
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 15

Average Case Complexity: Levin’s
Theory

1

needs more work

Our study of complexity —- NP-completeness, #P-completeness etc.— thus far only concerned
worst-case complexity. However, algorithms designers have tried to design efficient algorithms for
NP-hard problems that work for “many” or “most” instances. This motivates a study of the
difficulty of the “average” instance. Let us first examine the issues at an intuitive level, so we may
be better prepared for the elements of the theory we will develop.

Many average case algorithms are targeted at graph problems in random graphs. One can define
random graphs in many ways: the simplest one generates a graph on n vertices randomly by picking
each potential edge with probability 1/2. (This method ends up assigning equal probability to every
n-vertex graph.) On such rand om graphs, many NP-complete problems are easy. 3-COLOR can
be solved in linear time with high probability (exercise). CLIQUE and INDEPENDENT SET can
be solved in n2 log n time (exercise) which is only a little more than polynomial and much less than
2εn, the running time of the best algorithms on worst-case instances.

However, other NP-complete problems appear to require exponential time even on average. One
example is SUBSET SUM: we pick n integers a1, a2, . . . , an randomly from [1, 2n], pick a random
subset S of {1, . . . , n}, and produce b =

∑
i∈S ai. We do not know of any efficient average-case

algorithm that, given the ai’s and b, finds S. Surprisingly, efficient algorithms do exist if the ai’s are
picked randomly from the slightly larger interval [1, 2n log2 n]. This illustrates an important point,
namely, that average-case complexity is sensitive to the choice of the input distribution.

The above discussion suggests that even though NP-complete problems are essentially equiva-
lent with respect to worst case complexity, they may differ vastly in their average case complexity.
Can we nevertheless identify some problems that remain “complete” even for the average case; in
other words, are at least as hard as every other average-case NP problem?

This chapter covers Levin’s theory of average-case complexity. We will formalize the notion
of “distributional problems,” introduce a working definition of “algorithms that are efficient on

1This chapter written with Luca Trevisan

Web draft 2007-01-08 22:02
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p15.1 (263)

DRAFT

p15.2 (264) 15.1. DISTRIBUTIONAL PROBLEMS

Note 15.1 (Impagliazzo’s Possible Worlds)
At the moment we don’t know if the best algorithm for 3SAT runs in time
O(n) or 2Ω(n) but there are also many other qualitative open questions about
the hardness of problems in NP. Russell Impagliazzo characterized a central
goal of complexity theory as the question of finding out which of the following
possible worlds is the world we live in:

Algorithmica.

Heuristica.

Pessiland.

Minicrypt.

average,” and define a reduction that preserves efficient average-case solvability. We will also
exhibit an NP-complete problem that is complete with respect to such reductions. However, we
cannot yet prove the completeness of natural distributional problems such as SUBSET SUM or one
of the number theoretic problems described in the chapter on cryptography.

15.1 Distributional Problems

In our intuitive discussion of average case problems, we first fixed an input size n and then considered
the average running time of the algorithm when inputs of size n are chosen from a distribution. At
the back of our mind, we knew that complexity has to be measured asymptotically as a function of
n. To formalize this intuitive discussion, we will define distributions on all (infinitely many) inputs.

Definition 15.2 (Distributional Problem)
A distributional problem is a pair 〈L,D〉, where L is a decision problem and D is a distribution
over the set {0, 1}∗ of possible inputs.

Example 15.3
We can define the “uniform distribution” to be one that assigns an input x ∈ {0, 1}∗ the probability

Pr [x] =
1

|x| (1 + |x|)
2−|x|. (1)

We call this “uniform” because it assigns equal probabilities to all strings with the same length.
It is a valid distribution because the probabilities sum to 1:Is this correct??

Web draft 2007-01-08 22:02

DRAFT

15.1. DISTRIBUTIONAL PROBLEMS p15.3 (265)∑
x∈{0,1}∗

1
|x| (1 + |x|)

2−|x| =
∑
n≥0

2n 2−n

n(n + 1)
= 1. (2)

Here is another distribution; the probabilities sum to 1 since
∑

n≥1
1
n2 = π2/6.

Pr[x] =
6
π2

2−|x|

|x|2
if |x| ≥ 1 (3)

To pick a string from these distributions, we can first an input length n with the appropriate
probability (for the distribution in (2), we pick n with probability 6/π2n2) and then pick x uniformly
from inputs of length n. This uniform distribution corresponds to the intuitive approach to average
case complexity discussed in the introduction. However, the full generality of Definition 15.2 will
be useful later when we study nonuniform input distributions.

15.1.1 Formalizations of “real-life distributions.”

Real-life problem instances arise out of the world around us (images that have to be understood,
a building that has to be navigated by a robot, etc.), and the world does not spend a lot of
time tailoring instances to be hard for our algorithm —arguably, the world is indifferent to our
algorithm. One may formalize this indifference in terms of computational effort, by hypothesizing
that the instances are produced by an efficient algorithm. We can formalize this in two ways.

Polynomial time computable distributions. Such distributions have an associated determin-
istic polynomial time machine that, given input x, can compute the cumulative probability
µD(x), where

µD(x) =
∑
y≤x

Pr
D

[y] (4)

Here PrD[y] denotes the probability assigned to string y and y ≤ x means y either precedes x
in lexicographic order or is equal to x. Denoting the lexicographic predecessor of x by x− 1,
we have

Pr
D

[x] = µD(x) − µD(x − 1), (5)

which shows that if µD is computable in polynomial time, then so is PrD[x]. The uniform
distributions in (1) and (1) are polynomial time computable, as are many other distributions
that are defined using explicit formulae.

Polynomial time samplable distributions. These distributions have an associated probabilis-
tic polynomial time machine that can produce samples from the distribution. In other words,
it outputs x with probability PrD[x]. The expected running time is polynomial in the length
of the output |x|.
Many such samplable distributions are now known, and the sampling algorithm often uses
Monte Carlo Markov Chain (MCMC) techniques.

Web draft 2007-01-08 22:02

DRAFT

p15.4 (266) 15.2. DISTNP AND ITS COMPLETE PROBLEMS

If a distribution is polynomial time computable then we can efficiently produce samples from
it. (Exercise.) However, if P 6= P#P there are polynomial time samplable distributions (including
some very interesting ones) that are not polynomial time computable. (See exercises.)

In this lecture, we will restrict attention to distributional problems involving a polynomial time
computable distribution. This may appear to a serious limitation, but with some work the results
of this chapter can be generalized to samplable distributions.

15.2 DistNP and its complete problems

The following complexity class is at the heart of our study of average case complexity.

dist NP = {〈L,D〉 : L ∈ NP,D polynomial-time computable} . (6)

Since the same NP language may have different complexity behavior with respect to two different
input distributions (SUBSET SUM was cited earlier as an example), the definition wisely treats the
two as distinct computational problems. Note that every problem mentioned in the introduction
to the chapter is in dist NP.

Now we need to define the average-case analogue of P.

15.2.1 Polynomial-Time on Average

Now we define what it means for a deterministic algorithm A to solve a distributional problem
〈L,D〉 in polynomial time on average. The definition should be robust to simple changes in model
of computation or representation. If we migrate the algorithm to a slower machine that has a
quadratic slowdown (so t steps now take t2 time), then polynomial-time algorithms should not
suddenly turn into exponential-time algorithms. (This migration to a slower machine is not merely
hypothetical, but also one way to look at a reduction.) As we will see, some intuitively appealing
definitions do not have this robustness property.

Denote by t(x) the running time of A on input x. First, note that D is a distribution on all
possible inputs. The most intuitive choice of saying that A is efficient if

E[t(x)] is small

is problematic because the expectation could be infinite even if A runs in worst-case polynomial
time.

Next, we could try to define A to be polynomial provided that for some constant c and for every
sufficiently large n,

E[t(x)| |x| = n] ≤ nc

This has two problems. First, it ignores the possibility that there could be input lengths on
which A takes a long time, but that are generated with very low probability under D. In such
cases A may still be regarded as efficient, but the definition ignores this possibility. Second, and

Web draft 2007-01-08 22:02

DRAFT

15.2. DISTNP AND ITS COMPLETE PROBLEMS p15.5 (267)

more seriously, the definition is not robust to changes in computational model. To give an example,
suppose D is the uniform distribution and t(x0) = 2n for just one input x0 of size n For every other
input of size n, t(x) = n. Then E[t(x) | |x| = n] ≤ n + 1. However, changing to a model with a
quadratic slowdown will square all running times, and E[(t(x))2 | |x| = n] > 2n.

We could try to define A to be polynomial if there is a c > 0 such that

E
[
t(x)
|x|c

]
= O(1),

but this is also not robust. (Verify this!)
We now come to a satisfying definition.

Definition 15.4 (Polynomial on average and dist P)
A problem 〈L,D〉 ∈ dist NP is said to be in dist P if there is an algorithm A for L that satisfies
for some constants c, c1

E[
t(x)1/c

|x|
] = c1, (7)

where t(x) is the running time of A on input x.

Notice that P ⊆ dist P: if a language can be decided deterministically in time t(x) = O(|x|c),
then t(x)1/c = O(|x|) and the expectation in (7) converges regardless of the distribution. Second,
the definition is robust to changes in computational models: if the running times get squared, we
just multiply c by 2 and the expectation in (7) again converges.

We also point out an additional interesting property of the definition: there is a high probability
that the algorithm runs in polynomial time. For, if

E[
t (x)1/c

|x|
] = c1, (8)

then we have

Pr[t(x) ≥ k · |x|c] = Pr[
t(x)1/c

|x|
≥ k1/c] ≤ c1

k1/c
(9)

where the last claim follows by Markov’s inequality. Thus by increasing k we may reduce this
probability as much as required.

15.2.2 Reductions

Now we define reductions. Realize that we think of instances as being generated according to a
distribution. Defining a mapping on strings (e.g., a reduction) gives rise to a new distribution on
strings. The next definition formalizes this observation.

Definition 15.5
If f is a function mapping strings to strings and D is a distribution then the distribution f ◦ D is
one that assigns to string y the probability

∑
x:f(x)=y PrD[x]

Web draft 2007-01-08 22:02

DRAFT

p15.6 (268) 15.2. DISTNP AND ITS COMPLETE PROBLEMS

Definition 15.6 (Reduction)
A distributional problem 〈L1,D1〉 reduces to a distributional problem 〈L2,D2〉 (denoted 〈L1,D1〉 ≤
〈L2,D2〉) if there is a polynomial-time computable function f and an ε > 0 such that:

1. x ∈ L1 iff f (x) ∈ L2.

2. For every x, |f(x)| = Ω(|x|ε).

3. There are constants c, c1 such that for every string y,

Pr
f◦D1

(y) ≤ c1 |y|c Pr
D2

(y). (Domination)

The first condition is standard for many-to-one reductions, ensuring that a decision algorithm
for L2 easily converts into a decision algorithm for L1. The second condition is a technical one,
needed later. All interesting reductions we know of satisfy this condition. Next, we motivate the
third condition, which says that D2 “dominates” (up to a polynomial factor) the distribution f ◦D1

obtained by applying f on D1.
Realize that the goal of the definition is to ensure that “if (L1,D1) is hard, then so is (L2,D2)”

(or equivalently, the contrapositive “if (L2,D2) is easy, then so is (L1,D1).”) Thus if an algorithm
A2 is efficient for problem (L2,D2), then the following algorithm ought to be efficient for problem
(L1,D1): on input x obtained from distribution D1, compute f(x) and then run algorithm A2 on
f(x). A priori, one cannot rule out the possibility that that A2 is very slow on some inputs, which
are unlikely to be sampled according to distribution D2 but which show up with high probability
when we sample x according to D1 and then consider f(x). The domination condition helps rule
out this possibility.

In fact we have the following result, whose non-trivial proof we omit.Include this proof.

Theorem 15.7
If 〈L1,D1〉 ≤ 〈L2,D2〉 and 〈L2,D2〉 has an algorithm that is polynomial on average, then 〈L1,D1〉
also has an algorithm that is polynomial on average.

Of course, Theorem 15.7 is useful only if we can find reductions between interesting problems.
Now we show that this is the case: we exhibit a problem (albeit an artificial one) that is complete
for dist NP. Let the inputs have the form

〈
M,x, 1t, 1l

〉
, where M is an encoding of a Turing

machine and 1t is a sequence of t ones. Then we define the following “universal” problem U .

• Decide whether there exists a string y such that |y| ≤ l and M (x, y) accepts in at most t
steps.

Since part of the input is in unary, we need to modify our definition of a “uniform” distribution
to the following.

Pr
D

(〈
M,x, 1t, 1l

〉)
=

1
|M | (|M | + 1) 2|M | ·

1
|x| (|x| + 1) 2|x|

· 1
(t + l) (t + l + 1)

. (10)

Web draft 2007-01-08 22:02

DRAFT

15.2. DISTNP AND ITS COMPLETE PROBLEMS p15.7 (269)

This distribution is polynomial-time computable (exercise).

Theorem 15.8 (Levin)
〈U,D〉 is complete for dist NP, where D is the uniform ditribution.

The proof requires the following lemma, which shows that for polynomial-time computable dis-
tributions, we can apply a simple transformation on the inputs such that the resulting distribution
has no “peaks” (i.e., no input has too high a probability).

Lemma 15.9 (Peak Elimination)
Suppose D is a polynomial-time computable distribution over x. Then there is a polynomial-time
computable function g such that

1. g is injective: g (x) = g (z) iff x = z.

2. |g(x)| ≤ |x| + 1.

3. For every string y, Prg◦D(y) ≤ 2−|y|+1.

Proof: For any string x such that PrD(x) > 2−|x|, define h(x) to be the largest common prefix
of binary representations of µD(x), µD(x − 1). Then h is polynomial-time computatable since
µD(x) − µD(x − 1) = PrD(x) > 2−|x|, which implies that µD(x) and µD(x − 1) must differ in the
somewhere in the first |x| bits. Thus |h(x)| ≤ log 1/ PrD (x) ≤ |x|. Furthermore, h is injective
because only two binary strings s1 and s2 can have the longest common prefix z; a third string s3

sharing z as a prefix must have a longer prefix with either s1 or s2.
Now define

g(x) =

{
0x if PrD (x) ≤ 2−|x|

1h(x) otherwise
(11)

Clearly, g is injective and satisfies |g(x)| ≤ |x| + 1. We now show that g ◦ D does not give
probability more than 2−|y|+1 to any string y. If y is not g(x) for any x, this is trivially true since
Prg◦D(y) = 0.

If y = 0x, where PrD (x) ≤ 2−|x|, then Prg◦D(y) ≤ 2−|y|+1 and we also have nothing to prove.
Finally, if y = g(x) = 1h(x) where PrD (x) > 2−|x|, then as already noted, |h(x)| ≤ log 1/ PrD(x)

and so Prg◦D(y) = PrD(x) ≤ 2−|y|+1.
Thus the Lemma has been proved. �

Now we are ready to prove Theorem 15.8.

Proof: (Theorem 15.8) At first sight the proof may seem trivial since U is just the “universal”
decision problem for nondeterministic machines, and every NP language trivially reduces to it.
However, we also need to worry about the input distributions and enforce the domination condition
as required by Definition 15.6.

Let 〈L,D1〉 ∈ dist NP. Let M be a proof-checker for language L that runs in time nc; in
other words, x ∈ L iff there is a witness y of length |y| = |x|c such that M(x, y) = Accept. (For
notational ease we drop the big-O notation in this proof.) In order to define a reduction from L to

Web draft 2007-01-08 22:02

DRAFT

p15.8 (270) 15.2. DISTNP AND ITS COMPLETE PROBLEMS

U , the first idea would be to map input x for L to
〈
M,x, 1|x|

c

, 1|x|
c
〉
. However, this may violate

the domination condition because the uniform distribution assigns a probability 2−|x|/poly(|x|) to
〈M,x, 1|x|

c

〉 whereas x may have much higher probability under D1. Clearly, this difficulty arises
only if the distribution D1 has a “peak” at x, so we see an opportunity to use Lemma 15.9, which
gives us an injective mapping g such that g ◦D1 has no “peaks” and g is computable say in nd time
for some fixed constant d.

The reduction is as follows: map x to 〈M ′, g(x), 1|x|
c+|x|, 1|x|

c+|x|d〉. Here M ′ is a modification
of M that expects as input a string z and a witness (x, y) of length |x|+ |x|c. Given (z, x, y) where
y = |x|c, M ′ checks in |x|d time if g(x) = z. If so, it simulates M on (x, y) and outputs its answer.
If g(x) 6= z then M ′ rejects.

To check the domination condition, note that y = 〈M ′, g(x), 1|x|
c+|x|, 1|x|

c+|x|d〉 has probability

Pr
D

(y) =
2−|M

′|

|M ′| (|M ′| + 1)
· 2−|g(x)|

|g(x)| (|g(x)| + 1)
· 1

(|x| + 2 |x|c + |x|d)(|x| + 2 |x|c + |x|d + 1)

≤ 2−|M
′|

|M ′| (|M ′| + 1)
1

|x|2(c+d+1)
· 2−g(x) (12)

under the uniform distribution whereas

Pr
D1

(x) ≤ 2−g(x)+1 ≤ G |x|2(c+d+1) Pr
D

(y) ,

if we allow the constant G to absorb the term 2|M
′| |M ′| (|M ′|+1). Thus the domination condition

is satisfied.
Notice, we rely crucially on the fact that 2|M

′| |M ′| (|M ′| + 1) is a constant once we fix the
language L; of course, this constant will usually be quite large for typical NP languages, and this
would be a consideration in practice. �

15.2.3 Proofs using the simpler definitions

In the setting of one-way functions and in the study of the average-case complexity of the permanent
and of problems in EXP (with applications to pseudorandomness), we normally interpret “average
case hardness” in the following way: that an algorithm of limited running time will fail to solve
the problem on a noticeable fraction of the input. Conversely, we would interpret average-case
tractability as the existence of an algorithm that solves the problem in polynomial time, except on
a negligible fraction of inputs. This leads to the following formal definition.

Definition 15.10 (Heuristic polynomial time)
We say that an algorithm A is a heuristic polynomial time algorithm for a distributional problem
〈L, µ〉 if A always runs in polynomial time and for every polynomial p∑

x:A(x) 6=χL(x)

µ′(x)p(|x|) = O(1)

Web draft 2007-01-08 22:02

DRAFT

15.2. DISTNP AND ITS COMPLETE PROBLEMS p15.9 (271)

In other words, a polynomial time algorithm for a distributional problem is a heuristic if the
algorithm fails on a negligible fraction of inputs, that is, a subset of inputs whose probability
mass is bounded even if multiplied by a polynomial in the input length. It might also make sense
to consider a definition in which A is always correct, although it does not necessarily work in
polynomial time, and that A is heuristic polynomial time if there is a polynomial q such that for
every polynomial p,

∑
x∈Sq

µ′(x)p(|x|) = O(1), where Sq is the set of inputs x such that A(x)
takes more than q(|x|) time. Our definition is only more general, because from an algorithm A as
before one can obtain an algorithm A satisfying Definition 15.10 by adding a clock that stops the
computation after q(|x|) steps.

The definition of heuristic polynomial time is incomparable with the definition of average poly-
nomial time. For example, an algorithm could take time 2n on a fraction 1/nlog n of the inputs of
length n, and time n2 on the remaining inputs, and thus be a heuristic polynomial time algorithm
with respect to the uniform distribution, while not beign average polynomial time with respect
to the uniform distribution. On the other hand, consider an algorithm such that for every input
length n, and for 1 ≤ k ≤ 2n/2, there is a fraction about 1/k2 of the inputs of length n on which
the algorithm takes time Θ(kn). Then this algorithm satisfies the definition of average polynomial
time under the uniform distribution, but if we impose a polynomial clock there will be an inverse
polynomial fraction of inputs of each length on which the algorithm fails, and so the definition of
heuristic polynomial time cannot be met.

It is easy to see that heuristic polynomial time is preserved under reductions.

Theorem 15.11
If 〈L1, µ1〉 ≤ 〈L2, µ2〉 and 〈L2, µ2〉 admits a heuristic polynomial time algorithm, then 〈L1, µ1〉 also
admits a heuristic polynomial time algorithm.

Proof: Let A2 be the algorithm for 〈L2, µ2〉, let f be the function realizing the reduction, and let
p be the polynomial witnessing the domination property of the reduction. Let c and ε be such that
for every x we have |x| ≤ c|f(x)|1/ε.

Then we define the algorithm A1 than on input x outputs A2(f(x)). Clearly this is a polynomial
time algorithm, and whenever A2 is correct on f(x), then A1 is correct on x. We need to show that
for every polynomial q ∑

x:A2(f(x)) 6=χL2
(f(x))

µ′1(x)q(|x|) = O(1)

and the left-hand side can be rewritten as∑
y:A2(y) 6=χL2

(y)

∑
x:f(x)=y

µ′1(x)q(|x|)

≤
∑

y:A2(y) 6=χL2
(y)

∑
x:f(x)=y

µ′1(x)q(c · |y|1/ε))

≤
∑

y:A2(y) 6=χL2
(y)

µ′2(y)p(|y|)q′(|y|)

= O(1)

Web draft 2007-01-08 22:02

DRAFT

p15.10 (272) 15.3. EXISTENCE OF COMPLETE PROBLEMS

where the last step uses the fact that A2 is a polynomial heuristic for 〈L2, µ2〉 and in the second-
to-last step we introduce the polynomial q′(n) defined as q(c · n1/ε)

�

15.3 Existence of Complete Problems

We now show that there exists a problem (albeit an artificial one) complete for dist NP. Let the
inputs have the form

〈
M,x, 1t, 1l

〉
, where M is an encoding of a Turing machine and 1t is a sequence

of t ones. Then we define the following “universal” problem U .

• Decide whether there exists a string y such that |y| ≤ l and M (x, y) accepts in at most t
steps.

That U is NP-complete follows directly from the definition. Recall the definition of NP: we
say that L ∈ NP if there exists a machine M running in t = poly (|x|) steps such that x ∈ L iff
there exists a y with y = poly (|x|) such that M (x, y) accepts. Thus, to reduce L to U we need
only map x onto R (x) =

〈
M,x, 1t, 1l

〉
where t and l are sufficiently large bounds.

15.4 Polynomial-Time Samplability

Definition 15.12 (Samplable distributions)
We say that a distribution µ is polynomial-time samplable if there exists a probabilistic algorithm
A, taking no input, that outputs x with probability µ′ (x) and runs in poly (|x|) time.

Any polynomial-time computable distribution is also polynomial-time samplable, provided that
for all x,

µ′ (x) ≥ 2− poly(|x|) or µ′ (x) = 0. (13)

For a polynomial-time computable µ satisfying the above property, we can indeed construct a
sampler A that first chooses a real number r uniformly at random from [0, 1], to poly (|x|) bits of
precision, and then uses binary search to find the first x such that µ (x) ≥ r.

On the other hand, under reasonable assumptions, there are efficiently samplable distributios
µ that are not efficiently computable.

In addition to dist NP, we can look at the class

〈NP,P-samplable〉 = {〈L, µ〉 : L ∈ NP, µ polynomial-time samplable} . (14)

A result due to Impagliazzo and Levin states that if 〈L, µ〉 is dist NP-complete, then 〈L, µ〉 is
also complete for the class 〈NP,P-samplable〉.

Web draft 2007-01-08 22:02

DRAFT

15.4. POLYNOMIAL-TIME SAMPLABILITY p15.11 (273)

This means that the completeness result established in the previous section extends to the class
of NP problems with samplable distributions.

Exercises

§1 Describe an algorithm that decides 3-colorability on almost all graphs in linear expected time.

Hint:A3-colorablegraphbetternotcontainacompletegraph
on4vertices.

§2 Describe an algorithm that decides CLIQUE on almost all graphs in n2 log n time.

Hint:Thechancethatarandomgraphhasacliqueofsizemore
thankisatmost(n

k)2−k2/2
.

§3 Show that if a distribution is polynomial-time computable, then it is polynomial-time sam-
pleable.

Hint:Binarysearch.

§4 Show that if P#P 6= P then there is a polynomial time samplable distribution that is not
polynomial time computable.

§5 Show that the function g defined in Lemma 15.9 (Peak Elimination) is efficiently invertible
in the following sense: if y = g(x), then given y we can reconstruct x in |x|O(1) time.

§6 Show that if one-way functions exist, then dist NP 6⊆ dist P.

Chapter notes and history

Suppose P 6= NP and yet dist NP ⊆ dist P. This would mean that generating hard instances of NP
problems requires superpolynomial computations. Cryptography is thus impractical. Also, it seems to imply
that everyday instances of NP-complete problems would also be easily solvable. Such instances arise from
the world around us —we want to understand an image, or removing the obstacles in the path of a robot—
and it is hard to imagine how the inanimate world would do the huge amounts of computation necessary to
generate a hard instance.

Web draft 2007-01-08 22:02

DRAFT

p15.12 (274) 15.4. POLYNOMIAL-TIME SAMPLABILITY

Web draft 2007-01-08 22:02

	Average Case Complexity: Levin's Theory
	Distributional Problems
	Formalizations of ``real-life distributions.''

	DistNP and its complete problems
	Polynomial-Time on Average
	Reductions
	Proofs using the simpler definitions

	Existence of Complete Problems
	Polynomial-Time Samplability
	Exercises
	Chapter notes and history

