PC (in which
case one must carefully account for fine details about the hardware). However, if the question is
whether any subexponential algorithms exist for say INDSET then even an n20 algorithm would be
a fantastic breakthrough.

P is also a natural class from the viewpoint of a programmer. Suppose undergraduate pro-
grammers are asked to invent the definition of an “efficient” computation. Presumably, they would
agree that a computation that runs in linear or quadratic time is “efficient.” Next, since program-
mers often write programs that call other programs (or subroutines), they might find it natural
to consider a program “efficient” if it performs only “efficient” computations and calls subroutines
that are “efficient”. The notion of “efficiency” obtained turns out to be exactly the class P [?].

Web draft 2007-01-08 21:59

DRAFT

p1.18 (26) 1.5. DETERMINISTIC TIME AND THE CLASS P.

1.5.2 Criticisms of P and some efforts to address them

Now we address some possible criticisms of the definition of P, and some related complexity classes
that address these.

Worst-case exact computation is too strict. The definition of P only considers algorithms
that compute the function exactly on every possible input. However, not all possible inputs
arise in practice (although it’s not always easy to characterize the inputs that do). Chapter 15
gives a theoretical treatment of average-case complexity and defines the analogue of P in that
context. Sometimes, users are willing to settle for approximate solutions. Chapter 18 contains
a rigorous treatment of the complexity of approximation.

Other physically realizable models. If we were to make contact with an advanced alien civi-
lization, would their class P be any different from the class defined here?

Most scientists believe the Church-Turing (CT) thesis, which states that every physically
realizable computation device— whether it’s silicon-based, DNA-based, neuron-based or using
some alien technology— can be simulated by a Turing machine. Thus they believe that the
set of computable problems would be the same for aliens as it is for us. (The CT thesis is not
a theorem, merely a belief about the nature of the world.)

However, when it comes to efficiently computable problems, the situation is less clear. The
strong form of the CT thesis says that every physically realizable computation model can
be simulated by a TM with polynomial overhead (in other words, t steps on the model can
be simulated in tc steps on the TM, where c is a constant that depends upon the model).
If true, it implies that the class P defined by the aliens will be the same as ours. However,
several objections have been made to this strong form.

(a) Issue of precision: TM’s compute with discrete symbols, whereas physical quantities may
be real numbers in R. Thus TM computations may only be able to approximately simulate
the real world. Though this issue is not perfectly settled, it seems so far that TMs do not
suffer from an inherent handicap. After all, real-life devices suffer from noise, and physical
quantities can only be measured up to finite precision. Thus a TM could simulate the real-life
device using finite precision. (Note also that we often only care about the most significant bit
of the result, namely, a 0/1 answer.)

Even so, in Chapter 14 we also consider a modification of the TM model that allows computa-
tions in R as a basic operation. The resulting complexity classes have fascinating connections
with the usual complexity classes.

(b) Use of randomness: The TM as defined is deterministic. If randomness exists in the
world, one can conceive of computational models that use a source of random bits (i.e.,
”coin tosses”). Chapter 7 considers Turing Machines that are allowed to also toss coins, and
studies the class BPP, that is the analogue of P for those machines. (However, we will see in
Chapters 16 and 17 the intriguing possibility that randomized computation may be no more
powerful than deterministic computation.)

(c) Use of quantum mechanics: A more clever computational model might use some of the
counterintuitive features of quantum mechanics. In Chapter 20 we define the class BQP,

Web draft 2007-01-08 21:59

DRAFT

1.5. DETERMINISTIC TIME AND THE CLASS P. p1.19 (27)

that generalizes P in such a way. We will see problems in BQP that are currently not known
to be in P. However, currently it is unclear whether the quantum model is truly physically
realizable. Even if it is realizable it currently seems only able to efficiently solve only very
few ”well-structured” problems that are (presumed to be) not in P. Hence insights gained
from studying P could still be applied to BQP.

(d) Use of other exotic physics, such as string theory. Though an intriguing possibility, it
hasn’t yet had the same scrutiny as quantum mechanics.

Decision problems are too limited. Some computational problems are not easily expressed as
decision problems. Indeed, we will introduce several classes in the book to capture tasks such
as computing non-Boolean functions, solving search problems, approximating optimization
problems, interaction, and more. Yet the framework of decision problems turn out to be
surprisingly expressive, and we will often use it in this book.

1.5.3 Edmonds’ quote

We conclude this section with a quote from Edmonds [?], that in the paper showing a polynomial-
time algorithm for the maximum matching problem, explained the meaning of such a result as
follows:

For practical purposes computational details are vital. However, my purpose is only
to show as attractively as I can that there is an efficient algorithm. According to the
dictionary, “efficient” means “adequate in operation or performance.” This is roughly
the meaning I want in the sense that it is conceivable for maximum matching to have
no efficient algorithm.

...There is an obvious finite algorithm, but that algorithm increases in difficulty expo-
nentially with the size of the graph. It is by no means obvious whether or not there exists
an algorithm whose difficulty increases only algebraically with the size of the graph.

...When the measure of problem-size is reasonable and when the sizes assume values
arbitrarily large, an asymptotic estimate of ... the order of difficulty of an algorithm is
theoretically important. It cannot be rigged by making the algorithm artificially difficult
for smaller sizes.

...One can find many classes of problems, besides maximum matching and its general-
izations, which have algorithms of exponential order but seemingly none better ... For
practical purposes the difference between algebraic and exponential order is often more
crucial than the difference between finite and non-finite.

...It would be unfortunate for any rigid criterion to inhibit the practical development of
algorithms which are either not known or known not to conform nicely to the criterion.
Many of the best algorithmic idea known today would suffer by such theoretical pedantry.
... However, if only to motivate the search for good, practical algorithms, it is important
to realize that it is mathematically sensible even to question their existence. For one
thing the task can then be described in terms of concrete conjectures.

Web draft 2007-01-08 21:59

DRAFT

p1.20 (28) 1.5. DETERMINISTIC TIME AND THE CLASS P.

What have we learned?

• There are many equivalent ways to mathematically model computational pro-
cesses; we use the standard Turing machine formalization.

• Turing machines can be represented as strings. There is a universal TM that
can emulate (with small overhead) any TM given its representation.

• There exist functions, such as the Halting problem, that cannot be computed
by any TM regardless of its running time.

• The class P consists of all decision problems that are solvable by Turing ma-
chines in polynomial time. We say that problems in P are efficiently solvable.

• All low-level choices (number of tapes, alphabet size, etc..) in the definition of
Turing machines are immaterial, as they will not change the definition of P.

Chapter notes and history

Although certain algorithms have been studied for thousands of years, and some forms of computing
devices were designed before the 20th century (most most notably Charles Babbage’s difference and
analytical engines in the mid 1800’s), it seems fair to say that the foundations of modern computer
science were only laid in the 1930’s.

In 1931, Kurt Gödel shocked the mathematical world by showing that certain true statements
about the natural numbers are inherently unprovable, thereby shattering an ambitious agenda set
in 1900 by David Hilbert to base all of mathematics on solid axiomatic foundations. In 1936,
Alonzo Church defined a model of computation called λ-calculus (which years later inspired the
programming language LISP) and showed the existence of functions inherently uncomputable in
this model [?]. A few months later, Alan Turing independently introduced his Turing machines
and showed functions inherently uncomputable by such machines [?]. Turing also introduced the
idea of the universal Turing machine that can be loaded with arbitrary programs. The two mod-
els turned out to be equivalent, but in the words of Church himself, Turing machines have “the
advantage of making the identification with effectiveness in the ordinary (not explicitly defined)
sense evident immediately”. The anthology [?] contains many of the seminal papers in the theory
of computability. Part II of Sipser’s book [?] is a good gentle introduction to this theory, while
the books [?, ?, ?] go into a bit more depth. This book’s web site also contains some additional
coverage of this theory.

During World War II Turing designed mechanical code-breaking devices and played a key role
in the effort to crack the German “Enigma” cipher, an achievement that had a decisive effect on the
war’s progress (see the biographies [?, ?]).5 After World War II, efforts to build electronic universal
computers were undertaken in both sides of the Atlantic. A key figure in these efforts was John

5Unfortunately, Turing’s wartime achievements were kept confidential during his lifetime, and so did not keep him
from being forced by British courts to take hormones to “cure” his homosexuality, resulting in his suicide in 1954.

Web draft 2007-01-08 21:59

DRAFT

1.5. DETERMINISTIC TIME AND THE CLASS P. p1.21 (29)

von-Neumann, an extremely prolific scientist that was involved in anything from the Manhattan
project to founding game theory in economics. To this day essentially all digital computers follow
the “von-Neumann architecture” he pioneered while working on the design of the EDVAC, one of
the earliest digital computers [?].

As computers became more prevalent, the issue of efficiency in computation began to take center
stage. Cobham [?] defined the class P and suggested it may be a good formalization for efficient
computation. A similar suggestion was made by Edmonds ([?], see quote above) in the context
of presenting a highly non-trivial polynomial-time algorithm for finding a maximum matching in
general graphs. Hartmanis and Stearns [?] defined the class DTIME(T (n)) for every function T ,
and proved the slightly relaxed version of Theorem 1.13 we showed above (the version we stated
and prove below was given by Hennie and Stearns [?]). They also coined the name “computational
complexity” and proved an interesting “speed-up theorem”: if a function f is computable by a TM
M in time T (n) then for every constant c ≥ 1, f is computable by a TM M̃ (possibly with larger
state size and alphabet size than M) in time T (n)/c. This speed-up theorem is another justification
for ignoring constant factors in the definition of DTIME(T (n)). Blum [?] suggested an axiomatic
formalization of complexity theory, that does not explicitly mention Turing machines.

We have omitted a discussion of some of the “bizarre conditions” that may occur when con-
sidering time bounds that are not time-constructible, especially “huge” time bounds (i.e., function
T (n) that are much larger than exponential in n). For example, there is a non-time constructible
function T : N → N such that every function computable in time T (n) can also be computed in the
much shorter time log T (n). However, we will not encounter non time-constructible time bounds
in this book.

Exercises

§1 For each of the following pairs of functions f, g determine whether f = o(g), g = o(f) or
f = Θ(g). If f = o(g) then find the first number n such that f(n) < g(n):

(a) f(n) = n2 , g(n) = 2n2 + 100
√

n.

(b) f(n) = n100, g(n) = 2n/100.

(c) f(n) = n100, g(n) = 2n1/100
.

(d) f(n) =
√

n, g(n) = 2
√

log n.

(e) f(n) = n100, g(n) = 2(log n)2 .

(f) f(n) = 1000n, g(n) = n log n.

§2 For each of the following recursively defined functions f , find a closed (non-recursive) expres-
sion for a function g such that f(n) = Θ(g(n)).

(Note: below we only supply the recursive rule, you can assume that f(1) = f(2) = · · · =
f(10) = 1 and the recursive rule is applied for n > 10; in any case regardless how the base
case it won’t make any difference to the answer - can you see why?)

(a) f(n) = f(n− 1) + 10.

Web draft 2007-01-08 21:59

DRAFT

p1.22 (30) 1.5. DETERMINISTIC TIME AND THE CLASS P.

(b) f(n) = f(n− 1) + n.

(c) f(n) = 2f(n− 1).

(d) f(n) = f(n/2) + 10.

(e) f(n) = f(n/2) + n.

(f) f(n) = 2f(n/2) + n.

(g) f(n) = 3f(n/2).

§3 The MIT museum contains a kinetic sculpture by Arthur Ganson called “Machine with con-
crete” (see Figure 1.8). It consists of 13 gears connected to one another in a series such that
each gear moves 50 times slower than the previous one. The fastest gear is constantly rotated
by an engine at a rate of 212 rotations per minute. The slowest gear is fixed to a block of
concrete and so apparently cannot move at all. How come this machine does not break apart?

Figure 1.8: Machine with concrete by Arthur Ganson.

§4 Let f be the addition function that maps the representation of a pair of numbers x, y to the
representation of the number x + y. Let g be the multiplication function that maps 〈x, y〉 to
xx · yy. Prove that both f and g are computable by writing down a full description (including
the states, alphabet and transition function) of the corresponding Turing machines.

Hint:Followthegradeschoolalgorithms.

§5 Complete the proof of Claim 1.8 by writing down explicitly the description of the machine
M̃ .

§6 Complete the proof of Claim 1.9.

§7 Complete the proof of Claim 1.11.

§8 Define a TM M to be oblivious if its head movement does not depend on the input but only
on the input length. That is, M is oblivious if for every input x ∈ {0, 1}∗ and i ∈ N, the
location of each of M ’s heads at the ith step of execution on input x is only a function of |x|

Web draft 2007-01-08 21:59

DRAFT

1.5. DETERMINISTIC TIME AND THE CLASS P. p1.23 (31)

and i. Show that for every time-constructible T : N → N, if L ∈ DTIME(T (n)) then there
is an oblivious TM that decides L in time O(T (n)2). Furthermore, show that there is such a
TM that uses only two tapes: one input tape and one work/output tape.

Hint:UsetheproofofClaim1.9.

§9 Show that for every time-constructible T : N → N, if L ∈ DTIME(T (n)) then there is an
oblivious TM that decides L in time O(T (n) log T (n)).

Hint:showthattheuniversalTMUobtainedbytheproofof
Theorem1.13canbetweakedtobeoblivious.

§10 Define a single-tape Turing machine to be a TM that has only one read/write tape, that is
used as input, work and output tape. Show that for every (time-constructible) T : N → N
and f ∈ DTIME(T (n)), f can be computed in O(T (n)2) steps by a single-tape TM.

§11 Define a two dimensional Turing machine to be a TM where each of its tapes is an infinite
grid (and the machine can move not only Left and Right but also Up and Down). Show that
for every (time-constructible) T : N → N and every Boolean function f , if g can be computed
in time T (n) using a two-dimensional TM then f ∈ DTIME(T (n)2).

§12 Define a RAM Turing machine to be a Turing machine that has random access memory. We
formalize this as follows: the machine has additional two symbol on its alphabet we denote
by R and W and an additional state we denote by qaccess. We also assume that the machine
has an infinite array A that is initialized to all blanks. Whenever the machine enters qaccess,
if its address tape contains xiyR (where xiy denotes the binary representation of i) then the
value A[i] is written in the cell next to the R symbol. If its tape contains xiyWσ (where σ is
some symbol in the machine’s alphabet) then A[i] is set to the value σ.

Show that if a Boolean function f is computable within time T (n) (for some time-constructible
T) by a RAM TM, then it is in DTIME(T (n)2).

§13 Consider the following simple programming language. It has a single infinite array A of
elements in {0, 1,�} (initialized to �) and a single integer variable i. A program in this
language contains a sequence of lines of the following form:

label : If A[i] equals σ then cmds

Where σ ∈ {0, 1,�} and cmds is a list of one or more of the following commands: (1) Set
A[i] to τ where τ ∈ {0, 1,�}, (2) Goto label, (3) Increment i by one, (4) Decrement
i by one, and (5) Output b and halt. where b ∈ {0, 1}. A program is executed on an
input x ∈ {0, 1}n by placing the ith bit of x in A[i] and then running the program following
the obvious semantics.

Prove that for every functions f : {0, 1}∗ → {0, 1} and (time constructible) T : N → N, if f
is computable in time T (n) by a program in this language, then f ∈ DTIME(T (n)).

Web draft 2007-01-08 21:59

DRAFT

p1.24 (32) 1.5. DETERMINISTIC TIME AND THE CLASS P.

§14 Give a full specification of a representation scheme of Turing machines as binary string strings.
That is, show a procedure that transforms any TM M (e.g., the TM computing the function
PAL described in Example 1.6) into a binary string xMy. It should be possible to recover
M from xMy, or at least recover a functionally equivalent TM (i.e., a TM M̃ computing the
same function as M with the same running time).

§15 A partial function from {0, 1}∗ to {0, 1}∗ is a function that is not necessarily defined on all
its inputs. We say that a TM M computes a partial function f if for every x on which f is
defined, M(x) = f(x) and for every x on which f is not defined M gets into an infinite loop
when executed on input x. If S is a set of partial functions, we define fS to be the Boolean
function that on input α outputs 1 iff Mα computes a partial function in S. Rice’s Theorem
says that for every non-trivial S (a set that is not the empty set nor the set of all partial
functions), the fS is not computable.

(a) Show that Rice’s Theorem yields an alternative proof for Theorem 1.17 by showing that
the function HALT is not computable.

(b) Prove Rice’s Theorem.

Hint:BypossiblechangingfromStoitscomplement,wemay
assumethattheemptyfunction∅(thatisnotdefinedonanyinput)
isinSthereissomefunctionfthatisdefinedonsomeinputx

thatisnotinS.Usethistoshowthatanalgorithmtocompute
fScancomputethefunctionHALTxwhichoutputs1oninputαiff
Mαhaltsoninputx.ThenreducecomputingHALTtocomputing
HALTxtherebyderivingRice’sTheoremfromTheorem1.17.

§16 Prove that the following languages/decision problems on graphs are in P: (You may pick
either the adjacency matrix or adjacency list representation for graphs; it will not make a
difference. Can you see why?)

(a) CONNECTED — the set of all connected graphs. That is, G ∈ CONNECTED if every
pair of vertices u, v in G are connected by a path.

(b) TRIANGLEFREE — the set of all graphs that do not contain a triangle (i.e., a triplet
u, v, w of connected distinct vertices.

(c) BIPARTITE — the set of all bipartite graphs. That is, G ∈ BIPARTITE if the vertices of
G can be partitioned to two sets A,B such that all edges in G are from a vertex in A to
a vertex in B (there is no edge between two members of A or two members of B).

(d) TREE — the set of all trees. A graph is a tree if it is connected and contains no cycles.
Equivalently, a graph G is a tree if every two distinct vertices u, v in G are connected
by exactly one simple path (a path is simple if it has no repeated vertices).

§17 Recall that normally we assume that numbers are represented as string using the binary
basis. That is, a number n is represented by the sequence x0, x1, . . . , xlog n such that n =∑n

i=0 xi2i. However, we could have used other encoding schemes. If n ∈ N and b ≥ 2, then

Web draft 2007-01-08 21:59

DRAFT

1.A. PROOF OF THEOREM ??: UNIVERSAL SIMULATION IN O(T LOGT)-TIME p1.25 (33)

the representation of n in base b, denoted by xny b
is obtained as follows: first represent n as

a sequence of digits in {0, . . . , b− 1}, and then replace each digit by a sequence of zeroes and
ones. The unary representation of n, denoted by xny !unary is the string 1n (i.e., a sequence
of n ones).

(a) Show that choosing a different base of representation will make no difference to the
class P. That is, show that for every subset S of the natural numbers, if we define
Lb

S = { xny b
: n ∈ S} then for every b ≥ 2, Lb

S ∈ P iff L2
S ∈ P.

(b) Show that choosing the unary representation make make a difference by showing that
the following language is in P:

UNARYFACTORING = {〈 xnyunary, x̀ yunary, xkyunary〉 : there is j ∈ (`, k) dividing n}

It is not known to be in P if we choose the binary representation (see Chapters 10
and 20). In Chapter 3 we will see that there is a problem that is proven to be in P when
choosing the unary representation but not in P when using the binary representation.

1.A Proof of Theorem 1.13: Universal Simulation in O(T log T)-
time

We now show how to prove Theorem 1.13 as stated. That is, we show a universal TM U such
that given an input x and a description of a TM M that halts on x within T steps, U outputs
M(x) within O(T log T) time (where the constants hidden in the O notation may depend on the
parameters of the TM M being simulated).

The general structure of U will be as in Section 1.3.1, using the input and output tape as M
does, and with extra work tapes to store M ’s transition table and current state. We will also
have another “scratch” work tape to assist in certain computation. The main obstacle we need to
overcome is that we cannot use Claim 1.9 to reduce the number of M ’s work tapes to one, as that
claim introduces too much of overhead in the simulation. Therefore, we need to show a different
way to encode all of M ’s work tapes using one tape of U .

Let k be the number of tapes that M uses and Γ its alphabet. Following the proof of Claim 1.8,
we may assume that U uses the alphabet Γk (as this can be simulated with a overhead depending
only on |Γ|). Thus we can encode in each cell of U ’s work tape k symbols of Γ, each corresponding
to a symbol from one of M ’s tapes. However, we still have to deal with the fact that M has k
read/write heads that can each move independently to the left or right, whereas U ’s work tape only
has a single head. Paraphrasing the famous saying, our strategy to handle this can be summarized
as follows:

“If Muhammad will not come to the mountain then the mountain will go to Muhammad”.

That is, since we can not move U ’s read/write head in different directions at once, we simply
move the tape “under” the head. To be more specific, since we consider U ’s alphabet to be Γk, we
can think of U ’s main work tape not as a single tape but rather k parallel tapes; that is, we can

Web draft 2007-01-08 21:59

DRAFT

p1.26 (34) 1.A. PROOF OF THEOREM ??: UNIVERSAL SIMULATION IN O(T LOGT)-TIME

think of U as having k tapes with the property that in each step either all their read/write heads
go in unison one location to the left or they all go one location to the right (see Figure 1.9).

To simulate a single step of M we shift all the non-blank symbols in each of these parallel tapes
until the head’s position in these parallel tapes corresponds to the heads’ positions of M ’s k tapes.
For example, if k = 3 and in some particular step M ’s transition function specifies the movements
L,R,R then U will shift all the non-blank entries of its first parallel tape one cell to the right, and
shift the non-blank entries of its second and third tapes one cell to the left. (U can easily perform
these shifts using the additional “scratch” work tape.)

M’s 3 independent tapes:

c o m p l e t e l y

r e p l a c e d b y

m a c h i n e s

U’s 3 parallel tapes (i.e., one tape encoding 3 tapes)

c o m p l e t e l y

r e p l a c e d b y

m a c h i n c e s

Figure 1.9: Packing k tapes of M into one tape of U . We consider U ’s single work tape to be composed of k parallel
tapes, whose heads move in unison, and hence we shift the contents of these tapes to simulate independent head
movement.

The approach above is still not good enough to get O(T log T)-time simulation. The reason is
that there may be as much as T non-blank symbols in each tape, and so each shift operation may
cost U at least T operations per each step of M . Our approach to deal with this is to create “buffer
zones”: rather than having each of U ’s parallel tapes correspond exactly to a tape of M , we add a
special kind of blank symbol �� to the alphabet of U ’s parallel tapes with the semantics that this
symbol is ignored in the simulation. For example, if the non-blank contents of M ’s tape are 010
then this can be encoded in the corresponding parallel tape of U not just by 010 but also by 0�� 01
or 0���� 1�� 0 and so on.

For convenience, we think of U ’s parallel tapes as infinite in both the left and right directions
(this can be easily simulated with minimal overhead, see Claim 1.11). Thus, we index their locations
by 0,±1,±2, Normally we keep U ’s head on location 0 of these parallel tapes. We will only

Web draft 2007-01-08 21:59

DRAFT

1.A. PROOF OF THEOREM ??: UNIVERSAL SIMULATION IN O(T LOGT)-TIME p1.27 (35)

- c o m p l e t e - - - - - - - l y

r e p - - l a c e - - - -

- - m a c h - - - - i n e s

R1 R2 R3L2L3 L1

..... -3 -2 -1 0 +1 +2 +3

Before:

p l e t - - e - l y - - - - - -

r - e p - l a c e - - - -

m a c - h i n - - - - - e s

R1 R2 R3L2L3 L1

After:

Figure 1.10: Performing a shift of the parallel tapes. The left shift of the first tape involves zones
L1, R1, L2, R2, L3, R3, the right shift of the second tape involves only L1, R1, while the left shift of the third tape
involves zones L1, R1, L2, R2. We maintain the invariant that each zone is either empty, half-full or full. Note that -
denotes ��.

move it temporarily to perform a shift when, following our general approach, we simulate a left
head movement by shifting the tape to the right and vice versa. At the end of the shift we return
the head to location 0.

We split the tapes into zones L0, R0, L1, R1, . . . (we’ll only need to go up to Llog T+1, Rlog T+1)
where zone Li contains the 2i cells in the interval [2i..2i+1−1] and zone Ri contains the cells in the
interval [−2i+1 + 1.. − 2i] (location 0 is not in any zone). We shall always maintain the following
invariants:

• Each of the zones is either empty, full, or half-full with non-�� symbols. That is, the number
of symbols in zone Li that are not �� is either 0,2i−1, or 2i and the same holds for Ri. (We
treat the ordinary � symbol the same as any other symbol in Γ and in particular a zone full
of �’s is considered full.)

We assume that initially all the zones are half-full. We can ensure this by filling half of each
zone with �� symbols in the first time we encounter it.

• The total number of non-�� symbols in Li ∪ Ri is 2i. That is, if Li is full then Ri is empty
and vice versa.

• Location 0 always contains a non-�� symbol.

Web draft 2007-01-08 21:59

DRAFT

p1.28 (36) 1.A. PROOF OF THEOREM ??: UNIVERSAL SIMULATION IN O(T LOGT)-TIME

The advantage in setting up these zones is that now when performing the shifts, we do not
always have to move the entire tape, but by using the “buffer zones” made up of �� symbols, we can
restrict ourselves to only using some of the zones. We illustrate this by showing how U performs a
left shift on the first of its parallel tapes (see Figure 1.10):

1. U finds the smallest i such that Ri is not empty. Note that this is also the smallest i such
that Li is not full.

2. U puts the leftmost non-�� symbol of Ri in position 0 and shifts the remaining leftmost 2i−1−1
non-�� symbols from Ri into the zones R0, . . . , Ri−1 filling up exactly half the symbols of each
zone. Note that there is room to perform this since all the zones R0, . . . , Ri−1 were empty
and that indeed 2i−1 =

∑i−2
j=0 2j + 1.

3. U performs the symmetric operation to the left of position 0: it shifts into Li the 2i−1 left-
most symbols in the zones Li−1, . . . , L1 and reorganizes Li−1, . . . , Li such that the remaining∑i−1

j=1 2j−2i−1 = 2i−1−1 symbols, plus the symbol that was originally in position 0 (modified
appropriately according to M ’s transition function) take up exactly half of each of the zones
Li−1, . . . , Li.

4. Note that at the end of the shift, all of the zones L0, R0, . . . , Li−1, Ri−1 are half-full and so
we haven’t violated our invariant.

Performing such a shift costs O(
∑i

j=1 2j) = O(2i) operations. However, once we do this, we will
not touch Li again until we perform at least 2i−1 shifts (since now the zones L0, R0, . . . , Li−1, Ri−1

are half-full). Thus, when simulating T steps of M , we perform a shift involving Li and Ri during
the simulation of at most a 1

2i−1 fraction of these steps. Thus, the total number of operations used
by these shifts is when simulating T steps is

O(
log T+1∑

i=1

T

2i−1
2i) = O(T log T) .

�

Web draft 2007-01-08 21:59

	The computational model ---and why it doesn't matter
	Encodings and Languages: Some conventions
	Representing objects as strings
	Decision problems / languages
	Big-Oh notation

	Modeling computation and efficiency
	The Turing Machine
	Robustness of our definition.
	The expressive power of Turing machines.

	Machines as strings and the universal Turing machines.
	The Universal Turing Machine

	Uncomputable functions.
	The Halting Problem

	Deterministic time and the class P.
	On the philosophical importance of P
	Criticisms of P and some efforts to address them
	Edmonds' quote

	Chapter notes and history
	Exercises
	Proof of Theorem 1.13: Universal Simulation in O(TlogT)-time

