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Chapter 16

Derandomization, Expanders and
Extractors

“God does not play dice with the universe”
Albert Einstein

“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”
John von Neumann, quoted by Knuth 1981

“How hard could it be to find hay in a haystack?”
Howard Karloff

The concept of a randomized algorithm, though widespread, has both a philosophical and a
practical difficulty associated with it.

The philosophical difficulty is best represented by Einstein’s famous quote above. Do random
events (such as the unbiased coin flip assumed in our definition of a randomized turing machine)
truly exist in the world, or is the world deterministic? The practical difficulty has to do with
actually generating random bits, assuming they exist. A randomized algorithm running on a
modern computer could need billions of random bits each second. Even if the world contains some
randomness —say, the ups and downs of the stock market — it may not have enough randomness to
provide billions of uncorrelated random bits every second in the tiny space inside a microprocessor.
Current computing environments rely on shortcuts such as taking a small “fairly random looking”
bit sequence—e.g., interval between the programmer’s keystrokes measured in microseconds—and
applying a deterministic generator to turn them into a longer sequence of “sort of random looking”
bits. Some recent devices try to use quantum phenomena. But for all of them it is unclear how
random and uncorrelated those bits really are.
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Such philosophical and practical difficulties look deterring; the philosophical aspect alone has
been on the philosophers’ table for centuries. The results in the current chapter may be viewed as
complexity theory’s contribution to these questions.

The first contribution concerns the place of randomness in our world. We indicated in Chap-
ter 7 that randomization seems to help us design more efficient algorithms. A surprising conclusion
in this chapter is this could be a mirage to some extent. If certain plausible complexity-theoretic
conjectures are true (e.g., that certain problems can not be solved by subexponential-sized circuits)
then every probabilistic algorithm can be simulated deterministically with only a polynomial slow-
down. In other words, randomized algorithms can be derandomized and BPP = P. Nisan and
Wigderson [?] named this research area Hardness versus Randomness since the existence of hard
problems is shown to imply derandomization. Section 16.3 shows that the converse is also true to
a certain extent: ability to derandomize implies circuit lowerbounds (thus, hardness) for concrete
problems. Thus the Hardness ↔ Randomness connection is very real.

Is such a connection of any use at present, given that we have no idea how to prove circuit
lowerbounds? Actually, yes. Just as in cryptography, we can use conjectured hard problems in
the derandomization instead of provable hard problems, and end up with a win-win situation: if
the conjectured hard problem is truly hard then the derandomization will be successful; and if the
derandomization fails then it will lead us to an algorithm for the conjectured hard problem.

The second contribution of complexity theory concerns another practical question: how can we
run randomized algorithms given only an imperfect source of randomness? We show the existence
of randomness extractors: efficient algorithms to extract (uncorrelated, unbiased) random bits
from any weakly random device.Their analysis is unconditional and uses no unproven assumptions.
Below, we will give a precise definition of the properties that such a weakly random device needs
to have. We do not resolve the question of whether such weakly random devices exist; this is
presumably a subject for physics (or philosophy).

A central result in both areas is Nisan and Wigderson’s beautiful construction of a certain
pseudorandom generator. This generator is tailor-made for derandomization and has somewhat
different properties than the secure pseudorandom generators we encountered in Chapter 10.

Another result in the chapter is a (unconditional) derandomization of randomized logspace
computations, albeit at the cost of some increase in the space requirement.

Example 16.1 (Polynomial identity testing)
One example for an algorithm that we would like to derandomize is the algorithm described in
Section 7.2.2 for testing if a given polynomial (represented in the form of an arithmetic zero) is
the identically zero polynomial. If p is an n-variable nonzero polynomial of total degree d over a
large enough finite field F (|F| > 10d will do) then most of the vectors u ∈ Fn will satisfy p(u) 6= 0
(see Lemma A.25. Therefore, checking whether p ≡ 0 can be done by simply choosing a random
u ∈R Fn and applying p on u. In fact, it is easy to show that there exists a set of m2-vectors
u1, . . . ,um2

such that for every such nonzero polynomial p that can be computed by a size m
arithmetic circuit, there exists an i ∈ [m2] for which p(ui) 6= 0.

This suggests a natural approach for a deterministic algorithm: show a deterministic algorithm
that for every m ∈ N, runs in poly(m) time and outputs a set u1, . . . ,um2

of vectors satisfying the
above property. This shouldn’t be too difficult— after all the vast majority of the sets of vectors
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have this property, so hard can it be to find a single one? (Howard Karloff calls this task “finding
a hay in a haystack”). Surprisingly this turns out to be quite hard: without using complexity
assumptions, we do not know how to obtain such a set, and in Section 16.3 we will see that in fact
such an algorithm will imply some nontrivial circuit lowerbounds.1

16.1 Pseudorandom Generators and Derandomization

The main tool in derandomization is a pseudorandom generator. This is a twist on the definition of
a secure pseudorandom generator we gave in Chapter 10, with the difference that here we consider
nonuniform distinguishers –in other words, circuits— and allow the generator to run in exponential
time.

Definition 16.2 (Pseudorandom generators)
Let R be a distribution over {0, 1}m, S ∈ N and ε > 0. We say that R is an
(S, ε)-pseudorandom distribution if for every circuit C of size at most S,

|Pr[C(R) = 1]− Pr[C(Um) = 1]| < ε

where Um denotes the uniform distribution over {0, 1}m.

If S : N → N is a polynomial-time computable monotone function (i.e., S(m) ≥ S(n)
for m ≥ n)2 then a function G : {0, 1}∗ → {0, 1}∗ is called an (S(`)-pseudorandom
generator (see Figure 16.1) if:

• For every z ∈ {0, 1}`, |G(z)| = S(`) and G(z) can be computed in time 2c` for
some constant c. We call the input z the seed of the pseudorandom generator.

• For every ` ∈ N, G(U`) is an (S(`)3, 1/10)-pseudorandom distribution.

Remark 16.3
The choices of the constant 3 and 1/10 in the definition of an S(`)-pseudorandom generator are
arbitrary and made for convenience.

The relation between pseudorandom generators and simulating probabilistic algorithm is straight-
forward:

1Perhaps it should not be so surprising that “finding a hay in a haystack” is so hard. After all, the hardest open
problems of complexity— finding explicit functions with high circuit complexity— are of this form, since the vast
majority of the functions from {0, 1}n to {0, 1} have exponential circuit complexity.

2We place these easily satisfiable requirements on the function S to avoid weird cases such as generators whose
output length is not computable or generators whose output shrinks as the input grows.
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Figure 16.1: A pseudorandom generator G maps a short uniformly chosen seed z ∈R {0, 1}` into a longer output
G(z) ∈ {0, 1}m that is indistinguishable from the uniform distribution Um by any small circuit C.

Lemma 16.4
Suppose that there exists an S(`)-pseudorandom generator for some polynomial-time computable
monotone S : N → N. Then for every polynomial-time computable function ` : N → N, BPTIME(S(`(n))) ⊆
DTIME(2c`(n)) for some constant c.

Proof: A language L is in BPTIME(S(`(n))) if there is an algorithm A that on input x ∈ {0, 1}n

runs in time cS(`(n)) for some constant c, and satisfies

Pr
r∈R{0,1}m

[A(x, r) = L(x)] ≥ 2
3

where m ≤ S(`(n)) and we define L(x) = 1 if x ∈ L and L(x) = 0 otherwise.
The main idea is that if we replace the truly random string r with the string G(z) produced

by picking a random z ∈ {0, 1}`(n), then an algorithm like A that runs in only S(`) time cannot
detect this switch most of the time, and so the probability 2/3 in the previous expression does not
drop below 2/3−0.1. Thus to derandomize A, we do not need to enumerate over all r; it suffices to
enumerates over all z ∈ {0, 1}`(n) and check how many of them make A accept. This derandomized
algorithm runs in exp(`(n)) time instead of the trivial 2m time.

Now we make this formal. Our deterministic algorithm B will on input x ∈ {0, 1}n, go over all
z ∈ {0, 1}`(n), compute A(x, G(z)) and output the majority answer. Note this takes 2O(`(n)) time.
We claim that for n sufficiently large, the fraction of z’s such that A(x,G(z)) = L(x) is at least
2
3 − 0.1. (This suffices to prove that L ∈ DTIME(2c`(n)) as we can “hardwire” into the algorithm
the correct answer for finitely many inputs.)

Suppose this is false and there exists an infinite sequence of x’s for which Pr[A(x,G(z)) =
L(x) < 2/3 − 0.1. Then we would get a distinguisher for the pseudorandom generator —just use
the Cook-Levin transformation to construct a circuit that computes the function z 7→ A(x,G(z)),
where x is hardwired into the circuit. This circuit has size O(S(`(n)))2 which is smaller than
S(`(n))3 for sufficiently large n. �

Remark 16.5
The proof shows why it is OK to allow the pseudorandom generator in Definition 16.2 to run in
time exponential in its seed length. The derandomized algorithm enumerates over all possible seeds

Web draft 2007-01-08 22:03



DRAFT

16.1. PSEUDORANDOM GENERATORS AND DERANDOMIZATION p16.5 (279)

of length `, and thus would take exponential time (in `) even if the generator itself were to run in
less than exponential time.

Notice, these generators have to fool distinguishers that run for less time than they do. By
contrast, the definition of secure pseudorandom generators (Definition 10.11 in Chapter 10) re-
quired the generator to run in polynomial time, and yet have the ability to fool distinguishers that
have super-polynomial running time. This difference in these definitions stems from the intended
usage. In the cryptographic setting the generator is used by honest users and the distinguisher is
the adversary attacking the system — and it is reasonable to assume the attacker can invest more
computational resources than those needed for normal/honest use of the system. In derandom-
ization, generator is used by the derandomized algorithm, the ”distinguisher” is the probabilistic
algorithm that is being derandomized, and it is reasonable to allow the derandomized algorithm
higher running time than the original probabilistic algorithm.

Of course, allowing the generator to run in exponential time as in this chapter potentially makes
it easier to prove their existence compared with secure pseudorandom generators, and this indeed
appears to be the case. (Note that if we place no upperbounds on the generator’s efficiency, we
could prove the existence of generators unconditionally as shown in Exercise 2, but these do not
suffice for derandomization.)

We will construct pseudorandom generators based on complexity assumptions, using quan-
titatively stronger assumptions to obtain quantitatively stronger pseudorandom generators (i.e.,
S(`)-pseudorandom generators for larger functions S). The strongest (though still reasonable) as-
sumption will yield a 2Ω(`)-pseudorandom generator, thus implying that BPP = P. These are
described in the following easy corollaries of the Lemma that are left as Exercise 1.

Corollary 16.6
1. If there exists a 2ε`-pseudorandom generator for some constant ε > 0 then BPP = P.

2. If there exists a 2`ε
-pseudorandom generator for some constant ε > 0 then BPP ⊆ QuasiP =

DTIME(2polylog(n)).

3. If there exists an S(`)-pseudorandom generator for some super-polynomial function S (i.e.,
S(`) = `ω(1)) then BPP ⊆ SUBEXP = ∩ε>0DTIME(2nε

).

16.1.1 Hardness and Derandomization

We construct pseudorandom generators under the assumptions that certain explicit functions are
hard. In this chapter we use assumptions about average-case hardness, while in the next chapter
we will be able to construct pseudorandom generators assuming only worst-case hardness. Both
worst-case and average-case hardness refers to the size of the minimum Boolean circuit computing
the function:
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Definition 16.7 (Hardness)
Let f : {0, 1}∗ → {0, 1} be a Boolean function. The worst-case hardness of f ,
denoted Hwrs(f), is a function from N to N that maps every n ∈ N to the largest
number S such that every Boolean circuit of size at most S fails to compute f on
some input in {0, 1}n.

The average-case hardness of f , denoted Havg(f), is a function from N to N that maps
every n ∈ N, to the largest number S such that Prx∈R{0,1}n [C(x) = f(x)] < 1

2 + 1
S

for every Boolean circuit C on n inputs with size at most S.

Note that for every function f : {0, 1}∗ → {0, 1} and n ∈ N, Havg(f)(n) ≤ Hwrs(f)(n) ≤ n2n.

Remark 16.8
This definition of average-case hardness is tailored to the application of derandomization, and in
particular only deals with the uniform distribution over the inputs. See Chapter 15 for a more
general treatment of average-case complexity. We will also sometimes apply the notions of worst-
case and average-case to finite functions from {0, 1}n to {0, 1}, where Hwrs(f) and Havg(f) are defined
in the natural way. (E.g., if f : {0, 1}n → {0, 1} then Hwrs(f) is the largest number S for which every
Boolean circuit of size at most S fails to compute f on some input in {0, 1}n.)

Example 16.9
Here are some examples of functions and their conjectured or proven hardness:

1. If f is a random function (i.e., for every x ∈ {0, 1}∗ we choose f(x) using an independent
unbiased coin) then with high probability, both the worst-case and average-case hardness of
f are exponential (see Exercise 3). In particular, with probability tending to 1 with n, both
Hwrs(f)(n) and Havg(f)(n) exceed 20.99n. We will often use the shorthand Hwrs(f),Havg(f) ≥ 20.99n

for such expressions.

2. If f ∈ BPP then, since BPP ⊆ P/poly, both Hwrs(f) and Havg(f) are bounded by some
polynomial.

3. It seems reasonable to believe that 3SAT has exponential worst-case hardness; that is, Hwrs(3SAT) ≥
2Ω(n). It is even more believable that NP * P/poly, which implies that Hwrs(3SAT) is super-
polynomial. The average case complexity of 3SAT is unclear, and in any case dependent upon
the way we choose to represent formulas as strings.

4. If we trust the security of current cryptosystems, then we do believe that NP contains func-
tions that are hard on the average. If g is a one-way permutation that cannot be inverted with
polynomial probability by polynomial-sized circuits, then by Theorem 10.14, the function f
that maps the pair x, r ∈ {0, 1}n to g−1(x)� r has super-polynomial average-case hardness:
Havg(f) ≥ nω(1). (Where x � r =

∑n
i=1 xiri (mod 2).) More generally there is a polynomial

relationship between the size of the minimal circuit that inverts g (on the average) and the
average-case hardness of f .
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The main theorem of this section uses hard-on-the average functions to construct pseudorandom
generators:

Theorem 16.10 (Consequences of NW Generator)
For every polynomial-time computable monotone S : N → N, if there exists a
constant c and function f ∈ DTIME(2cn) such that Havg(f) ≥ S(n) then there
exists a constant ε > 0 such that an S(ε`)ε-pseudorandom generator exists. In
particular, the following corollaries hold:

1. If there exists f ∈ E = DTIME(2O(n)) and ε > 0 such that Havg(f) ≥ 2εn then
BPP = P.

2. If there exists f ∈ E = DTIME(2O(n)) and ε > 0 such that Havg(f) ≥ 2nε
then

BPP ⊆ QuasiP.

3. If there exists f ∈ E = DTIME(2O(n)) such that Havg(f) ≥ nω(1) then BPP ⊆
SUBEXP.

Remark 16.11
We can replace E with EXP = DTIME(2poly(n)) in Corollaries 2 and 3 above. Indeed, for every
f ∈ DTIME(2nc

), the function g that on input x ∈ {0, 1}∗ outputs the f applies to the first
|x|1/c bits of x is in DTIME(2n) and satisfies Havg(g)(n) ≥ Havg(f)(n1/c). Therefore, if there exists
f ∈ EXP with Havg(f) ≥ 2nε

then there there exists a constant ε′ > 0 and a function g ∈ E

with Havg(g) ≥ 2nε′
, and so we can replace E with EXP in Corollary 2. A similar observation

holds for Corollary 3. Note that EXP contains many classes we believe to have hard problems,
such as NP,PSPACE,⊕P and more, which is why we believe it does contain hard-on-the-average
functions. In the next chapter we will give even stronger evidence to this conjecture, by showing it
is implied by the assumption that EXP contains hard-in-the-worst-case functions.

Remark 16.12
The original paper of Nisan and Wigderson [?] did not prove Theorem 16.10 as stated above. It
was proven in a sequence of works [?]. Nisan and Wigderson only proved that under the same
assumptions there exists an S′(`)-pseudorandom generator, where S′(`) = S

(
ε
√

` log(S(ε
√

`)
)ε

for
some ε > 0. Note that this is still sufficient to derive all three corollaries above. It is this weaker
version we prove in this book.

16.2 Proof of Theorem 16.10: Nisan-Wigderson Construction

How can we use a hard function to construct a pseudorandom generator?
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16.2.1 Warmup: two toy examples

For starters, we demonstrate this by considering the “toy example” of a pseudorandom generator
whose output is only one bit longer than its input. Then we show how to extend by two bits. Of
course, neither suffices to prove Theorem 16.10 but they do give insight to the connection between
hardness and randomness.

Extending the input by one bit using Yao’s Theorem.

The following Lemma uses a hard function to construct such a “toy” generator:

Lemma 16.13 (One-bit generator)
Suppose that there exist f ∈ E with Havg(f) ≥ n4. Then, there exists an S(`)-pseudorandom
generator G for S(`) = ` + 1.

Proof: The generator G will be very simple: for every z ∈ {0, 1}`, we set

G(z) = z ◦ f(z)

(where ◦ denotes concatenation). G clearly satisfies the output length and efficiency requirements
of an (`+1)-pseudorandom generator. To prove that its output is 1/10-pseudorandom we use Yao’s
Theorem from Chapter 10 showing that pseudorandomness is implied by unpredictiability:3

Theorem 16.14 (Theorem 10.12, restated)
Let Y be a distribution over {0, 1}m. Suppose that there exist S > 10n,ε > 0 such that for every
circuit C of size at most 2S and i ∈ [m],

Pr
r∈RY

[C(r1, . . . , ri−1) = ri] ≤
1
2

+
ε

m

Then Y is (S, ε)-pseudorandom.

Using Theorem 16.14 it is enough to show that there does not exist a circuit C of size 2(`+1)3 <
`4 and a number i ∈ [` + 1] such that

Pr
r=G(U`)

[C(r1, . . . , ri−1) = ri] > 1
2 + 1

20(`+1) . (1)

However, for every i ≤ `, the ith bit of G(z) is completely uniform and independent from the first
i− 1 bits, and hence cannot be predicted with probability larger than 1/2 by a circuit of any size.
For i = ` + 1, Equation (1) becomes,

Pr
z∈R{0,1}`

[C(z) = f(z)] >
1
2

+
1

20(` + 1)
>

1
2

+
1
`4

,

which cannot hold under the assumption that Havg(f) ≥ n4. �

3Although this theorem was stated and proved in Chapter 10 for the case of uniform Turing machines, the proof
easily extends to the case of circuits.
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Extending the input by two bits using the averaging principle.

We now continue to progress in “baby steps” and consider the next natural toy problem: construct-
ing a pseudorandom generator that extends its input by two bits. This is obtained in the following
Lemma:
Lemma 16.15 (Two-bit generator)
Suppose that there exists f ∈ E with Havg(f) ≥ n4. Then, there exists an (`+2)-pseudorandom
generator G.

Proof: The construction is again very natural: for every z ∈ {0, 1}`, we set

G(z) = z1 · · · z`/2 ◦ f(z1, . . . , z`/2) ◦ z`/2+1 · · · z` ◦ f(z`/2+1, . . . , z`).

Again, the efficiency and output length requirements are clearly satisfied.
To show G(U`) is 1/10-pseudorandom, we again use Theorem 16.14, and so need to prove that

there does not exists a circuit C of size 2(` + 1)3 and i ∈ [` + 2] such that

Pr
r=G(U`)

[C(r1, . . . , ri−1) = ri] >
1
2

+
1

20(` + 2)
. (2)

Once again, (2) cannot occur for those indices i in which the ith output of G(z) is truly random,
and so the only two cases we need to consider are i = `/2 + 1 and i = ` + 2. Equation (2) cannot
hold for i = `/2 + 1 for the same reason as in Lemma 16.13. For i = ` + 2, Equation (2) becomes:

Pr
r,r′∈R{0,1}`/2

[C(r ◦ f(r) ◦ r′) = f(r′)] >
1
2

+
1

20(` + 2)
(3)

This may seem somewhat problematic to analyze since the input to C contains the bit f(r),
which C could not compute on its own (as f is a hard function). Couldn’t it be that the input
f(r) helps C in predicting the bit f(r′)? The answer is NO, and the reason is that r′ and r are
independent. Formally, we use the following principle (see Section A.3.2 in the appendix):

The Averaging Principle: If A is some event depending on two independent random
variables X, Y , then there exists some x in the range of X such that

Pr
Y

[A(x, Y ) ≥ Pr
X,Y

[A(X, Y )]

Applying this principle here, if (3) holds then there exists a string r ∈ {0, 1}`/2 such that

Pr
r′∈R{0,1}`/2

[C(r, f(r), r′) = f(r′)] >
1
2

+
1

20(` + 2)
.

(Note that this probability is now only over the choice of r′.) If this is the case, we can “hardwire”
the `/2+1 bits r ◦f(r) to the circuit C and obtain a circuit D of size at most (`+2)3 +2` < (`/2)4

such that
Pr

r′∈R{0,1}`/2
[D(r′) = f(r′)] >

1
2

+
1

20(` + 2)
,

contradicting the hardness of f . �
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Beyond two bits:

A generator that extends the output by two bits is still useless for our goals. We can generalize the
proof Lemma 16.15 to obtain a generator G that extends the output by k bits setting

G(z1, . . . , z`) = z1 ◦ f(z1) ◦ z2 ◦ f(z2) · · · zk ◦ f(zk) , (4)

where zi is the ith block of `/k bits in z. However, no matter how big we set k and no matter how
hard the function f is, we cannot get a generator that expands its input by a multiplicative factor
larger than two. Note that to prove Theorem 16.10 we need a generator that, depending on the
hardness we assume, has output that can be exponentially larger than the input! Clearly, we need
a new idea.

16.2.2 The NW Construction

The new idea is still inspired by the construction of (4), but instead of taking z1, . . . , zk to be
independently chosen strings (or equivalently, disjoint pieces of the input z), we take them to be
partly dependent by using combinatorial designs. Doing this will allow us to take k so large that
we can drop the actual inputs from the generator’s output and use only f(z1) ◦ f(z2) · · · ◦ f(zk).
The proof of correctness is similar to the above toy examples and uses Yao’s technique, except the
fixing of the input bits has to be done more carefully because of dependence among the strings.

First, some notation. For a string z ∈ {0, 1}` and subset I ⊆ [`], we define z�I to be |I|-length
string that is the projection of z to the coordinates in I. For example, z�[1..i] is the first i bits of z.

Definition 16.16 (NW Generator)
If I = {I1, . . . , Im} is a family of subsets of [`] with each |Ij | = l and f : {0, 1}n →
{0, 1} is any function then the (I, f)-NW generator (see Figure 16.2) is the function
NWf

I : {0, 1}` → {0, 1}m that maps any z ∈ {0, 1}` to

NWf
I(z) = f(z�I1) ◦ f(z�I2) · · · ◦ f(z�Im) (5)

Ij Ij+1

f f

Figure 16.2: The NW generator, given a set system I = {I1, . . . , Im} of size n subsets of [`] and a function
f : {0, 1}n → {0, 1} maps a string z ∈ {0, 1}` to the output f(z�I1), . . . , f(z�Im). Note that these sets are not
necessarily disjoint (although we will see their intersections need to be small).
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Conditions on the set systems and function.

We will see that in order for the generator to produce pseudorandom outputs, function f must
display some hardness, and the family of subsets must come from an efficiently constructible com-
binatorial design.

Definition 16.17 (Combinatorial designs)
If d, n, ` ∈ N are numbers with ` > n > d then a family I = {I1, . . . , Im} of subsets of [`] is an
(`, n, d)-design if |Ij | = n for every j and |Ij ∩ Ik| ≤ d for every j 6= k.

The next lemma yields efficient constructions of these designs and is proved later.

Lemma 16.18 (Construction of designs)
There is an algorithm A such that on input `, d, n ∈ N where n > d and ` > 10n2/d, runs for 2O(`)

steps and outputs an (`, n, d)-design I containing 2d/10 subsets of [`].

The next lemma shows that if f is a hard function and I is a design with sufficiently good
parameters, than NWf

I(U`) is indeed a pseudorandom distribution:

Lemma 16.19 (Pseudorandomness using the NW generator)
If I is an (`, n, d)-design with |I| = 2d/10 and f : {0, 1}n → {0, 1} a function satisfying 2d <√

Havg(f)(n), then the distribution NWf
I(U`) is a (Havg(f)(n)/10, 1/10)-pseudorandom distribution.

Proof: Let S denote Havg(f)(n). By Yao’s Theorem, we need to prove that for every i ∈ [2d/10]
there does not exist an S/2-sized circuit C such that

Pr
Z∼U`

R=NWf
I(Z)

[C(R1, . . . , Ri−1) = Ri] ≥
1
2

+
1

10 · 2d/10
. (6)

For contradiction’s sake, assume that (6) holds for some circuit C and some i. Plugging in the
definition of NWf

I , Equation (6) becomes:

Pr
Z∼U`

[C(f(Z�I1), · · · , f(Z�Ii−1)) = f(Z�Ii)] ≥
1
2

+
1

10 · 2d/10
. (7)

Letting Z1 and Z2 denote the two independent variables corresponding to the coordinates of Z
in Ii and [`] \ Ii respectively, Equation (7) becomes:

Pr
Z1∼Un

Z2∼U`−n

[C(f1(Z1, Z2), . . . , fi−1(Z1, Z2)) = f(Z1)] ≥
1
2

+
1

10 · 2d/10
, (8)

where for every j ∈ [2d/10], fj applies f to the coordinates of Z1 corresponding to Ij ∩ Ii and the
coordinates of Z2 corresponding to Ij \ Ii. By the averaging principle, if (8) holds then there exists
a string z2 ∈ {0, 1}`−n such that

Pr
Z1∼Un

[C(f1(Z1, z2), . . . , fi−1(Z1, z2)) = f(Z1)] ≥
1
2

+
1

10 · 2d/10
. (9)
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We may now appear to be in some trouble, since all of fj(Z1, z2) for j ≤ i − 1 do depend upon
Z1, and the fear is that if they together contain enough information about Z1 then a circuit could
potentially predict fi(Z1) after looking at all of them. To prove that this fear is baseless we use the
fact that the circuit C is small and f is a very hard function.

Since |Ij ∩ Ii| ≤ d for j 6= i, the function Z1 7→ fj(Z1, z2) depends at most d coordinates of z1

and hence can be computed by a d2d-sized circuit. (Recall that z2 is fixed.) Thus if if (8) holds
then there exists a circuit B of size 2d/10 · d2d + S/2 < S such that

Pr
Z1∼Un

[B(Z1) = f(Z1)] ≥
1
2

+
1

10 · 2d/10
>

1
2

+
1
S

. (10)

But this contradicts the fact that Havg(f)(n) = S. �

Remark 16.20 (Black-box proof)
Lemma 16.19 shows that if NWf

I(U`) is distinguishable from the uniform distribution U2d/10 by
some circuit D, then there exists a circuit B (of size polynomial in the size of D and in 2d) that
computes the function f with probability noticeably larger than 1/2. The construction of this
circuit B actually uses the circuit D as a black-box, invoking it on some chosen inputs. This
property of the NW generator (and other constructions of pseudorandom generators) turned out
to be useful in several settings. In particular, Exercise 5 uses it to show that under plausible
complexity assumptions, the complexity class AM (containing all languages with a constant round
interactive proof, see Chapter 8) is equal to NP. We will also use this property in the construction
of randomness extractors based on pseudorandom generators.

Putting it all together: Proof of Theorem 16.10 from Lemmas 16.18 and 16.19

As noted in Remark 16.12, we do not prove here Theorem 16.10 as stated but only the weaker state-
ment, that given f ∈ E and S : N → N with Havg(f) ≥ S, we can construct an S′(`)-pseudorandom
generator, where S′(`) = S

(
ε
√

` log(S(ε
√

`)
)ε

for some ε > 0.

For such a function f , we denote our pseudorandom generator by NW f . Given input z ∈ {0, 1}`,
the generator NWf operates as follows:

• Set n to be the largest number such that ` > 100n2/ log S(n). Set d = log S(n)/10. Since
S(n) < 2n, we can assume that ` ≤ 300n2/ log S(n).

• Run the algorithm of Lemma 16.18 to obtain an (`, n, d)-design I = {I1, . . . , I2d/5}.

• Output the first S(n)1/40 bits of NWf
I(z).

Clearly, NWf (z) runs in 2O(`) time. Moreover, since 2d ≤ S(n)1/10, Lemma 16.19 implies
that the distribution NWf (U`) is (S(n)/10, 1/10)-pseudorandom. Since n ≥

√
` log S(n)/300 ≥√

` log S(
√

`
300)/300 (with the last inequality following from the fact that S is monotone), this con-

cludes the proof of Theorem 16.10. �
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Construction of combinatorial designs.

All that is left to complete the proof is to show the construction of combinatorial designs with the
required parameters:
Proof of Lemma 16.18 (construction of combinatorial designs): On inputs `, d, n with
` > 10n2/d, our Algorithm A will construct an (`, n, d)-design I with 2d/10 sets using the simple
greedy strategy:

Start with I = ∅ and after constructing I = {I1, . . . , Im} for m < 2d/10, search all
subsets of [`] and add to I the first n-sized set I satisfying |I ∩ Ij | ≤ d for every j ∈ [m].
We denote this latter condition by (*).

Clearly, A runs in poly(m)2` = 2O(`) time and so we only need to prove it never gets stuck.
In other words, it suffices to show that if ` = 10n2/d and {I1, . . . , Im} is a collection of n-sized
subsets of [`] for m < 2d/10, then there exists an n-sized subset I ⊆ [`] satisfying (*). We do so by
showing that if we pick I at random by choosing independently every element x ∈ [`] to be in I
with probability 2n/` then:

Pr[|I| ≥ n] ≥ 0.9 (11)

Pr[|I ∩ Ij | ≥ d] ≤ 0.5 · 2−d/10 (∀j ∈ [m]) (12)

Because the expected size of I is 2n, while the expected size of the intersection I ∩ Ij is
2n2/` < d/5, both (12) and (11) follow from the Chernoff bound. Yet together these two conditions
imply that with probability at least 0.4, the set I will simultaneously satisfy (*) and have size at
least n. Since we can always remove elements from I without damaging (*), this completes the
proof. �

16.3 Derandomization requires circuit lowerbounds

We saw in Section 16.2 that if we can prove certain strong circuit lowerbounds, then we can partially
(or fully) derandomize BPP. Now we prove a result in the reverse direction: derandomizing BPP
requires proving circuit lowerbounds. Depending upon whether you are an optimist or a pessimist,
you can view this either as evidence that derandomizing BPP is difficult, or, as a reason to double
our efforts to derandomize BPP.

We say that a function is in AlgP/poly if it can be computed by a polynomial size arithmetic
circuit whose gates are labeled by +, −, × and ÷, which are operations over some underlying field
or ring. We let perm denote the problem of computing the permanent of matrices over the integers.
(The proof can be extended to permanent computations over finite fields of characteristic > 2.) We
prove the following result.

Theorem 16.21 ([?])
P = BPP ⇒ NEXP * P/poly or perm /∈ AlgP/poly.
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Remark 16.22
It is possible to replace the “poly” in the conclusion perm /∈ AlgP/poly with a subexponential
function by appropriately modifying Lemma 16.25. It is open whether the conclusion NEXP *
P/poly can be similarly strengthened.

In fact, we will prove the following stronger theorem. Recall the Polynomial Identity Testing
(ZEROP) problem in which the input consists of a polynomial represented by an arithmetic circuit
computing it (see Section 7.2.2 and Example 16.1), and we have to decide if it is the identically
zero polynomial. This problem is in coRP ⊆ BPP and we will show that if it is in P then the
conclusions of Theorem 16.21 hold:

Theorem 16.23 (Derandomization implies lower bounds)
If ZEROP ∈ P then either NEXP * P/poly or perm /∈ AlgP/poly.

The proof relies upon many results described earlier in the book.4 Recall that MA is the class
of languages that can be proven by a one round interactive proof between two players Arthur and
Merlin (see Definition 8.7). Merlin is an all-powerful prover and Arthur is a polynomial-time verifier
that can flip random coins. That is, given an input x, Merlin first sends Arthur a “proof” y. Then
Arthur with y in hand flips some coins and decides whether or not to accept x. For this to be an
MA protocol, Merlin must convince Arthur to accept strings in L with probability one while at the
same time Arthur must not be fooled into accepting strings not in L except with probability smaller
than 1/2. We will use the following result regarding MA:

Lemma 16.24 ([?],[?])
EXP ⊆ P/poly ⇒ EXP = MA.

Proof: Suppose EXP ⊆ P/poly. By the Karp-Lipton theorem (Theorem 6.14), in this case EXP
collapses to the second level Σp

2 of the polynomial hierarchy. Hence Σp
2 = PH = PSPACE =

IP = EXP ⊆ P/poly. Thus every L ∈ EXP has an interactive proof, and furtheremore, since
EXP = PSPACE, we can just the use the interactive proof for TQBF, for which the prover is a
PSPACE machine. Hence the prover can be replaced by a polynomial size circuit family Cn. Now
we see that the interactive proof can actually be carried out in 2 rounds, with Merlin going first.
Given an input x of length n, Merlin gives Arthur a polynomial size circuit C, which is supposed to
be the Cn for L. Then Arthur runs the interactive proof for L, using C as the prover. Note that if
the input is not in the language, then no prover has a decent chance of convincing the verifier, so
this is true also for prover described by C. Thus we have described an MA protocol for L implying
that EXP ⊆ MA and hence that EXP = MA. �

Our next ingredient for the proof of Theorem 16.23 is the following lemma:

Lemma 16.25
If ZEROP ∈ P, and perm ∈ AlgP/poly. Then Pperm ⊆ NP.

4This is a good example of “third generation” complexity results that use a clever combination of both “classical”
results from the 60’s and 70’s and newer results from the 1990’s.
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Proof: Suppose perm has algebraic circuits of size nc, and that ZEROP has a polynomial-time
algorithm. Let L be a language that is decided by an nd-time TM M using queries to a perm-
oracle. We construct an NP machine N for L.

Suppose x is an input of size n. Clearly, M ’s computation on x makes queries to perm of size
at most m = nd. So N will use nondeterminism as follows: it guesses a sequence of m algebraic
circuits C1, C2, . . . , Cm where Ci has size ic. The hope is that Ci solves perm on i × i matrices,
and N will verify this in poly(m) time. The verification starts by verifying C1, which is trivial.
Inductively, having verified the correctness of C1, . . . , Ct−1, one can verify that Ct is correct using
downward self-reducibility, namely, that for a t× t matrix A,

perm(A) =
t∑

i=1

a1iperm(A1,i),

where A1,i is the (t−1)× (t−1) sub-matrix of A obtained by removing the 1st row and ith column
of A. Thus if circuit Ct−1 is known to be correct, then the correctness of Ct can be checked by
substituting Ct(A) for perm(A) and Ct−1(A1,i) for perm(A1,i): this yields an identity involving
algebraic circuits with t2 inputs which can be verified deterministically in poly(t) time using the
algorithm for ZEROP. Proceeding this way N verifies the correctness of C1, . . . , Cm and then
simulates Mperm on input x using these circuits. �

The heart of the proof is the following lemma, which is interesting in its own right:

Lemma 16.26 ([?])
NEXP ⊆ P/poly ⇒ NEXP = EXP.

Proof: We prove the contrapositive. Suppose that NEXP 6= EXP and let L ∈ NEXP \ EXP.
Since L ∈ NEXP there exists a constant c > 0 and a relation R such that

x ∈ L ⇔ ∃y ∈ {0, 1}2|x|
c

s.t. R(x, y) holds ,

where we can test whether R(x, y) holds in time 2|x|
c′

for some constant c′.
For every constant d > 0, let Md be the following machine: on input x ∈ {0, 1}n enumerate

over all possible Boolean circuits C of size n100d that take nc inputs and have a single output. For
every such circuit let tt(C) be the 2nc

-long string that corresponds to the truth table of the function
computed by C. If R(x, tt(C)) holds then halt and output 1. If this does not hold for any of the
circuits then output 0.

Since Md runs in time 2n101d+nc
, under our assumption that L 6∈ EXP, for every d there exists

an infinite sequence of inputs Xd = {xi}i∈N on which Md(xi) outputs 0 even though xi ∈ L (note
that if Md(x) = 1 then x ∈ L). This means that for every string x in the sequence Xd and every y
such that R(x, y) holds, the string y represents the truth table of a function on nc bits that cannot
be computed by circuits of size n100d, where n = |x|. Using the pseudorandom generator based on
worst-case assumptions (Theorem ??), we can use such a string y to obtain an `d-pseudorandom
generator.

Now, if NEXP ⊆ P/poly then as noted above NEXP ⊆ MA and hence every language in
NEXP has a proof system where Merlin proves that an n-bit string is in the language by sending
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a proof which Arthur then verifies using a probabilistic algorithm of at most nd steps. Yet, if n is
the input length of some string in the sequence Xd and we are given x ∈ Xd with |x| = n, then we
can replace Arthur by non-deterministic poly(nd)2nc

time algorithm that does not toss any coins:
Arthur will guess a string y such that R(x, y) holds and then use y as a function for a pseudorandom
generator to verify Merlin’s proof.

This means that there is a constant c > 0 such that every language in NEXP can be decided on
infinitely many inputs by a non-deterministic algorithm that runs in poly(2nc

)-time and uses n bits
of advice (consisting of the string x ∈ Xd). Under the assumption that NEXP ⊆ P/poly we can
replace the poly(2nc

) running time with a circuit of size nc′ where c′ is a constant depending only
on c, and so get that there is a constant c′ such that every language in NEXP can be decided on
infinitely many inputs by a circuit family of size n+nc′ . Yet this can be ruled out using elementary
diagonalization. �

Remark 16.27
It might seem that Lemma 16.26 should have an easier proof that goes along the proof that EXP ⊆
P/poly ⇒ EXP = MA, but instead of using the interactive proof for TQBF uses the multi-prover
interactive proof system for NEXP. However, we do not know how to implement the provers’
strategies for this latter system in NEXP. (Intuitively, the problem arises from the fact that a
NEXP statement may have several certificates, and it is not clear how we can ensure all provers
use the same one.)

We now have all the ingredients for the proof of Theorem 16.23.

Proof of Theorem 16.23: For contradiction’s sake, assume that the following are all true:

ZEROP ∈ P (13)
NEXP ⊆ P/poly, (14)

perm ∈ AlgP/poly. (15)

Statement (14) together with Lemmas 16.24 and 16.26 imply that NEXP = EXP = MA. Now
recall that MA ⊆ PH, and that by Toda’s Theorem (Theorem 9.11) PH ⊆ P#P. Recall also that
by Valiant’s Theorem (Theorem 9.8) perm is #P-complete. Thus, under our assumptions

NEXP ⊆ Pperm. (16)

Since we assume that ZEROP ∈ P, Lemma 16.25 together with statements (15) and (16) implies
that NEXP ⊆ NP, contradicting the Nondeterministic Time Hierarchy Theorem (Theorem 3.3).
Thus the three statements at the beginning of the proof cannot be simultaneously true. �

16.4 Explicit construction of expander graphs

Recall that an expander graph family is a family of graphs {Gn}n∈ I such that for some constants
λ and d, for every n ∈ I, the graph Gn has n-vertices, degree d and its second eigenvalue is at
most λ (see Section 7.B). A strongly explicit expander graph family is such a family where there
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is an algorithm that given n and the index of a vertex v in Gn, outputs the list of v’s neighbors
in poly(log(n)) time. In this section we show a construction for such a family. Such construction
have found several applications in complexity theory and other areas of computer science (one such
application is the randomness efficient error reduction procedure we saw in Chapter 7).

The main tools in our construction will be several types of graph products. A graph product is
an operation that takes two graphs G, G′ and outputs a graph H. Typically we’re interested in the
relation between properties of the graphs G, G′ to the properties of the resulting graph H. In this
section we will mainly be interested in three parameters: the number of vertices (denoted n), the
degree (denoted d), and the 2nd largest eigenvalue of the normalized adjacency matrix (denoted λ),
and study how different products affect these parameters. We then use these products to obtain a
construction of a strongly explicit expander graph family. In the next section we will use the same
products to show a deterministic logspace algorithm for undirected connectivity.

16.4.1 Rotation maps.

In addition to the adjacency matrix representation, we can also represent an n-vertex degree-d
graph G as a function Ĝ from [n] × [d] to [n] that given a pair 〈v, i〉 outputs u where the ith

neighbor of v in G. In fact, it will be convenient for us to have Ĝ output an additional value j ∈ [d]
where j is the index of v as a neighbor of u. Given this definition of Ĝ it is clear that we can invert
it by applying it again, and so it is a permutation on [n] × [d]. We call Ĝ the rotation map of G.
For starters, one may think of the case that Ĝ(u, i) = (v, i) (i.e., v is the ith neighbor of u iff u is
the ith neighbor of v). In this case we can think of Ĝ as operating only on the vertex. However,
we will need the more general notion of a rotation map later on.

We can describe a graph product in the language of graphs, adjacency matrices, or rotation
maps. Whenever you see the description of a product in one of this forms (e.g., as a way to map
two graphs into one), it is a useful exercise to work out the equivalent descriptions in the other
forms (e.g., in terms of adjacency matrices and rotation maps).

16.4.2 The matrix/path product

G: (n,d,λ)-graph G’: (n,d’,λ’)-graph G’G: (n,dd’,λλ’)-graph

For every two n vertex graphs G, G′ with degrees d, d′ and adjacency matrices A,A′, the graph
G′G is the graph described by the adjacency matrix A′A. That is, G′G has an edge (u, v) for every
length 2-path from u to v where the first step in the path is taken on en edge of G and the second
is on an edge of G′. Note that G has n vertices and degree dd′. Typically, we are interested in
the case G = G′, where it is called graph squaring. More generally, we denote by Gk the graph
G ·G · · ·G (k times). We already encountered this case before in Lemma 7.27, and similar analysis
yields the following lemma (whose proof we leave as exercise):
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Lemma 16.28 (Matrix product improves expansion)
λ(G′G) ≤ λ(G′)λ(G′)

It is also not hard to compute the rotation map of G′G from the rotation maps of G and G′.
Again, we leave verifying this to the reader.

16.4.3 The tensor product

G: (n,d,λ)-graph G’: (n’,d’,λ’)-graph GOG’: (nn’,dd’,max{λ,λ’})-graphx

Let G and G′ be two graphs with n (resp n′) vertices and d (resp. d′) degree, and let Ĝ :
[n] × [d] → [n] × [d] and Ĝ′ : [n′] × [d′] → [n′] × [d′] denote their respective rotation maps. The
tensor product of G and G′, denoted G ⊗ G′, is the graph over nn′ vertices and degree dd′ whose
rotation map ˆG⊗G′ is the permutation over ([n]× [n′])× ([d]× [d′]) defined as follows

ˆG⊗G′(〈u, v〉, 〈i, j〉) = 〈u′, v′〉, 〈i′, j′〉 ,

where (u′, i′) = Ĝ(u, i) and (v′, j′) = Ĝ′(v, j). That is, the vertex set of G⊗G′ is pairs of vertices,
one from G and the other from G′, and taking a the step 〈i, j〉 on G⊗G′ from the vertex 〈u, v〉 is
akin to taking two independent steps: move to the pair 〈u′, v′〉 where u′ is the ith neighbor of u in
G and v′ is the ith neighbor of v in G′.

In terms of adjacency matrices, the tensor product is also quite easy to describe. If A = (ai,j)
is the n× n adjacency matrix of G and A′ = (a′i′,j′) is the n′ × n′ adjacency matrix of G′, then the
adjacency matrix of G⊗G′, denoted as A⊗A′, will be an nn′×nn′ matrix that in the 〈i, i′〉th row
and the 〈j, j′〉 column has the value ai,j · a′i′,j′ . That is, A⊗A′ consists of n2 copies of A′, with the
(i, j)th copy scaled by ai,j :

A⊗A′ =


a1,1A

′ a1,2A
′ . . . a1,nA′

a2,1A
′ a2,2A

′ . . . a2,nA′

...
...

an,1A
′ an,2A

′ . . . an,nA′


The tensor product can also be described in the language of graphs as having a cluster of n′

vertices in G⊗G′ for every vertex of G. Now if, u and v are two neighboring vertices in G, we will
put a bipartite version of G′ between the cluster corresponding to u and the cluster corresponding
to v in G. That is, if (i, j) is an edge in G′ then there is an edge between the ith vertex in the
cluster corresponding to u and the jth vertex in the cluster corresponding to v.
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Lemma 16.29 (Tensor product preserves expansion)
Let λ = λ(G) and λ′ = λ(G′) then λ(G⊗G′) ≤ max{λ, λ′}.

One intuition for this bound is the following: taking a T step random walk on the graph G⊗G′

is akin to taking two independent random walks on the graphs G and G′. Hence, if both walks
converge to the uniform distribution within T steps, then so will the walk on G⊗G′.
Proof: Given some basic facts about tensor products and eigenvalues this is immediate since if
λ1, . . . , λn are the eigenvalues of A (where A is the adjacency matrix of G) and λ′1, . . . , λ

′
n′ are the

eigenvalues of A (where A′ is the adjacency matrix of G′), then the eigenvalues of A ⊗ A′ are all
numbers of the form λi · λ′j , and hence the largest ones apart from 1 are of the form 1 · λ(G′) or
λ(G) · 1 (see also Exercise 14). �

We note that one can show that λ(G⊗G′) ≤ λ(G) + λ(G′) without relying on any knowledge
of eigenvalues (see Exercise 15). This weaker bound suffices for our applications.

16.4.4 The replacement product

G: (n,D,1-ε)-graph G’: (D,d,1-ε’)-graph GOG’: (nD,2d,1-εε’/4)-graphR

In both the matric and tensor products, the degree of the resulting graph is larger than the
degree of the input graphs. The following product will enable us to reduce the degree of one of the
graphs. Let G, G′ be two graphs such that G has n vertices and degree D, and G′ has D vertices
and degree d. The balanced replacement product (below we use simply replacement product for
short) of G and G′ is denoted by G©R G′ is the nn′-vertex 2d-degree graph obtained as follows:

1. For every vertex u of G, the graph G©R G′ has a copy of G′ (including both edges and vertices).

2. If u, v are two neighboring vertices in G then we place d parallel edges between the ith vertex
in the copy of G′ corresponding to u and the jth vertex in the copy of G′ corresponding to v,
where i is the index of v as a neighbor of u and j is the index of u as a neighbor of v in G.
(That is, taking the ith edge out of u leads to v and taking the jth edge out of v leads to u.)

Note that we essentially already encountered this product in the proof of Claim ?? (see also
Figure ??), where we reduced the degree of an arbitrary graph by taking its replacement product
with a cycle (although there we did not use parallel edges).5 The replacement product also has

5The addition of parallel edges ensures that a random step from a vertex v in G©R G′ will move to a neighbor
within the same cluster and a neighbor outside the cluster with the same probability. For this reason, we call this
product the balanced replacement product.
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a simple description in terms of rotation maps: since G©R G′ has nD vertices and 2d degree, its
rotation map ˆG©R G′ is a permutation over ([n]× [D])× ([d]× {0, 1}) and so can be thought of as
taking four inputs u, v, i, b where u ∈ [n], v ∈ [D], i ∈ [d] and b ∈ {0, 1}. If b = 0 then it outputs
u, Ĝ′(v, i), b and if b = 1 then it outputs Ĝ(u, v), i, b. That is, depending on whether b is equal to 0
or 1, the rotation map either treats v as a vertex of G′ or as an edge label of G.

In the language of adjacency matrices the replacement product can be easily seen to be described
as follows: A©R A′ = 1/2(A⊗ID)+1/2(In⊗A′), where A,A′ are the adjacency matrices of the graphs
G and G′ respectively, and Ik is the k × k identity matrix.

If D � d then the replacement product’s degree will be significantly smaller than G’s degree.
The following Lemma shows that this dramatic degree reduction does not cause too much of a
deterioration in the graph’s expansion:

Lemma 16.30 (Expansion of replacement product)
If λ(G) ≤ 1− ε and λ(G′) ≤ 1− ε′ then λ(G©R G′) ≤ 1− εε′/4.

The intuition behind Lemma 16.30 is the following: Think of the input graph G as a good
expander whose only drawback is that it has a too high degree D. This means that a k step random
walk on G′ requires O(k log D) random bits. However, as we saw in Section 7.B.3, sometimes we
can use fewer random bits if we use an expander. So a natural idea is to generate the edge labels for
the walk by taking a walk using a smaller expander G′ that has D vertices and degree d � D. The
definition of G©R G′ is motivated by this intuition: a random walk on G©R G′ is roughly equivalent
to using an expander walk on G′ to generate labels for a walk on G. In particular, each step a
walk over G©R G′ can be thought of as tossing a coin and then, based on its outcome, either taking
a a random step on G′, or using the current vertex of G′ as an edge label to take a step on G.
Another way to gain intuition on the replacement product is to solve Exercise 16, that analyzes
the combinatorial (edge) expansion of the resulting graph as a function of the edge expansion of
the input graphs.

Proof of Lemma 16.30: Let A (resp. A′) denote the n× n (resp. D ×D) adjacency matrix of
G (resp. G′) and let λ(A) = 1 − ε and λ(A′) = 1 − ε′. Then by Lemma 7.40, A = (1 − ε)C + Jn

and A′ = (1− ε′)C ′ + JD, where Jk is the k × k matrix with all entries equal to 1/k.
The adjacency matrix of G©R G′ is equal to

1
2(A⊗ ID) + 1

2(In ⊗A′) = 1−ε
2 C ⊗ ID + ε

2Jn ⊗ ID + 1−ε′

2 In ⊗ C ′ + ε′

2 In ⊗ JD ,

where Ik is the k × k identity matrix.
Thus, the adjacency matrix of (G©R G′)2 is equal to(
1−ε
2 C ⊗ ID + ε

2Jn ⊗ ID + 1−ε′

2 In ⊗ C ′ + ε′

2 In ⊗ JD

)2
=

εε′

4 (Jn ⊗ ID)(In ⊗ JD) + ε′ε
4 (In ⊗ JD)(Jn ⊗ ID) + (1− εε′

2 )F ,

where F is some nD× nD matrix of norm at most 1 (obtained by collecting together all the other
terms in the expression). But

(Jn ⊗ ID)(In ⊗ JD) = (In ⊗ JD)(Jn ⊗ ID) = Jn ⊗ JD = JnD .
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(This can be verified by either direct calculation or by going through the graphical representation
or the rotation map representation of the tensor and matrix products.)

Since every vector v ∈ RnD that is orthogonal to 1 satisfies JnDv = 0, we get that(
λ(G©R G′)

)2 = λ
(
(G©R G′)2

)
= λ

(
(1− εε′

2 )F + εε′

2 JnD

)
≤ 1− εε′

2 ,

and hence
λ(G©R G′) ≤ 1− εε′

4 .

�

16.4.5 The actual construction.

We now use the three graph products of described above to show a strongly explicit construction
of an expander graph family. Recall This is an infinite family {Gk} of graphs (with efficient way to
compute neighbors) that has a constant degree and an expansion parameter λ. The construction
is recursive: we start by a finite size graph G1 (which we can find using brute force search), and
construct the graph Gk from the graph Gk−1. On a high level the construction is as follows: each
of the three product will serve a different purpose in the construction. The Tensor product allows
us to take Gk−1 and increase its number of vertices, at the expense of increasing the degree and
possibly some deterioration in the expansion. The replacement product allows us to dramatically
reduce the degree at the expense of additional deterioration in the expansion. Finally, we use the
Matrix/Path product to regain the loss in the expansion at the expense of a mild increase in the
degree.

Theorem 16.31 (Explicit construction of expanders)
There exists a strongly-explicit λ, d-expander family for some constants d and λ < 1.

Proof: Our expander family will be the following family {Gk}k∈N of graphs:

• Let H be a (D = d40, d, 0.01)-graph, which we can find using brute force search. (We choose
d to be a large enough constant that such a graph exists)

• Let G1 be a (D, d20, 1/2)-graph, which we can find using brute force search.

• For k > 1, let Gk = ((Gk−1 ⊗Gk−1)©z H)20.

The proof follows by noting the following points:

1. For every k, Gk has at least 22k
vertices.

Indeed, if nk denotes the number of vertices of Gk, then nk = (nk−1)2D. If nk−1 ≥ 22k−1
then

nk ≥
(
22k−1

)2
= 22k

.
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2. For every k, the degree of Gk is d20.

Indeed, taking a replacement produce with H reduces the degree to d, which is then increased
to d20 by taking the 20th power of the graph (using the matrix/path product).

3. There is a 2O(k)-time algorithm that given a label of a vertex u in Gk and an index i ∈ [d20],
outputs the ith neighbor of u in Gk. (Note that this is polylogarithmic in the number of
vertices.)

Indeed, such a recursive algorithm can be directly obtained from the definition of Gk. To
compute Gk’s neighborhood function, the algorithm will make 40 recursive calls to Gk−1’s
neighborhood function, resulting in 2O(k) running time.

4. For every k, λ(Gk) ≤ 1/3.

Indeed, by Lemmas 16.28, 16.29, and 16.30 If λ(Gk−1) ≤ 1/3 then λ(Gk−1 ⊗Gk−1) ≤ 2/3 and
hence λ((Gk−1⊗Gk−1)©R H) ≤ 1− 0.99

12 ≤ 1−1/13. Thus, λ(Gk) ≤ (1−1/13)20 ∼ e−20/13 ≤ 1/3.

�

Using graph powering we can obtain such a construction for every constant λ ∈ (0, 1), at the
expense of a larger degree. There is a variant of the above construction supplying a denser family
of graphs that contains an n-vertex graph for every n that is a power of c, for some constant c.
Since one can transform an (n, d, λ)-graph to an (n′, cd′, λ)-graph for any n/c ≤ n′ ≤ n by making
a single “mega-vertex” out of a set of at most c vertices, the following theorem is also known:

Theorem 16.32
There exist constants d ∈ N , λ < 1 and a strongly-explicit graph family {Gn}n∈N such that Gn is
an (n, d, λ)-graph for every n ∈ N.

Remark 16.33
As mentioned above, there are known constructions of expanders (typically based on number theory)
that are more efficient in terms of computation time and relation between degree and the parameter
λ than the product-based construction above. However, the proofs for these constructions are more
complicated and require deeper mathematical tools. Also, the replacement product (and its close
cousin, the zig-zag product) have found applications beyond the constructions of expander graphs.
One such application is the deterministic logspace algorithm for undirected connectivity described
in the next section. Another application is a construction of combinatorial expanders with greater
expansion that what is implied by the parameter λ. (Note that even for for the impossible to
achieve value of λ = 0, Theorem ?? implies combinatorial expansion only 1/2 while it can be shown
that a random graph has combinatorial expansion close to 1.)

16.5 Deterministic logspace algorithm for undirected connectiv-
ity.

This section describes a recent result of Reingold, showing that at least the most famous random-
ized logspace algorithm, the random walk algorithm for s-t-connectivity in undirected graphs (
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Chapter 7) can be completely “derandomized.” Thus the s-t-connectivity problem in undirected
graphs is in L.

Theorem 16.34 (Reingold’s theorem [?])
UPATH ∈ L.

Reingold describes a set of poly(n) walks starting from s such that if s is connected to t then
one of the walks is guaranteed to hit t. Of course, the existence of such a small set of walks is
trivial; this arose in our discussion of universal traversal sequences of Definition ??. The point is
that Reingold’s enumeration of walks can be carried out deterministically in logspace.

In this section, all graphs will be multigraphs, of the form G = (V,E) where E is a multiset
(i.e., some edges may appear multiple times, and each appearance is counted separately). We say
the graph is d-regular if for each vertex i, the number of edges incident to it is exactly d. We
will assume that the input graph for the s-t connectivity problem is d-regular for say d = 4. This
is without loss of generality: if a vertex has degree d′′ < 3 we add a self-loop of multiplicity to
bring the degree up to d, and if the vertex has degree d′ ≥ 3 we can replace it by a cycle of d′

vertices, and each of the d′ edges that were incident to the old vertex then attach to one of the cycle
nodes. Of course, the logspace machine does not have space to store the modified graph, but it can
pretend that these modifications have taken place, since it can perform them on the fly whenever
it accesses the graph. (Formally speaking, the transformation is implicitly computable in logspace;
see Claim ??.) In fact, the proof below will perform a series of other local modifications on the
graph, each with the property that the logspace algorithm can perform them on the fly.

Recall that checking connectivity in expander graphs is easy. Specifically, if every connected
component in G is an expander, then there is a number ` = O(log n) such that if s and t are
connected then they are connected with a path of length at most `.

Theorem 16.35
If an n-vertex graph G is d-regular graph and λ(G) < 1/4 then the maximum distance between
every pair of nodes is at most O(d log n).

Proof: The exercises ask you to prove that for each subset S of size at most |V | /2, the number
of edges between S and S is at least (1 − λ) |S| /2 ≥ 3 |S| /8. Thus at least 3 |S| /8d vertices in
S must be neighbors of vertices in S. Iterating this argument l times we conclude the following
about the number of vertices whose distance to S is at most l: it is either more than |V | /2 (when
the abovementioned fact stops applying) or at least (1 + 3

8d)l. Let s, t be any two vertices. Using
S = {s}, we see that at least |V | /2+1 vertices must be within distance l = 10d log n of s. The same
is true for vertex t. Every two subsets of vertices of size at least |V | /2 + 1 necessarily intersect, so
there must be some vertex within distance l of both s and t. Hence the distance from s to t is at
most 2l. �

We can enumerate over all `-step random walks of a d-degree graph in O(d`) space by enu-
merating over all sequences of indices i1, . . . , i` ∈ [d]. Thus, in a constant-degree graph where all
connected components are expanders we can check connectivity in logarithmic space.

Web draft 2007-01-08 22:03



DRAFT

p16.24 (298)16.5. DETERMINISTIC LOGSPACE ALGORITHM FOR UNDIRECTED CONNECTIVITY.

The idea behind Reingold’s algorithm is to transform the graph G (in an implicitly computable
in logspace way) to a graph G′ such that every connected component in G becomes an expander
in G′, but two vertices that were not connected will stay unconnected.

By adding more self-loops we may assume that the graph is of degree d20 for some constant d
that is sufficiently large so that there exists a (d20, d, 0.01)-graph H. (See Fact ?? in the Appendix.)
Since the size of H is some constant, we assume the algorithm has access to it (either H could be
”hardwired” into the algorithm or the algorithm could perform brute force search to discover it).
Consider the following sequence of transformations.

• Let G0 = G.

• For k ≥ 1, we define Gk = (Gk−1©R H)20.

Here©R is the replacement product of the graph, defined in Chapter ??. If Gk−1 is a graph with
degree d20, then Gk−1©R H is a graph with degree d and thus Gk = (Gk−1©R H)20 is again a graph
with degree d20 (and size (2d20 |Gk−1|)20). Note also that if two vertices were connected (resp.,
disconnected) in Gk−1, then they are still connected (resp., disconnected) in Gk. Thus to solve the
UPATH in G it suffices to solve a UPATH problem in any of the Gk’s.

Now we show that for k = O(log n), the graph Gk is an expander, and therefore an easy instance
of UPATH. By Lemmas 16.28 and 16.30, for every ε < 1/20 and D-degree graph F , if λ(F ) ≤ 1− ε
then λ(F ©R H) ≤ 1 − ε/5 and hence λ

(
(F ©R H)20

)
≤ 1 − 2ε. By Lemma 7.28, every connected

component of G has expansion parameter at most 1 − 1/(8Dn3), where n denotes the number of
G’s vertices which is at least as large as the number of vertices in the connect component. It follows
that for k = 10 log D log N , in the graph Gk every connected component has expansion parameter
at most max{1− 1/20, 2k/(8Dn3)} = 1− 1/20.

To finish, we show how to solve the UPATH problem for Gk in logarithmic space for this value of
k. The catch is of course that the graph we are given is G, not Gk. Given G, we wish to enumerate
length ` starting from a given vertex in Gk since the graph is an expander. A walk describes, for
each step, which of the d20 outgoing edges to take from the current vertex. Thus it suffices to show
how we can compute in O(k + log n) space, the ith outgoing edge of a given vertex u in Gk. This
map’s input length is O(k + log n) and hence we can assume it is placed on a read/write tape, and
will compute the rotation map “in-place” changing the input to the output. Let sk be the additional
space (beyond the input) required to compute the rotation map of Gk. Note that s0 = O(log n).
We show a recursive algorithm to compute Gk satisfying the equation sk = sk−1 + O(1). In fact,
the algorithm will be a pretty straightforward implementation of the definitions of the replacement
and matrix products.

The input to Ĝk is a vertex in (Gk−1 ©R H) and 20 labels of edges in this graph. If we can
compute the rotation map of Gk−1©R H in sk−1 +O(1) space then we can do so for Ĝk, since we can
simply make 20 consecutive calls to this procedure, each time reusing the space.6 Now, to compute
the rotation map of (Gk−1©R H) we simply follow the definition of the replacement product. Given

6One has to be slightly careful while making recursive calls, since we don’t want to lose even the O(log log n) bits
of writing down k and keeping an index to the location in the input we’re working on. However, this can be done
by keeping k in global read/write storage and since storing the identity of the current step among the 50 calls we’re
making only requires O(1) space.
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an input of the form u, v, i, b (which we think of as read/write variables), if b = 0 then we apply
the rotation map of H to (v, i) (can be done in constant space), while if b = 1 then we apply the
rotation map of Gk−1 to (u, v) using a recursive call at the cost of sk−1 space (note that u, v are
conveniently located consecutively at the beginning of the input tape).

16.6 Weak Random Sources and Extractors

Suppose, that despite the philosophical difficulties, we are happy with probabilistic algorithms, and
see no need to “derandomize” them, especially at the expense of some unproven assumptions. We
still need to tackle the fact that real world sources of randomness and unpredictability rarely, if
ever, behave as a sequence of perfectly uncorrelated and unbiased coin tosses. Can we still execute
probabilistic algorithms using real-world “weakly random” sources?

16.6.1 Min Entropy

For starters, we need to define what we mean by a weakly random source.

Definition 16.36
Let X be a random variable. The min entropy of X, denoted by H∞(X), is the largest real number
k such that Pr[X = x] ≤ 2−k for every x in the range of X.

If X is a distribution over {0, 1}n with H∞(X) ≥ k then it is called an (n, k)-source.

It is not hard to see that if X is a random variable over {0, 1}n then H∞(X) ≤ n with H∞(X) =
n if and only if X is distributed according to the uniform distribution Un. Our goal in this section is
to be able to execute probabilistic algorithms given access to a distribution X with H∞(X) as small
as possible. It can be shown that min entropy is a minimal requirement in the sense that in general,
to execute a probabilistic algorithm that uses k random bits we need access to a distribution X
with H∞(X) ≥ k (see Exercise ??).

Example 16.37
Here are some examples for distributions X over {0, 1}n and their min-entropy:

• (Bit fixing and generalized bit fixing sources) If there is subset S ⊆ [n] with |S| = k such that
X’s projection to the coordinates in S is uniform over {0, 1}k, and X’s projection to [n]\S is
a fixed string (say the all-zeros string) then H∞(X) = k. The same holds if X’s projection to
[n] \ S is a fixed deterministic function of its projection to S. For example, if the bits in the
odd positions of X are independent and uniform and for every even position 2i, X2i = X2i−1

then H∞(X) = d n
2 e. This may model a scenario where we measure some real world data at

too high a rate (think of measuring every second a physical event that changes only every
minute).

• (Linear subspaces) If X is the uniform distribution over a linear subspace of GF(2)n of
dimension k, then H∞(X) = k. (In this case X is actually a generalized bit-fixing source—
can you see why?)
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• (Biased coins) If X is composed of n independent coins, each outputting 1 with probability
δ < 1/2 and 0 with probability 1− δ, then as n grows, H∞(X) tends to H(δ)n where H is the
Shannon entropy function. That is, H(δ) = δ log 1

δ + (1− δ) log 1
1−δ .

• (Santha-Vazirani sources) If X has the property that for every i ∈ [n], and every string
x ∈ {0, 1}i−1, conditioned on X1 = x1, . . . , Xi−1 = xi−1 it holds that both Pr[Xi = 0] and
Pr[Xi = 1] are between δ and 1− δ then H∞(X) ≥ H(δ)n. This can model sources such as
stock market fluctuations, where current measurements do have some limited dependence on
the previous history.

• (Uniform over subset) If X is the uniform distribution over a set S ⊆ {0, 1}n with |S| = 2k

then H∞(X) = k. As we will see, this is a very general case that “essentially captures” all
distributions X with H∞(X) = k.

We see that min entropy is a pretty general notion, and distributions with significant min
entropy can model many real-world sources of randomness.

16.6.2 Statistical distance and Extractors

Now we try to formalize what it means to extract random —more precisely, almost random— bits
from an (n, k) source. To do so we will need the following way of quantifying when two distributions
are close.
Definition 16.38 (statistical distance)
For two random variables X and Y with range {0, 1}m, their statistical distance (also known as
variation distance) is defined as δ(X, Y ) = maxS⊆{0,1}m{|Pr[X ∈ S] − Pr[Y ∈ S]|}. We say that
X, Y are ε-close, denoted X ≈ε Y , if δ(X, Y ) ≤ ε.

Statistical distance lies in [0, 1] and satisfies triangle inequality, as suggested by its name. The
next lemma gives some other useful properties; the proof is left as an exercise.

Lemma 16.39
Let X, Y be any two distributions taking values in {0, 1}n.

1. δ(X, Y ) = 1
2

∑
x∈{0,1}n |Pr[X = x]−Pr[Y = x]| .

2. (Restatement of Definition 16.38) δ(X, Y ) ≥ ε iff there is a boolean function D : {0, 1}m →
{0, 1} such that |Prx∈X [D(x) = 1]− Pry∈Y [D(y) = 1]| ≥ ε.

3. If f : {0, 1}n → {0, 1}s is any function, then δ(f(X), f(Y )) ≤ δ(X, Y ). (Here f(X) is a
distribution on {0, 1}s obtained by taking a sample of X and applying f .)

Now we define an extractor. This is a (deterministic) function that transforms an (n, k) source
into an almost uniform distribution. It uses a small number of additional truly random bits, denoted
by t in the definition below.

Web draft 2007-01-08 22:03



DRAFT

16.6. WEAK RANDOM SOURCES AND EXTRACTORS p16.27 (301)

Definition 16.40
A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε) extractor if for any (n, k)-source X, the
distribution Ext(X, Ut) is ε-close to Um. (For every `, U` denotes the uniform distribution over
{0, 1}`.)

Equivalently, if Ext : {0, 1}n×{0, 1}t → {0, 1}m is a (k, ε) extractor, then for every distribution
X ranging over {0, 1}n of min-entropy k, and for every S ⊆ {0, 1}m, we have

|Pra∈X,z∈{0,1}t [Ext(a, z) ∈ S]−Prr∈{0,1}m [r ∈ S]| ≤ ε

We use this fact to show in Section 16.7.2 how to use extractors and (n, k)-sources to to simulate
any probabilistic computation.

Why an additional input? Our stated motivation for extractors is to execute probabilistic
algorithms without access to perfect unbiased coins. Yet, it seems that an extractor is not sufficient
for this task, as we only guarantee that its output is close to uniform if it is given an additional
input that is uniformly distributed. First, we note that the requirement of an additional input is
necessary: for every function Ext : {0, 1}n → {0, 1}m and every k ≤ n − 1 there exists an (n, k)-
source X such that the first bit of Ext(X) is constant (i.e, is equal to some value b ∈ {0, 1} with
probability 1), and so is at least of statistical distance 1/2 from the uniform distribution (Exercise 7).
Second, if the length t of the second input is sufficiently short (e.g., t = O(log n)) then, for the
purposes of simulating probabilistic algorithms, we can do without any access to true random coins,
by enumerating over all the 2t possible inputs (see Section 16.7.2). Clearly, t has to be somewhat
short for the extractor to be non-trivial: for t ≥ m, we can have a trivial extractor that ignores its
first input and outputs the second input. This second input is called the seed of the extractor.

16.6.3 Extractors based upon hash functions

One can use pairwise independent (and even weaker notions of) hash functions to obtain extractors.
In this section, H denotes a family of hash functions h : {0, 1}n → {0, 1}k. We say it has collision
error δ if for any x1 6= x2 ∈ {0, 1}n, Prh∈H[h(x1) = h(x2)] ≤ (1 + δ)/2k. We assume that one
can choose a random function h ∈ H by picking a string at random from {0, 1}t. We define the
extractor Ext :×{0, 1}t → {0, 1}k+t as follows:

Ext(x, h) = h(x) ◦ h, (17)

where ◦ denotes concatenation of strings.
To prove that this is an extractor, we relate the min-entropy to the collision probability of a

distribution, which is defined as
∑

a p2
a, where pa is the probability assigned to string a.

Lemma 16.41
If a distribution X has min-entropy at least k then its collision probability is at most 1/2k.

Proof: For every a in X’s range, let pa be the probability that X = a. Then,
∑

a p2
a ≤

maxa {pa} (
∑

a pa) ≤ 1
2k · 1 = 1

2k . �
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Lemma 16.42 (Leftover hash lemma)
If x is chosen from a distribution on {0, 1}n with min-entropy at least k/δ and H has collision error

δ, then h(X) ◦ h has distance at most
√

2δ to the uniform distribution.

Proof: Left as exercise. (Hint: use the relation between the L2 and L1 norms �

16.6.4 Extractors based upon random walks on expanders

This section assumes knowledge of random walks on expanders, as described in Chapter ??.

Lemma 16.43
Let ε > 0. For every n and k ≤ n there exists a (k, ε)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}n

where t = O(n− k + log 1/ε).

Proof: Suppose X is an (n, k)-source and we are given a sample a from it. Let G be a (2n, d, 1/2)-
graph for some constant d (see Definition 7.31 and Theorem 16.32).

Let z be a truly random seed of length t = 10 log d(n − k + log 1/ε) = O(n − k + log 1/ε). We
interpret z as a random walk in G of length 10(n− k + log 1/ε) starting from the node whose label
is a. (That is, we think of z as 10(n − k + log 1/ε) labels in [d] specifying the steps taken in the
walk.) The output Ext(a, z) of the extractor is the label of the final node on the walk.

We have ‖X − 1‖2
2 ≤ ‖X‖2

2 =
∑

a Pr[X = a]2, which is at most 2−k by Lemma 16.41 since X is
an (n, k)-source. Therefore, after a random walk of length t the distance to the uniform distribution
is (by the upperbound in (??)):

‖M tX − 1
2N

1‖1 ≤ λt
2‖X − 1

2N
1‖2

√
2N ≤ λt

22
(N−k)/2.

When t is a sufficiently large multiple of N − k + log 1/ε, this distance is smaller than ε. �

16.6.5 An extractor based upon Nisan-Wigderson

this section is still quite rough
Now we describe an elegant construction of extractors due to Trevisan.
Suppose we are given a string x obtained from an (N, k)-source. How can we extract k random

bits from it, given O(log N) truly random bits? Let us check that the trivial idea fails. Using
2 log N random bits we can compute a set of k (where k < N − 1) indices that are uniformly
distributed and pairwise independent. Maybe we should just output the corresponding bits of x?
Unfortunately, this does not work: the source is allowed to set N−k bits (deterministically) to 0 so
long as the remaining k bits are completely random. In that case the expected number of random
bits in our sample is at most k2/N , which is less than even 1 if k <

√
N .

This suggests an important idea: we should first apply some transformation on x to “smear out”
the randomness, so it is not localized in a few bit positions. For this, we will use error-correcting
codes. Recall that such codes are used to introduce error-tolerance when transmitting messages
over noisy channels. Thus intuitively, the code must have the property that it “smears” every bit
of the message all over the transmitted message.
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Having applied such an encoding to the weakly random string, the construction selects bits
from it using a better sampling method than pairwise independent sampling, namely, the Nisan-
Wigderson combinatorial design.

Nisan-Wigderson as a sampling method:

In (??) we defined a function NWf,S(z) using any function f : {0, 1}l → {0, 1} and a com-
binatorial design S. Note that the definition works for every function, not just hard-to-compute
functions. Now we observe that NWf,S(z) is actually a way to sample entries from the truth table
of f .

Think of f as a bitstring of length 2l, namely, its truth table. (Likewise, we can think of any
circuit with l-bit inputs and with 0/1 outputs as computing a string of length 2l.) Given any z
(“the seed”), NWf,S(z) is just a method to use z to sample a sequence of m bits from f . This is
completely analogous to pairwise independent sampling considered above; see Figure ??.

Figure unavailable in pdf file.

Figure 16.3: Nisan-Wigderson as a sampling method: An (l, α)-design (S1, S2, . . . , Sm) where each Si ⊆ [t], |Si| = l
can be viewed as a way to use z ∈ {0, 1}t to sample m bits from any string of length 2l, which is viewed as the truth
table of a function f :{0, 1}l → {0, 1}.

List-decodable codes

The construction will use the following kind of codes.

Definition 16.44
If δ > 0, a mapping σ :{0, 1}N → {0, 1}N̄ is called an error-correcting code that is list-decodable up

to error 1/2 − δ if for every w ∈ {0, 1}N̄ , the number of y ∈ BN such that w, σ(y) disagree in at
most 1/2− δ fraction of bits is at most 1/δ2.

The set
{

σ(x) : x ∈ {0, 1}N
}

is called the set of codewords.

The name “list-decodable” owes to the fact that if we transmit x over a noisy channel after first
encoding with σ then even if the channel flips 1/2 − δ fraction of bits, there is a small “list” of y
that the received message could be decoded to. (Unique decoding may not be possible, but this will
be of no consequence in the construction below.) The exercises ask you to prove that list-decodable
codes exist with N̄ = poly(N, 1/δ), where σ is computable in polynomial time.

Trevisan’s extractor:

Suppose we are given an (N, k)-source. We fix σ : {0, 1}N → {0, 1}N̄ , a polynomial-time
computable code that is list-decodable upto to error 1/2 − ε/m. We assume that N̄ is a power
of 2 and let l = log2 N̄ . Now every string x ∈ {0, 1}N̄ may be viewed as a boolean function
< x >: {0, 1}log N̄ → {0, 1} whose truth table is x. Let S = (S1, . . . , Sm) be a (l, log m) design over
[t].

The extractor ExtNW : {0, 1}N × {0, 1}t → {0, 1}m is defined as
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ExtNWσ,S(x, z) = NW<σ(x)>,S(z) .

That is, ExtNW encodes its first (“weakly random”) input x using an error-correcting code, then
uses Nisan-Wigderson sampling on the resulting string using the second (“truly random”) input z
as a seed.

Lemma 16.45
For sufficiently large m and for ε > 2−m2

, ExtNWσ,S is a (m3, 2ε)-extractor.

Proof: Let X be an (N, k) source where the min-entropy k is m3. To prove that the distribution
ExtNW (a, z) where a ∈ X, z ∈ {0, 1}t is close to uniform, it suffices (see our remarks after
Definition 16.38) to show for each function D : {0, 1}m → {0, 1} that∣∣∣Prr[D(r) = 1]−Pra∈X,z∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣ ≤ 2ε. (18)

For the rest of this proof, we fix an arbitrary D and prove that (18) holds for it.
The role played by this test D is somewhat reminiscent of that played by the distinguisher

algorithm in the definition of a pseudorandom generator, except, of course, D is allowed to be
arbitrarily inefficient. This is why we will use the black-box version of the Nisan-Wigderson analysis
(Corollary ??), which does not care about the complexity of the distinguisher.

Let B be the set of bad a’s for this D, where string a ∈ X is bad for D if∣∣∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]
∣∣∣ > ε.

We show that B is small using a counting argument: we exhibit a 1-1 mapping from the set of
bad a’s to another set G, and prove G is small. Actually, here is G:

G =
{
circuits of size O(m2)

}
× {0, 1}2 log(m/ε) × {0, 1}2 .

The number of circuits of size O(m2) is 2O(m2 log m), so |G| ≤ 2O(m2 log m) × 2(m/ε)2 = 2O(m2 log m).
Let us exhibit a 1-1 mapping from B to G. When a is bad, Corollary ?? implies that there is

a circuit C of size O(m2) such that either the circuit D(C()) or its negation –XORed with some
fixed bit b—agrees with σ(a) on a fraction 1/2 + ε/m of its entries. (The reason we have to allow
either D(C()) or its complement is the |·| sign in the statement of Corollary ??.) Let w ∈ {0, 1}N̄

be the string computed by this circuit. Then σ(a) disagrees with w in at most 1/2−ε/m fraction of
bits. By the assumed property of the code σ, at most (m/ε)2 other codewords have this property.
Hence a is completely specified by the following information: (a) circuit C; this is specified by
O(m2 log m) bits (b) whether to use D(C()) or its complement to compute w, and also the value
of the unknown bit b; this is specified by 2 bits (c) which of the (m/ε)2 codewords around w to
pick as σ(a); this is specified by d2 log(m/ε)e bits assuming the codewords around w are ordered
in some canonical way. Thus we have described the mapping from B to G.

We conclude that for any fixed D, there are at most 2O(m2 log m) bad strings. The probability
that an element a taken from X is bad for D is (by Lemma ??) at most 2−m3 · 2O(m2 log m) < ε for
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sufficiently large m. We then have∣∣∣Prr[D(r) = 1]−Pra∈X,z∈{0,1}t [D(ExtNW (a, z)) = 1]
∣∣∣

≤
∑

a

Pr[X = a]
∣∣∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]

∣∣∣
≤ Pr[X ∈ B] + ε ≤ 2ε,

where the last line used the fact that if a 6∈ B, then by definition of B,∣∣∣Pr[D(r) = 1]−Prz∈{0,1}t [D(ExtNW (a, z)) = 1]
∣∣∣ ≤ ε. �

The following theorem is an immediate consequence of the above lemma.

Theorem 16.46
Fix a constant ε; for every N and k = NΩ(1) there is a polynomial-time computable (k, ε)-extractor

Ext : {0, 1}N × {0, 1}t → {0, 1}m where m = k1/3 and t = O(log N).

16.7 Applications of Extractors

Extractors are deterministic objects with strong pseudorandom properties. We describe a few
important uses for them; many more will undoubtedly be found in future.

16.7.1 Graph constructions

An extractor is essentially a graph-theoretic object; see Figure ??. (In fact, extractors have been
used to construct expander graphs.) Think of a (k, ε) extractor Ext : {0, 1}N × {0, 1}t → {0, 1}m

as a bipartite graph whose left side contains one node for each string in {0, 1}N and the right side
contains a node for each string in {0, 1}m. Each node a on the left is incident to 2t edges, labelled
with strings in {0, 1}t, with the right endpoint of the edge labeled with z being Ext(a, z).

An (N, k)-source corresponds to any distribution on the left side with min-entropy at least k.
The extractor’s definition implies that picking a node according to this distribution and a random
outgoing edge gives a node on the right that is essentially uniformly distributed.

Figure unavailable in pdf file.

Figure 16.4: An extractor Ext : {0, 1}N × {0, 1}T → {0, 1}m defines a bipartite graph where every node on the left
has degree 2T .

This implies in particular that for every set X on the left side of size exactly 2k —notice, this is
a special case of an (N, k)-source— its neighbor set Γ(X) on the right satisfies |Γ(X)| ≥ (1− ε)2m.

One can in fact show a converse, that high expansion implies that the graph is an extractor;
see Chapter notes.
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16.7.2 Running randomized algorithms using weak random sources

We now describe how to use extractors to simulate probabilistic algorithms using weak random
sources. Suppose that A(·, ·) is a probabilistic algorithm that on an input of length n uses m = m(n)
random bits, and suppose that for every x we have Prr[A(x, r) = right answer ] ≥ 3/4. If A’s
answers are 0/1, then such algorithms can be viewed as defining a BPP language, but here we
allow a more general scenario. Suppose Ext : {0, 1}N × {0, 1}t → {0, 1}m is a (k, 1/4)-extractor.

Consider the following algorithm A′: on input x ∈ {0, 1}n and given a string a ∈ {0, 1}N

from the weakly random source, the algorithm enumerates all choices for the seed z and computes
A(x,Ext(a, z). Let

A′(x, a) = majority value of
{
A(x,Ext(a, z)) : z ∈ {0, 1}t} (19)

The running time of A′ is approximately 2t times that of A. We show that if a comes from an
(n, k + 2) source, then A′ outputs the correct answer with probability at least 3/4.

Fix the input x. Let R = {r ∈ {0, 1}m : A(x, r) = right answer }, and thus |R| ≥ 3
42m. Let

B be the set of strings a ∈ {0, 1}N for which the majority answer computed by algorithm A′ is
incorrect, namely,

B =
{

a : Prz∈{0,1}t [A(x,Ext(a, z)) = right answer] < 1/2
}

=
{

a : Prz∈{0,1}t [Ext(a, z) ∈ R] < 1/2
}

claim: |B| ≤ 2k.
Let random variable Y correspond to picking an element uniformly at random from B. Thus Y
has min-entropy log B, and may be viewed as a (N, log B)-source. By definition of B,

Pra∈Y,z∈{0,1}t [Ext(a, z) ∈ R] < 1/2.

But |R| = 3
42m, so we have∣∣∣Pra∈Y,z∈{0,1}t [Ext(a, z) ∈ R]−Prr∈{0,1}m [r ∈ R]

∣∣∣ > 1/4,

which implies that the statistical distance between the uniform distribution and Ext(Y, z) is at least
1/4. Since Ext is a (k, 1/4)-extractor, Y must have min-entropy less than k. Hence |B| ≤ 2k and
the Claim is proved.

The correctness of the simulation now follows since

Pra∈X [A′(x, a) = right answer ] = 1−Pra∈X [a ∈ B]

≥ 1− 2−(k+2) · |B| ≥ 3/4, (by Lemma ??).

Thus we have shown the following.
Theorem 16.47
Suppose A is a probabilistic algorithm running in time TA(n) and using m(n) random bits on
inputs of length n. Suppose we have for every m(n) a construction of a (k(n), 1/4)-extractor

Extn : {0, 1}N × {0, 1}t(n) → {0, 1}m(n) running in TE(n) time. Then A can be simulated in time
2t(TA + TE) using one sample from a (N, k + 2) source.
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16.7.3 Recycling random bits

We addressed the issue of recycling random bits in Section ??. An extractor can also be used to
recycle random bits. (Thus it should not be surprising that random walks on expanders, which
were used to recycle random bits in Section ??, were also used to construct extractors above.)

Suppose A be a randomized algorithm that uses m random bits. Let Ext : {0, 1}N × {0, 1}t) →
{0, 1}m be any (k, ε)-extractor. Consider the following algorithm. Randomly pick a string a ∈
{0, 1}N , and obtain 2t strings in {0, 1}m obtained by computing Ext(a, z) for all z ∈ {0, 1}t. Run
A for all these random strings. Note that this manages to run A as many as 2t times while using
only N random bits. (For known extractor constructions, N � 2tm, so this is a big saving.)

Now we analyse how well the error goes down. Suppose D ⊆ {0, 1}m be the subset of strings
for which A gives the correct answer. Let p = |D| /2m; for a BPP algorithm p ≥ 2/3. Call an
a ∈ {0, 1}N bad if the above algorithm sees the correct answer for less than p− ε fraction of z’s. If
the set of all bad a’s were to have size more than 2k, the (N, k)-source X corresponding to drawing
uniformly at random from the bad a’s would satisfy

Pr[Ext(X, Ut) ∈ D]− Pr[Um ∈ D] > ε,

which would contradict the assumption that Ext is a (k, ε)-extractor. We conclude that the prob-
ability that the above algorithm gets an incorrect answer from A in p− ε fraction of the repeated
runs is at most 2k/2N .

16.7.4 Pseudorandom generators for spacebounded computation

Now we describe Nisan’s pseudo-random generators for space-bounded randomized computation,
which allows randomized logspace computations to be run with O(log2 n) random bits.

Throughout this section we represent logspace machines by their configuration graph, which has
size poly(n).

Theorem 16.48 (Nisan)
For every d there is a c > 0 and a polynomial-time computable function g :{0, 1}c log2 n → {0, 1}nd

such that for every space-bounded machine M that has a configuration graph of size ≤ nd on inputs
of size n: ∣∣∣∣∣ Pr

r∈{0,1}nd
[M(x, r) = 1]− Pr

z∈{0,1}c log2 n
[M(x, g(z)) = 1]

∣∣∣∣∣ <
1
10

. (20)

We give a proof due to Impagliazzo, Nisan, and Wigderson [?] (with further improvements by
Raz and Reingold [?]) that uses extractors. Nisan’s original paper did not explicitly use extractors
—the definition of extractors came later and was influenced by results such as Nisan’s.

In fact, Nisan’s construction proves a result stronger than Theorem 16.48: there is a polynomial-
time simulation of every algorithm in BPL using O(log2 n) space. (See Exercises.) Note that
Savitch’s theorem (Theorem ??) also implies that BPL ⊆ SPACE(log2 n), but the algorithm in
Savitch’s proof takes nlog n time. Saks and Zhou [?] improved Nisan’s ideas to show that BPL ⊆
SPACE(log1.5 n), which leads many experts to conjecture that BPL = L (i.e., randomness does
not help logspace computations at all). (For partial progress, see Section ?? later.)
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The main intuition behind Nisan’s construction —and also the conjecture BPL = L— is that
the logspace machine has one-way access to the random string and only O(log n) bits of memory.
So it can only “remember” O(log n) of the random bits it has seen. To exploit this we will use
the following simple lemma, which shows how to recycle a random string about which only a little
information is known. (Throughout this section, ◦ denotes concatenation of strings.)

Lemma 16.49 (Recycling lemma)
Let f :{0, 1}n → {0, 1}s be any function and Ext :{0, 1}n×{0, 1}t → {0, 1}m be a (k, ε/2)-extractor,

where k = n− (s + 1)− log 1
ε . When X ∈R {0, 1}n, W ∈R {0, 1}m, z ∈R {0, 1}t, then

f(X) ◦W ≈ε f(X) ◦ Ext(X, z).

Remark 16.50
When the lemma is used, s � n and n = m. Thus f(X), which has length s, contains only a small
amount of information about X. The Lemma says that using an appropriate extractor (whose
random seed can have length as small as t = O(s + log(1/ε)) if we use Lemma 16.43) we can get a
new string Ext(X, z) that looks essentially random, even to somebody who knows f(X).

Proof: For v ∈ {0, 1}s we denote by Xv the random variable that is uniformly distributed over
the set f−1(v). Then we can express ‖ (f(X) ◦W − f(X) ◦ Ext(X, z) ‖ as

=
1
2

∑
v,w

∣∣∣Pr[f(X) = v ∧W = w]− Pr
z

[f(X) = v ∧ Ext(X, z) = w]
∣∣∣

=
∑

v

Pr[f(X) = v]· ‖ W − Ext(Xv, z) ‖ (21)

Let V =
{
v : Pr[f(X) = v] ≥ ε/2s+1

}
. If v ∈ V , then we can view Xv as a (n, k)-source, where

k ≥ n − (s + 1) − log 1
ε . Thus by definition of an extractor, Ext(Xv, r) ≈ε/2 W and hence the

contributions from v ∈ V sum to at most ε/2. The contributions from v 6∈ V are upperbounded by∑
v 6∈V Pr[f(X) = v] ≤ 2s × ε

2s+1 = ε/2. The lemma follows. �

Now we describe how the Recycling Lemma is useful in Nisan’s construction. Let M be a
logspace machine. Fix an input of size n and view the graph of all configurations of M on this
input as a leveled branching program. For some d ≥ 1, M has ≤ nd configurations and runs in time
L ≤ nd. Assume without loss of generality —since unneeded random bits can always be ignored—
that it uses 1 random bit at each step. Without loss of generality (by giving M a separate worktape
that maintains a time counter), we can assume that the configuration graph is leveled: it has L
levels, with level i containing configurations obtainable at time i. The first level contains only
the start node and the last level contains two nodes, “accept” and “reject;” every other level has
W = nd nodes. Each level i node has two outgoing edges to level i + 1 nodes and the machine’s
computation at this node involves using the next bit in the random string to pick one of these two
outgoing edges. We sometimes call L the length of the configuration graph and W the width.

For simplicity we first describe how to reduce the number of random bits by a factor 2. Think
of the L steps of the computation as divided in two halves, each consuming L/2 random bits.
Suppose we use some random string X of length L/2 to run the first half, and the machine is now
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Figure unavailable in pdf file.

Figure 16.5: Configuration graph for machine M

at node v in the middle level. The only information known about X at this point is the index of
v, which is a string of length d log n. We may thus view the first half of the branching program
as a (deterministic) function that maps {0, 1}L/2 bits to {0, 1}d log n bits. The Recycling Lemma
allows us to use a random seed of length O(log n) to recycle X to get an almost-random string
Ext(X, z) of length L/2, which can be used in the second half of the computation. Thus we can run
L steps of computation using L/2 + O(log n) bits, a saving of almost a factor 2. Using a similar
idea recursively, Nisan’s generator runs L steps using O(log n log L) random bits.

Now we formally define Nisan’s generator.

Definition 16.51 (Nisan’s generator)
For some r > 0 let Extk :{0, 1}kr × {0, 1}r → {0, 1}kr be an extractor function for each k ≥ 0. For
every integer k ≥ 0 the associated Nisan generator Gk : {0, 1}kr → {0, 1}2k

is defined recursively
as (where |a| = (k − 1)r, |z| = r)

Gk(a ◦ z) =


z1 (i.e., first bit of z) k = 1

Gk−1(a) ◦Gk−1(Extk−1(a, z)) k > 1

Now we use this generator to prove Theorem 16.48. We only need to show that the probability
that the machine goes from the start node to the “accept” node is similar for truly random strings
and pseudorandom strings. However, we will prove a stronger statement involving intermediate
steps as well.

If nodes u is a node in the configuration graph, and s is a string of length 2k, then we denote by
fu,2k(s) the node that the machine reaches when started in u and its random string is s. Thus if s

comes from some distribution D, we can define a distribution fu,2k(D) on nodes that are 2k levels
further from u.

Theorem 16.52
Let r = O(log n) be such that for each k ≤ d log n, Extk : {0, 1}kr × {0, 1}r → {0, 1}kr is a
(kr − 2d log n, ε)-extractor. For every machine of the type described in the previous paragraphs,
and every node u in its configuration graph:

‖ fu,2k(U2k)− fu,2k(Gk(Ukr)) ‖≤ 3kε, (22)

where Ul denotes the uniform distribution on {0, 1}l.

Remark 16.53
To prove Theorem 16.48 let u = u0, the start configuration, and 2k = L, the length of the entire
computation. Choose 3kε < 1/10 (say), which means log 1/ε = O(log L) = O(log n). Using the
extractor of Section 16.6.4 as Extk, we can let r = O(log n) and so the seed length kr = O(r log L) =
O(log2 n).
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Proof: (Theorem 16.52) Let εk denote the maximum value of the left hand side of (22) over all
machines. The lemma is proved if we can show inductively that εk ≤ 2εk−1 + 2ε. The case k = 1
is trivial. At the inductive step, we need to upperbound the distance between two distributions
fu,2k(D1), fu,2k(D4), for which we introduce two distributions D2,D3 and use triangle inequality:

‖ fu,2k(D1)− fu,2k(D4) ‖≤
3∑

i=1

‖ fu,2k(Di)− fu,2k(Di+1) ‖ . (23)

The distributions will be:

D1 = U2k

D4 = Gk(Ukr)
D2 = U2k−1 ◦Gk−1(U(k−1)r)

D3 = Gk−1(U(k−1)r) ◦Gk−1(U ′
(k−1)r) (U,U ′ are identical but independent).

We bound the summands in (23) one by one.

Claim 1: ‖ fu,2k(D1)− fu,2k(D2) ‖≤ εk−1.
Denote Pr[fu,2k−1(U2k−1) = w] by pu,w and Pr[fu,2k−1(Gk−1(U(k−1)r)) = w] by qu,w. According to
the inductive assumption,

1
2

∑
w

|pu,w − qu,w| =‖ fu,2k−1(U2k−1)− fu,2k−1(Gk−1(U(k−1)r)) ‖≤ εk−1.

Since D1 = U2k may be viewed as two independent copies of U2k−1 we have

‖ fu,2k(D1)− fu,2k(D2) ‖ =
∑

v

1
2

∣∣∣∣∣∑
w

puwpwv −
∑
w

puwqwv

∣∣∣∣∣
where w, v denote nodes 2k−1 and 2k levels respectively from u

=
∑
w

puw
1
2

∑
v

|pwv − qwv|

≤ εk−1 (using inductive hypothesis and
∑
w

puw = 1)

Claim 2: ‖ fu,2k(D2)− fu,2k(D3) ‖≤ εk−1.

The proof is similar to the previous case.

Claim 3: ‖ fu,2k(D3)− fu,2k(D4) ‖≤ 2ε.
We use the Recycling Lemma. Let gu :{0, 1}(k−1)r → [1,W ] be defined as gu(a) = fu,2k−1(Gk−1(a)).
(To put it in words, apply the Nisan generator to the seed a and use the result as a random string
for the machine, using u as the start node. Output the node you reach after 2k−1 steps.) Let
X, Y ∈ U(k−1)r and z ∈ Ur. According to the Recycling Lemma,

gu(X) ◦ Y ≈ε gu(X) ◦ Extk−1(X, z),
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and then part 3 of Lemma 16.39 implies that the equivalence continues to hold if we apply a
(deterministic) function to the second string on both sides. Thus

gu(X) ◦ gw(Y ) ≈ε gu(X) ◦ gw(Extk−1(X, z))

for all nodes w that are 2k−1 levels after u. The left distribution corresponds to fu,2k(D3) (by which
we mean that Pr[fu,2k(D3) = v] =

∑
w Pr[gu(X) = w ∧ gw(Y ) = v]) and the right one to fu,2k(D4)

and the proof is completed. �

Chapter notes and history

The results of this section have not been presented in chronological order and some important
intermediate results have been omitted. Yao [?] first pointed out that cryptographic pseudorandom
generators can be used to derandomize BPP. A short paper of Sipser [?] initiated the study
of “hardness versus randomness,” and pointed out the usefulness of a certain family of highly
expanding graphs that are now called dispersers (they are reminiscent of extractors). This research
area received its name as well as a thorough and brilliant development in a paper of Nisan and
Wigderson [?]. missing discussion of followup works to NW94

Weak random sources were first considered in the 1950s by von Neumann [?]. The second volume
of Knuth’s seminal work studies real-life pseudorandom generators and their limitations. The
study of weak random sources as defined here started with Blum [?]. Progressively weaker models
were then defined, culminating in the “correct” definition of an (N, k) source in Zuckerman [?].
Zuckerman also observed that this definition generalizes all models that had been studied to date.
(See [?] for an account of various models considered by previous researchers.) He also gave the
first simulation of probabilistic algorithms with such sources assuming k = Ω(N). A succession of
papers has improved this result; for some references, see the paper of Lu, Reingold, Vadhan, and
Wigderson [?], the current champion in this area (though very likely dethroned by the time this
book appears).

The earliest work on extractors —in the guise of leftover hash lemma of Impagliazzo, Levin,
and Luby [?] mentioned in Section 16.6.3— took place in context of cryptography, specifically,
cryptographically secure pseudorandom generators. Nisan [?] then showed that hashing could be
used to define provably good pseudorandom generators for logspace.

The notion of an extractor was first formalized by Nisan and Zuckerman [?]. Trevisan [?]
pointed out that any “black-box” construction of a pseudorandom generator gives an extractor,
and in particular used the Nisan-Wigderson generator to construct extractors as described in the
chapter. His methodology has been sharpened in many other papers (e.g.,see [?]).

Our discussion of derandomization has omitted many important papers that successively im-
proved Nisan-Wigderson and culminated in the result of Impagliazzo and Wigderson [?]that either
NEXP = BPP (randomness is truly powerful!) or BPP has an a subexponential “simulation.” 7

Such results raised hopes that we were getting close to at least a partial derandomization of BPP,
but these hopes were dashed by the Impagliazzo-Kabanets [?] result of Section 16.3.

7The “simulation” is in quotes because it could fail on some instances, but finding such instances itself requires
exponential computational power, which nature presumably does not have.

Web draft 2007-01-08 22:03



DRAFT

p16.38 (312) 16.7. APPLICATIONS OF EXTRACTORS

Trevisan’s insight about using pseudorandom generators to construct extractors has been greatly
extended. It is now understood that three combinatorial objects studied in three different fields
are very similar: pseudorandom generators (cryptography and derandomization), extractors (weak
random sources) and list-decodable error-correcting codes (coding theory and information theory).
Constructions of any one of these objects often gives constructions of the other two. For a survey,
see Vadhan’s lecture notes [?].

still a lot missing
Expanders were well-studied for a variety of reasons in the 1970s but their application to pseu-

dorandomness was first described by Ajtai, Komlos, and Szemeredi [?]. Then Cohen-Wigderson [?]
and Impagliazzo-Zuckerman (1989) showed how to use them to “recycle” random bits as described
in Section 7.B.3. The upcoming book by Hoory, Linial and Wigderson (draft available from their
web pages) provides an excellent introduction to expander graphs and their applications.

The explicit construction of expanders is due to Reingold, Vadhan and Wigderson [?], although
we chose to present it using the replacement product as opposed to the closely related zig-zag
product used there. The deterministic logspace algorithm for undirected connectivity is due to
Reingold [?].

Exercises

§1 Verify Corollary 16.6.

§2 Show that there exists a number ε > 0 and a function G : {0, 1}∗ → {0, 1}∗ that satisfies all of
the conditions of a 2εn-pseudorandom generator per Definition ??, save for the computational
efficiency condition.

Hint:showthatifforeveryn,arandomfunctionmappingnbits
to2

n/10
bitswillhavedesiredpropertieswithhighprobabilities.

§3 Show by a counting argument (i.e., probabilistic method) that for every large enough n there
is a function f :{0, 1}n → {0, 1}, such that Havg(f) ≥ 2n/10.

§4 Prove that if there exists f ∈ E and ε > 0 such that Havg(f)(n) ≥ 2εn for every n ∈ N, then
MA = NP.

§5 We define an oracle Boolean circuit to be a Boolean circuit that have special gates with
unbounded fanin that are marked ORACLE. For a Boolean circuit C and language O ⊆ {0, 1}∗,
we define by CO(x) the output of C on x, where the operation of the oracle gates when fed
input q is to output 1 iff q ∈ O.

(a) Prove that if every f ∈ E can be computed by a polynomial-size circuits with oracle to
SAT, then the polynomial hierarchy collapses.

(b) For a function f : {0, 1}∗ → {0, 1} and O ⊆ {0, 1}∗, define Havg
O(f) to be the function

that maps every n ∈ N to the largest S such that Prx∈R{0,1}n [CO(x) = f(x)] ≤ 1/2+1/S.

§6 Prove Lemma 16.39.
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§7 Prove that for every function Ext : {0, 1}n → {0, 1}m and there exists an (n, n− 1)-source X
and a bit b ∈ {0, 1} such that Pr[Ext(X)1 = b] = 1 (where Ext(X)1 denotes the first bit of
Ext(X)). Prove that this implies that δ(Ext(X), Um) ≥ 1/2.

§8 Show that there is a constant c > 0 such that if an algorithm runs in time T and requires
m random bits, and m > k + c log T , then it is not possible in general to simulate it in a
blackbox fashion using an (N, k) source and O(log n) truly random bits.

Hint:Foreachsourceshowthatthereisarandomizedalgorithm
—itneednotbeefficient,sinceitisbeingusedasa“blackbox”—
forwhichthesimulationfails.

§9 A flat (N, k) source is a (N, k) source where for every x ∈ {0, 1}N px is either 0 or exactly
2−k.

Show that a source X is an (N, k)-source iff it is a distribution on flat sources. In other words,
there is a set of flat (N, k)-sources X1, X2, . . . and a distribution D on them such that drawing
a sample of X corresponds to picking one of the Xi’s according to D, and then drawing a
sample from Xi.

Hint:Youneedtoviewadistributionasapointina2
N

-
dimensionalspace,andshowthatXisintheconvexhullofthe
pointsthatrepresentallpossibleflatsources.

§10 Use Nisan’s generator to give an algorithm that produces universal traversal sequences for
n-node graphs (see Definition ??) in nO(log n)-time and O(log2 n) space.

§11 Suppose boolean function f is (S, ε)-hard and let D be the distribution on m-bit strings defined
by picking inputs x1, x2, . . . , xm uniformly at random and outputting f(x1)f(x2) · · · f(xm).
Show that the statistical distance between D and the uniform distribution is at most εm.

§12 Prove Lemma 16.42.

§13 (Klivans and van Melkebeek 1999) Suppose the conclusion of Lemma ?? is true. Then show
that MA ⊆ i.o.−[NTIME(2n)/n].

(Slightly harder) Show that if NEXP 6= EXP then AM ⊆ i.o.−[NTIME(2n)/n].

§14 Let A be an n× n matrix with eigenvectors u1, . . . ,un and corresponding values λ1, . . . , λn.
Let B be an m×m matrix with eigenvectors v1, . . . ,vm and corresponding values α1, . . . , αm.
Prove that the matrix A⊗B has eigenvectors ui ⊗ vj and corresponding values λi · αj .

§15 Prove that for every two graphs G, G′, λ(G⊗G′) ≤ λ(G) + λ(G′) without using the fact that
every symmetric matrix is diagonalizable.

Hint:UseLemma7.40.
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§16 Let G be an n-vertex D-degree graph with ρ combinatorial edge expansion for some ρ > 0.
(That is, for every a subset S of G’s vertices of size at most n/2, the number of edges
between S and its complement is at least ρd|S|.) Let G′ be a D-vertex d-degree graph with
ρ′ combinatorial edge expansion for some ρ′ > 0. Prove that G©R G′ has at least ρ2ρ′/1000
edge expansion.

Hint:EverysubsetofG©RG′canbethoughtofasnsubsetsof
theindividualclusters.Treatdifferentlythesubsetsthattakeup
morethan1−ρ/10portionoftheirclustersandthosethattake
uplessthanthat.FortheformerusetheexpansionofG,whilefor
thelatterusetheexpansionofG′.
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