
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 13

Circuit lowerbounds

Complexity theory’s Waterloo

We believe that NP does not have polynomial-sized circuits. We’ve seen that if true, this
implies that NP 6= P. In the 1970s and 1980s, many researchers came to believe that the route
to resolving P versus NP should go via circuit lowerbounds, since circuits seem easier to reason
about than Turing machines. The success in this endeavor was mixed.

Progress on general circuits has been almost nonexistent: a lowerbound of n is trivial for any
function that depends on all its input bits. We are unable to prove even a superlinear circuit
lowerbound for any NP problem— the best we can do after years of effort is 4.5n− o(n).

To make life (comparatively) easier, researchers focussed on restricted circuit classes, and were
successful in proving some decent lowerbounds. We prove some of the major results of this area and
indicate where researchers are currently stuck. In Chapter 22 we’ll explain some of the inherent
obstacles that need to be overcome to make further progress.

13.1 AC0 and H̊astad’s Switching Lemma

As we saw in Chapter 6, AC0 is the class of languages computable by circuit families of constant
depth, polynomial size, and whose gates have unbounded fanin. (Constant depth circuits with
fanin 2 can only compute functions depending on a constant number of input bits.) The burning
question in the late 1970s was whether problems like Clique and TSP have AC0 circuits. However,
in 1981, Furst, Saxe and Sipser and independently, Ajtai, proved a lowerbound for a much simpler
function:

Theorem 13.1 ([?, ?])
Let

⊕
be the parity function. That is, for every x ∈ {0, 1}n,

⊕
(x1, . . . , xn) =

∑n
i=1 xi (mod 2).

Then
⊕
6∈ AC0.

Often courses in digital logic design teach students how to do “circuit minimization” using
Karnaugh maps. Note that circuits talked about in those courses are depth 2 circuits, i.e. CNF or
DNF. Indeed, it is easy to show (using for example the Karnaugh map technique studied in logic

Web draft 2007-01-08 22:02
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p13.1 (231)

DRAFT

p13.2 (232) 13.1. AC0 AND HÅSTAD’S SWITCHING LEMMA

design) that the parity function requires exponentially many gates if the depth is two. However,
those simple ideas do not seem to generalize to even depth 3 circuits.

The main tool in the proof of Theorem 13.1 is the concept of random restrictions. Let f be a
function computable by a depth d circuit and suppose that we choose at random a vast majority
(i.e., n−nε for some constant ε > 0 depending on d) of the input variables and assign to each such
variable either 0 or 1 at random. We’ll prove that with positive probability, the function f subject
to this restriction is constant (i.e., either always zero or always one). Since the parity function
cannot be made a constant by fixing values to a subset of the variables, it follows that it cannot be
computed by a constant depth circuit.

13.1.1 The switching lemma

Now we prove the main lemma about how a circuit simplifies under a random restriction. A k-DNF
(resp. k-CNF) formula is an OR of AND’s (resp. AND or OR’s) where each AND (resp. OR)
involves at most k variables.

Lemma 13.2 (Håstad’s switching lemma [?])
Suppose f is expressible as a k-DNF, and let ρ denote a random restriction that assigns random
values to t randomly selected input bits. Then for every s ≥ 2.

Prρ[f |ρ is not expressible as s-CNF] ≤
(

(n− t)k10

n

)s/2

(1)

where f |ρ denotes the function f restricted to the partial assignment ρ.

We’ll typically use this lemma with k, s constant and t ≈ n−
√

n in which case the guaranteed
bound on the probability will be n−c for some constant c. Note that by applying the lemma to the
function ¬f , we can get the same result with the terms DNF and CNF interchanged.

Proving Theorem 13.1 from Lemma 13.2. Now we show how H̊astad’s lemma implies that
parity is not in AC0. We start with any AC0 circuit and assume that the circuit has been simplified
as follows (the simplifications are straightforward to do and are left as Exercises 1 and 2): (a) All
fanouts are 1; the circuit is a tree (b) All not gates to the input level of the circuit; equivalently,
the circuit has 2n input wires, with the last n of them being the negations of the first n (c) ∨ and
∧ gates alternate —at worst this assumption doubles the depth of the circuit (d) The bottom level
has ∧ gates of fanin 1.

We randomly restrict more and more variables, where each step with high probability will reduce
the depth of the circuit by 1 and will keep the bottom level at a constant fanin. Specifically, letting
ni stand for the number of unrestricted variables after step i, we restrict ni−

√
ni variables at step

i + 1. Since n0 = n, we have ni = n1/2i
. Let nb denote an upper bound on the number of gates in

the circuit and let ki = 10b2i. We’ll show that with high probability, after the ith restriction we’re
left with a depth-d− i circuit with at most ki fanin in the bottom level. Indeed, suppose that the
bottom level contains ∧ gates and the level above it contains ∨ gates. The function each such ∨
gate computes is a ki-DNF and hence by Lemma 13.2, with probability 1−

(
k10

i

n1/2i+1

)ki+1/2
, which

Web draft 2007-01-08 22:02

DRAFT

13.1. AC0 AND HÅSTAD’S SWITCHING LEMMA p13.3 (233)

is at least 1 − 1/(10nb) for large enough n, the function such a gate computes will be expressible
as a ki+1-CNF. We can then merge this CNF with the ∧-gate above it, reducing the depth of the
circuit by one (see Figures 13.1 and 13.2). The symmetric reasoning applies in the case the bottom
level consists of ∨ gates— in this case we use the lemma to transform the ki-CNF of the level
above it into a ki+1-DNF. Note that we apply the lemma at most once per each of the at most nb

gates of the original circuit. By the union bound, with probability 9/10, if we continue this process
for d − 2 steps, we’ll get a depth two circuit with fanin k = kd−2 at bottom level (i.e., a k-CNF
or k-DNF formula). If we then choose to restrict each variable with probability half (i.e., restrict
about half of the variables to a random value), this circuit will be reduced to a constant function
with probability at least 2−k. Since the parity function is not constant under any restriction of less
than n variables, this proves Theorem 13.1. �

Figure unavailable in pdf file.

Figure 13.1: Circuit before H̊astad switching transformation.

Figure unavailable in pdf file.

Figure 13.2: Circuit after H̊astad switching transformation. Notice that the new layer of ∧ gates can be collapsed
with the single ∧ parent gate, to reduce the number of levels by one.

13.1.2 Proof of the switching lemma (Lemma 13.2)

Now we prove the Switching Lemma. The original proof was more complicated; this one is due
to Razborov. Let f be expressible as a k-DNF on n variables. Let t be as in the lemma and let
Rt denote the set of all restrictions to t variables (note we can assume t > n/2). We have that
|Rt| =

(
n
t

)
2t. Let Kt,s denote the set of restrictions ρ such that f |ρ is not a s-CNF. We need to

bound |Kt,s|/|Rt| by the right hand side of (1) to prove the lemma. We’ll do that by showing a
one-to-one function mapping Kt,s into the set Z×S where Z is the set of restrictions of at least t+s
variables (i.e. Z = ∪t′≥t+sRt′) and S is some set of size 32ks. This will prove the lemma since at he

range t′ � n/2,
(
n
t′

)
≈

(
n

n−t′

)n−t′

and hence Z will be of size bounded by roughly n2s
(

n−t
n

)s |Rt|.
We leave verifying the exact bound as Exercise 3.

Mapping Kt,s into Z ×S. Let ρ ∈ Kt,s be a restriction fixing t variables such that f |ρ is not an
s-CNF. We need to map ρ in a one-to-one way into some restriction ρ∗ of at least t + s variables,
and some additional element in a set S of size at most 32ks.

Special case: each term has at most one “live” variable. To get some intuition for the
proof, consider first the case that for each term t in the k-DNF formula for f , ρ either fixed t to
the value 0 or left a single unassigned variable in t, in which case we say that t′s value is ? (ρ can’t
fix a term to the value 1 since we assume f |ρ is not constant). We denote by x1, . . . , xs denote the

Web draft 2007-01-08 22:02

DRAFT

p13.4 (234) 13.1. AC0 AND HÅSTAD’S SWITCHING LEMMA

first s such unassigned variables, according to some canonical ordering of the terms for the k-DNF
formula of f (there are more than s since otherwise f |ρ would be expressible as an s-CNF). For
each such variable xi, let termi be the ?-valued term in which xi appears. Let Ri be the operation
of setting xi to the value that ensures termi is true. We’ll map ρ to τ1 = R1R2 · · ·Rsρ. That is,
apply Rs to ρ, then apply Rk−1 to ρ, · · · , then apply R1 to ρ. The crucial insight is that given τ1,
one can deduce term1: this is the first term that is true in f |τ1 . One might think that the second
term that is true in f |τ1 is term2 but that’s not necessarily the case, since the variable x1 may have
appeared several times, and so setting it to R1 may have set other terms to true (it could not have
set other terms to false, since this would imply that f |ρ includes an OR of xi and ¬xi, and hence
is the constant one function). We thus supply as part of the mapping a string w1 ∈ {0, 1, ?}s that
tells us the assignment of the k variables of term1 in τ2 = R2 · · ·Rsρ. Given that information we
can “undo” R1 and move from τ1 to τ2. Now in τ2, term2 is the first satisfied term. Continuing
on this way we see that from τ1 (which is an assignment of at least t + s variables) and strings
w1, . . . , ws that are defined as above, we can recover ρ, implying that we have a one-to-one mapping
that takes ρ into an assignment of at least t + s variables and a sequence in {0, 1, ?}ks.

The general case. We now consider the general case, where some terms might have more than
one unassigned variable in them. We let term1 be the first ?-valued term in f |ρ and let x1 be the
first unassigned variable in term1. Once again, we have an operation R1 that will make term1 true,
although this time we think of R1 as assigning to all the k variables in term1 the unique value that
makes the term true. We also have an operation L1 assigning a value to x1 such that f |L1ρ cannot
be expressed by an s− 1-CNF. Indeed, if for both possible assignments to x1 we get an s− 1-CNF
then f |ρ is an s-CNF. We note that it’s not necessarily the case that x1’s value under L1ρ is different
from its value under R1ρ, but it is the case that term1’s value is either ? or False under L1ρ (since
otherwise f |L1ρ would be constant). We let term2 be the first ?-valued term in f |L1ρ (note that
term2 ≥ term1) and let x2 be the first unassigned variable in term2. Once again, we have an
operation R2 such that term2 is the first true term in f |R2L1ρ and operation L2 such that f |L2L1ρ

is not a s− 2-CNF. Continuing in this way we come up with operations L1, . . . , Ls, R1, . . . , Rs such
that if we let ρi be the assignment Li · · ·L1ρ (with ρ0 = ρ) then for 1 ≤ i ≤ s:

• termi is the first ?-valued term in f |ρi−1 .

• termi is the first true-valued term in f |Riρi−1 .

• Li agrees with ρi−1 on all variables assigned a value by ρi−1.

• Ri agrees with ρi on all variables assigned a value by ρi.

For 1 ≤ i ≤ s, define τi to be RiRi+1 · · ·Rsρs, and define τs+1 = ρs. We have that termi is
the first true term in f |τi : indeed, all the operations in τi do not change variables assigned values
by ρi−1 and there termi is the first ?-valued term. Thus τi cannot make any earlier term true.
However, since the last operation applied is Ri, termi is true in f |τi .

Let z1, . . . , zs and w1, . . . , ws be 2s strings in {0, 1, ?}s defined as follows: zi describes the
values assigned to the k variables appearing in termi by ρi−1 and wi describes the value assigned to
termi’s variables by τi+1. Clearly, from termi, zi and the assignment ρi one can compute ρi−1 and

Web draft 2007-01-08 22:02

DRAFT

13.2. CIRCUITS WITH “COUNTERS”:ACC p13.5 (235)

from termi, wi and the assignment τi one can compute τi+1. We’ll map ρ to τ1 and the sequence
z1, . . . , zs, w1, . . . , ws. Note that τ1 does assign values to at least s variables not assigned by ρ, and
that from τ1 we can find term1 (as this is the first true term in f |τ1) and then using w1 recover
τ2 and continue in this way until we recover the original assignment ρ. Thus this mapping is a
one-to-one map from Tt,s to Z × {0, 1, ?}2ks. �

13.2 Circuits With “Counters”:ACC

One way to extend the AC0 lowerbounds of the previous section was to define a more general class
of circuits. What if we allow more general gates? The simplest example is a parity gate. Clearly,
an AC0 circuit provided with parity gates can can compute the parity function. But are there
still other functions that it cannot compute? Razborov proved the first such lowerbound using his
Method of Approximations. Smolensky later extended this work and clarified this method for the
circuit class considered here.

Normally we think of a modular computation as working with numbers rather than bit, but it
is sufficient to consider modular gates whose output is always 0/1.

Definition 13.3 (modular gates)
For any integer m, the MODm gate outputs 0 if the sum of its inputs is 0 modulo m, and 1
otherwise.

Definition 13.4 (ACC)
For integers m1,m2, . . . ,mk > 1 we say a language L is in ACC0[m1,m2, . . . ,mk] if there exists a
circuit family {Cn} with constant depth and polynomial size (and unbounded fan-in) consisting of
∧, ∨, ¬ and MODm1 , . . . ,MODmk

gates accepting L.
The class ACC0 contains every language that is in ACC0(m1,m2, . . . ,mk) for some k ≥ 0 and

m1,m2, . . . ,mk > 1.

Good lowerbounds are known only when the circuit has one kind of modular gate.

Theorem 13.5 (Razborov,Smolensky)
For distinct primes p and q, the function MODp is not in ACC0(q).

We exhibit the main idea of this result by proving that the parity function cannot be computed
by an ACC0(3) circuit.
Proof: The proof proceeds in two steps.

Step 1. In the first step, we show (using induction on h) that for any depth h MOD3 circuit on
n inputs and size S, there is a polynomial of degree (2l)h which agrees with the circuit on
1− S/2l fraction of the inputs. If our circuit C has depth d then we set 2l = n1/2d to obtain
a degree

√
n polynomial that agrees with C on 1− S/2n1/2d/2 fraction of inputs.

Step 2 We show that no polynomial of degree
√

n agrees with MOD2 on more than 49/50 fraction
of inputs.

Web draft 2007-01-08 22:02

DRAFT

p13.6 (236) 13.2. CIRCUITS WITH “COUNTERS”:ACC

Together, the two steps imply that S > 2n1/2d/2/50 for any depth d circuit computing MOD2,
thus proving the theorem. Now we give details.
Step 1. Consider a node g in the circuit at a depth h . (The input is assumed to have depth 0.)
If g(x1, · · · , xn) is the function computed at this node, we desire a polynomial g̃(x1, · · · , xn) over
GF (3) with degree (2l)h, such that g(x1, . . . , xn) = g̃(x1, . . . , xn) for “most” x1, . . . , xn ∈ {0, 1}.
We will also ensure that on every input in {0, 1}n ⊆ GF (3), polynomial g̃ takes a value in {0, 1}.
This is without loss of generality since we can just square the polynomial. (Recall that the elements
of GF (3) are 0,−1, 1 and 02 = 0, 12 = 1 and (−1)2 = 1.)

We construct the approximator polynomial by induction. When h = 0 the “gate” is an input
wire xi, which is exactly represented by the degree 1 polynomial xi. Suppose we have constructed
approximators for all nodes up to height h− 1 and g is a gate at height h.

1. If g is a NOT gate, then g = ¬f1 for some other gate f1 that is at height h − 1 or less.
The inductive hypothesis gives an approximator f̃1 for f1. Then we use g̃ = 1 − f̃1 as the
approximator polynomial for g; this has the same degree as f̃1. Whenever f̃1 = f1 then g̃ = g,
so we introduced no new error.

2. If g is a MOD3 gate with inputs f1, f2, . . . , fk, we use the approximation g̃ = (
∑k

i=0 f̃i)2. The
degree increases to at most 2 × (2l)h−1 < (2l)h. Since 02 = 0 and (−1)2 = 1, we introduced
no new error.

3. If g is an AND or an OR gate, we need to be more careful. Suppose g = ∧k
i=0fi. The naive

approach would be to replace g with the polynomial Πi∈I f̃i. For an OR gate g = ∨k
i=0fi De

Morgan’s law gives a similar naive approximator 1 −
∏

i∈I(1 − f̃i). Unfortunately, both of
these multiply the degree by k, the fanin of the gate, which could greatly exceed 2l.

The correct solution involves introducing some error. We give the solution for OR; De Mor-
gan’s law allows AND gates to be handled similarly.

If g = ∨k
i=0fi, then g = 1 if and only if at least one of the fi = 1. Furthermore, by the random

subsum principle (see Section ?? in Appendix A) if any of the fi = 1, then the sum (over
GF (3)) of a random subset of {fi} is nonzero with probability at least 1/2.

Randomly pick l subsets S1, · · · , Sl of {1, . . . , k}. Compute the l polynomials (
∑

j∈Si
f̃j)2,

each of which has degree at most twice that of the largest input polynomial. Compute
the OR of these l terms using the naive approach. We get a polynomial of degree at most
2l×(2l)h−1 = (2l)h. For any x, the probability over the choice of subsets that this polynomial
differs from OR(f̃1, . . . , f̃k) is at most 1

2l . So, by the probabilistic method, there exists a choice
for the l subsets such that the probability over the choice of x that this polynomial differs from
OR(f̃1, · · · , f̃k) is at most 1

2l . We use this choice of the subsets to construct the approximator.

Applying the above procedure for each gate gives an approximator for the output gate of degree
(2l)d where d is depth of the entire circuit. Each operation of replacing the gate by its approximator
polynomial introduces error on at most 1/2l fraction of all inputs, so the overall fraction of erroneous
inputs for the approximator is at most S/2l. (Note that errors at different gates may affect each
other. Error introduced at one gate may be cancelled out by errors at another gate higher up. We

Web draft 2007-01-08 22:02

DRAFT

13.2. CIRCUITS WITH “COUNTERS”:ACC p13.7 (237)

are being pessimistic in applying the union bound to upperbound the probability that any of the
approximator polynomials anywhere in the circuit miscomputes.)
Step 2. Suppose that a polynomial f agrees with the MOD2 function for all inputs in a set
G′ ⊆ 0, 1n. If the degree of f is bounded by

√
n, then we show |G′| <

(
49
50

)
2n.

Consider the change of variables yi = 1 + xi (mod 3). (Thus 0 → 1 and 1 → −1.) Then, G′

becomes some subset G of {−1, 1}n, and f becomes some other polynomial, say g(y1, y2, . . . , yn),
which still has degree

√
n. Moreover,

MOD2(x1, x2, . . . , xn) =

{
1 ⇒ Πn

i=1yi = −1
0 ⇒ Πn

i=1yi = 1
(2)

Thus g(y1, y2, . . . , yn), a degree
√

n polynomial, agrees with Πn
i=1yi on G. This is decidedly odd,

and we show that any such G must be small. Specifically, let FG be the set of all functions
S :G → {0, 1,−1}. Clearly, |FG| = 3|G|, and we will show |FG| ≤ 3(49

50)2n
, whence Step 2 follows.

Lemma 13.6
For every S ∈ FG, there exists a polynomial gS which is a sum of monomials aI

∏
i∈I yi where

|I| ≤ n
2 +

√
n such that gS(x) = S(x) for all x ∈ G.

Proof: Let Ŝ : GF (3)n → GF (3) be any function which agrees with S on G. Then Ŝ can be
written as a polynomial in the variables yi. However, we are only interested in its values on
(y1, y2, . . . , yn) ∈ {−1, 1}n, when y2

i = 1 and so every monomial Πi∈Iy
ri
i has, without loss of

generality, ri ≤ 1. Thus Ŝ is a polynomial of degree at most n. Now consider any of its monomial
terms Πi∈Iyi of degree |I| > n/2. We can rewrite it as

Πi∈Iyi = Πn
i=1yiΠi∈Īyi, (3)

which takes the same values as g(y1, y2, . . . , yn)Πi∈Īyi over {−1, 1}n. Thus every monomial in Ŝ
has degree at most n

2 +
√

n. �

To conclude, we bound the number of polynomials whose every monomial with a degree at most
n
2 +

√
n. Clearly this number is #polynomials ≤ 3#monomials, and

#monomials ≤
∣∣∣{N ⊆ {1 · · ·n}| |N | ≤ n

2
+
√

n
∣∣∣ (4)

≤
∑

i≤
n

2
+
√

n

(
n

i

)
(5)

Using knowledge of the tails of a binomial distribution (or alternatively, direct calculation),

≤ 49
50

2n (6)

�

Web draft 2007-01-08 22:02

DRAFT

p13.8 (238) 13.3. LOWERBOUNDS FOR MONOTONE CIRCUITS

13.3 Lowerbounds for monotone circuits

A Boolean circuit is monotone if it contains only AND and OR gates, and no NOT gates. Such a
circuit can only compute monotone functions, defined as follows.

Definition 13.7
For x, y ∈ {0, 1}n, we denote x 4 y if every bit that is 1 in x is also 1 in y. A function f :{0, 1}n →
{0, 1} is monotone if f(x) ≤ f(y) for every x 4 y.

Remark 13.8
An alternative characterization is that f is monotone if for every input x, changing a bit in x from
0 to 1 cannot change the value of the function from 1 to 0.

It is easy to check that every monotone circuit computes a monotone function, and every mono-
tone function can be computed by a (sufficiently large) monotone circuit. CLIQUE is a monotone
function since adding an edge to the graph cannot destroy any clique that existed in it. In this
section we show that the CLIQUE function can not be computed by polynomial (and in fact even
subexponential) sized monotone circuits:

Theorem 13.9 ([?, ?])
Denote by CLIQUEk,n : {0, 1}(

n
2) → {0, 1} be the function that on input an adjacency matrix of an

n-vertex graph G outputs 1 iff G contains a k-vertex clique.
There exists some constant ε > 0 such that for every k ≤ n1/4, there’s no monotone circuit of

size less than 2ε
√

k that computes CLIQUEk,n.

We believe CLIQUE does not have polynomial-size circuits even allowing NOT gates (i.e., that
NP * P/poly). In fact, a seemingly plausible approach to proving this might be to show that for
every monotone function f , the monotone circuit complexity of f is polynomially related to the
general (non-monotone) circuit complexity. Alas, this conjecture was refuted by Razborov ([?], see
also [?]).

13.3.1 Proving Theorem 13.9

Clique Indicators

To get some intuition why this theorem might be true, lets show that CLIQUEk,n can’t be computed
(or even approximated) by subexponential monotone circuits of a very special form. For every
S ⊆ [n], let CS denote the function on {0, 1}(

n
2) that outputs 1 on a graph G iff the set S is a clique

in G. We call CS the clique indicator of S. Note that CLIQUEk,n =
∨

S⊆[n],|S|=k CS . We’ll now

prove that CLIQUEk,n can’t be computed by an OR of less than n
√

k/20 clique indicators.
Let Y be the following distribution on n-vertex graphs: choose a set K ⊆ [n] with |K| = k at

random, and output the graph that has a clique on K and no other edges. Let N be the following
distribution on n-vertex graphs: choose a function c : [n] → [k − 1] at random, and place an edge
between u and v iff c(u) 6= c(v). With probability one, CLIQUEn,k(Y) = 1 and CLIQUEn,k(N) = 0.
The fact that CLIQUEn,k requires an OR of at least n

√
k/20 clique indicators follows immediately

from the following lemma:

Web draft 2007-01-08 22:02

DRAFT

13.3. LOWERBOUNDS FOR MONOTONE CIRCUITS p13.9 (239)

Lemma 13.10
Let n be sufficiently large, k ≤ n1/4 and S ⊆ [n]. Then either Pr[CS(N) = 1] ≥ 0.99 or Pr[CS(Y) =
1] ≤ n−

√
k/20

Proof: Let ` =
√

k − 1/10. If |S| ≤ ` then by the birthday bound, we expect a random f : S →
[k − 1] to have less than 0.01 collisions and hence by Markov the probability f is one to one is at
least 0.99. This implies that Pr[CS(N) = 1] ≥ 0.99.

If |S| > ` then Pr[CS(Y) = 1] is equal to the probability that S ⊆ K for a random K ⊆ [n]
of size k. This probability is equal to

(
n−`
k−`

)
/
(
n
k

)
which is at most

(
n

k−
√

k−1/10

)
/
(
n
k

)
which, by the

formula for the binomial coefficients, is less than
(

2k
n

)` ≤ n−0.7` < n−
√

k/20 (for sufficiently large
n). �

Approximation by clique indicators.

Together with Lemma 13.10, the following lemma implies Theorem 13.9:

Lemma 13.11
Let C be a monotone circuit of size s. Let ` =

√
k/10. Then, there exist sets S1, . . . , Sm with

m ≤ n
√

k/20 such that

PrG∈RY [
∨
i

CSi(G) ≥ C(G)] >0.9 (7)

PrG∈RN [
∨
i

CSi(G) ≤ C(G)] >0.9 (8)

(9)

Proof: Set ` =
√

k/10, p = 10
√

k log n and m = (p− 1)``!. Note that m � n
√

k/20. We can think
of the circuit C as the sequence of s monotone functions f1, . . . , fs from {0, 1}(

n
2) to {0, 1} where

each function fk is either the AND or OR of two functions fk′ , fk′′ for k′, k′′ < k or is the value
of an input variable xu,v for u, v ∈ [n] (i.e., fk = C{u,v}). The function that C computes is fs.
We’ll show a sequence of functions f̃1, . . . , f̃s such that each function f̃k is (1) an OR of at most m
clique indicators CS1 , . . . ,CSm with |Si| ≤ ` and (2) f̃k approximates fk in the sense of (7) and (8).
We call a function f̃k satisfying (1) an (`,m)-function. The result will follow by considering the
function f̃s.

We construct the functions f̃1, . . . , f̃s by induction. For 1 ≤ k ≤ s, if fk is an input variable then
we let f̃k = fk. If fk = fk′∨fk′′ then we let f̃k′t f̃k′′ and if fk = fk′∧fk′′ then we let f̃k′u f̃k′′ , where
the operations t,u will be defined below. We’ll prove that for every f, g : {0, 1}(

n
2) → {0, 1} (a) if

f and g are (m, `)-functions then so is f t g (resp. f u g) and (b) PrG∈RY [ftg (G) < f∪g (G)] <
1/(10S) (resp. PrG∈RY [fug (G) < f∩g (G)] < 1/(10S)) and PrG∈RN [ftg (G) > f∪g (G)] < 1/(10S)
(resp. PrG∈RY [fug (G) < f∩g (G)] < 1/(10S)). The lemma will then follow by showing using
the union bound that with probability ≥ 0.9 the equations of Condition (b) hold for all f̃1, . . . , f̃s.
We’ll now describe the two operations t,u. Condition (a) will follow from the definition of the
operations, while Condition (b) will require a proof.

Web draft 2007-01-08 22:02

DRAFT

p13.10 (240) 13.3. LOWERBOUNDS FOR MONOTONE CIRCUITS

The operation f t g. Let f, g be two (m, `)-functions: that is f =
∨m

i=1 CSi and g =
∨m

j=1 CTj

(if f or g is the OR of less than m clique indicators we can add duplicate sets to make the number
m). Consider the function h = CZ1 ∪ · · · ∪ CZ2m where Zi = Si and Zm+j = Tj for 1 ≤ i, j ≤ m.
The function h is not an (m, `)-function since it is the OR of 2m clique indicators. We make it
into an (m, `)-function in the following way: as long as there are more than m distinct sets, find
p subsets Zi1 , . . . , Zip that are in a sunflower formation. That is, there exists a set Z ⊆ [n] such
that for every 1 ≤ j, j′ ≤ p, Zij ∩ Zi,j′ = Z. Replace the functions CZi1

, . . . ,CZip
in the function h

with the function CZ . Once we obtain an (m, `)-function h′ we define f t g to be h′. We won’t get
stuck because of the following lemma (whose proof we defer):

Lemma 13.12 (Sunflower lemma [?])
Let Z be a collection of distinct sets each of cardinality at most `. If |Z| > (p − 1)``! then there
exist p sets Z1, . . . , Zp ∈ Z and set Z such that Zi ∩ Zj = Z for every 1 ≤ i, j ≤ p.

The operation f u g. Let f, g be two (m, `)-functions: that is f =
∨m

i=1 CSi and g =
∨m

j=1 CTj .
Let h be the function

∨
1≤i,j≤m CSi∪Tj . We perform the following steps on h: (1) Discard any

function CZ for |Z| > `. (2) Reduce the number of functions to m by applying the sunflower
lemma as above.

Proving Condition (b). To complete the proof of the lemma, we prove the following four
equations:

• PrG∈RY [ftg (G) < f∪g (G)] < 1/(10S).

If Z ⊆ Z1, . . . , Zp then for every i, CZi(G) implies that CZ(G) and hence the operation f t g
can’t introduce any “false negatives”.

• PrG∈RN [ftg (G) > f∪g (G)] < 1/(10S).

We can introduce a “false positive” on a graph G only if when we replace the clique indicators
for a sunflower Z1, . . . , Zp with the clique indicator for the common intersection Z, it is the
case that CZ(G) holds even though CZi(G) is false for every i. Recall that we choose G ∈R N
by choosing a random function c : [n] → [k−1] and adding an edge for every two vertices u, v
with c(u) 6= c(v). Thus, we get a false positive if c is one-to-one on Z (we denote this event
by B) but not one-to-one on Zi for every 1 ≤ i ≤ p (we denote these events by A1, . . . , Ap).
We’ll show that the intersection of B and A1, . . . , Ap happens with probability at most 2−p

which (by the choice of p) is less than 1/(10m2s). Since we apply the reduction step at most
m times the equation will follow.

Since ` <
√

k − 1/10, for every i, Pr[Ai|B] < 1/2 (the probability that there’ll be a collision
on the at most ` elements of Zi\Z is less than half). Conditioned on B, the events A1, . . . , Ap

are independent, since they depend on the values of c on disjoint sets, and hence we have
that Pr[A1 ∧ · · · ∧Ap ∧B] ≤ Pr[A1 ∧ · · · ∧Ap|B] =

∏p
i=1 Pr[Ap|B] ≤ 2−p.

• PrG∈RY [fug (G) < f∩g (G)] < 1/(10S).

By the distributive law f ∩ g =
∨

i,j(CSi ∩ CTj). A graph G in the support of Y consists of a
clique over some set K. For such a graph CSi∩CTj holds iff Si, Tj ⊆ K and thus CSi∩CTj holds

Web draft 2007-01-08 22:02

DRAFT

13.4. CIRCUIT COMPLEXITY: THE FRONTIER p13.11 (241)

iff CSi∪Tj holds. We can introduce a false negative when we discard functions of the form CZ

for |Z| > `, but by Lemma 13.10, for such sets Z, Pr[CZ(Y) = 1] < n−
√

k/20 < 1/(10sm2).
The equation follows since we discard at most m2 such sets.

• PrG∈RN [fug (G) > f∩g (G)] < 1/(10S).

Since CS∪T implies both CS and CT , we can’t introduce false positives by moving from f∩g to∨
i,j CSi∪Tj . We can’t introduce false positives by discarding functions from the OR. Thus, the

only place where we can introduce false positives is where we replace the clique indicators of
a sunflower with the clique indicator of the common intersection. We bound this probability
in the same way as this was done for the t operator.

�

Proof of the sunflower lemma (Lemma 13.12). The proof is by induction on `. The case
` = 1 is trivial since distinct sets of size 1 must be disjoint. For ` > 1 let M be a maximal
subcollection of Z containing only disjoint sets. Because of M’s maximality for every Z ∈ Z there
exists x ∈ ∪M = ∪M∈MM such that x ∈ Z. If |M| ≥ p we’re done, since such a collection is
already a sunflower. Otherwise, since | ∪ M| ≤ (p − 1)` by averaging there’s an x ∈ ∪M that
appears in at least a 1

`(p−1) fraction of the sets in Z. Let Z1, . . . , Zk be the sets containing x, and
note that k > (p − 1)`−1(` − 1)!. Thus, by induction there are p sets among the ` − 1-sized sets
Z1 \{x}, · · · , Zk \{x} that form a sunflower, adding back x we get the desired sunflower among the
original sets. Note that the statement (and proof) assume nothing about the size of the universe
the sets in Z live in. �

13.4 Circuit complexity: The frontier

Now we sketch the “frontier” of circuit lowerbounds, namely, the dividing line between what we
can prove and what we cannot. Along the way we also define multi-party communication, since it
may prove useful for proving some new circuit lowerbounds.

13.4.1 Circuit lowerbounds using diagonalization

We already mentioned that the best lowerbound on circuit size for an NP problem is 4.5n− o(n).
For PH better lowerbounds are known: one of the exercises in Chapter 6 asked you to show that
some for every k > 0, some language in PH (in fact in Σp

2) requires circuits of size Ω(nk). The
latter lowerbound uses diagonalization, and one imagines that classes “higher up” than PH should
have even harder languages.

Frontier 1: Does NEXP have languages that require super-polynomial size circuits?

If we go a little above NEXP, we can actually prove a super-polynomial lowerbound: we know
that MAEXP * P/poly where MAEXP is the set of languages accepted by a one round proof with
an all powerful prover and an exponential time probabilistic verifier. This follows from the fact

Web draft 2007-01-08 22:02

DRAFT

p13.12 (242) 13.4. CIRCUIT COMPLEXITY: THE FRONTIER

Figure unavailable in pdf file.

Figure 13.3: The depth 2 circuit with a symmetric output gate from Theorem 13.13.

that if MAEXP ⊆ P/poly then in particular PSPACE ⊆ P/poly. However, by IP = PSPACE
(Theorem 8.17) we have that in this case PSPACE = MA (the prover can send in one round the
circuit for computing the prover strategy in the interactive proof). However, by simple padding this
implies that MAEXP equals the class of languages in exponential space, which can be directly shown
to not contain P/poly using diagonalization. Interestingly, this lower bound does not relativize (i.e.,
there’s an oracle under which MANEXP ⊆ P/poly [?]).

13.4.2 Status of ACC versus P

The result that PARITY is not in AC0 separates NC1 from AC0. The next logical step would be
to separate ACC0 from NC1. Less ambitiously, we would like to show even a function in P or NP
that is not in ACC0.

The Razborov-Smolenksy method seems to fail when we allow the circuit even two types of
modular gates, say MOD2 and MOD3. In fact if we allow the bounded depth circuit modular
gates that do arithmetic mod q, when q is not a prime —a prime power, to be exact— we reach
the limits of our knowledge. (The exercises ask you to figure out why the proof of Theorem 13.5
does not seem to apply when the modulus is a composite number.) To give one example, it it is
consistent with current knowledge that the majority of n bits can be computed by linear size circuits
of constant depth consisting entirely of MOD6 gates. The problem seems to be that low-degree
polynomials modulo m where m is composite are surprisingly expressive [?].

Frontier 2: Show Clique is not in ACC0(6).

Or even less ambitiously:

Frontier 2.1: Exhibit a language in NEXP that is not in ACC0(6).

It is worth noting that thus far we are talking about nonuniform circuits (to which Theorem 13.5
also applies). Stronger lower bounds are known for uniform circuits: Allender and Gore [?] have
shown that a decision version of the Permanent (and hence the Permanent itself) requires exponen-
tial size “Dlogtime-uniform” ACC0 circuits. (A circuit family {Cn} is Dlogtime uniform if there
exists a deterministic Turing machine M that given a triple (n, g, h) determines in linear time —i.e.,
O(log n) time when g, h ≤ poly(n)— what types of gates g and h are and whether g is h’s parent
in Cn.)

But going back to nonuniform ACC0, we wish to mention an alternative representation of
ACC0 circuits that may be useful in further lowerbounds. Let a symmetric gate be a gate whose
output depends only on the number of inputs that are 1. For example, majority and mod gates
are symmetric. Yao has shown that ACC0 circuits can be simplified to give an equivalent depth 2
circuits with a symmetric gate at the output (figure ??). Beigel and Tarui subsequently improved
Yao’s result:

Web draft 2007-01-08 22:02

DRAFT

13.4. CIRCUIT COMPLEXITY: THE FRONTIER p13.13 (243)

Theorem 13.13 (Yao [?], Beigel and Tarui [?])
If f ∈ ACC0, then f can be computed by a depth 2 circuit C with a symmetric gate with

quasipolynomial (i.e., 2logk n) fan-in at the output level and ∨ gates with polylogarithmic fan-in at
the input level.

We will revisit this theorem below in Section 13.5.1.

13.4.3 Linear Circuits With Logarithmic Depth

When we restrict circuits to have bounded fanin we necessarily need to allow them to have non-
constant (in fact, Ω(log n)) depth to have any reasonable power. With this in mind, the simplest
interesting circuit class seems to be one of circuits wth linear size and logarithmic depth.

Frontier 3: Find an explicit function that cannot be computed by circuits of linear size and
logarithmic depth.

(Note that by counting one can easily show that some function on n bits requires superpoly-
nomial size circuits and hence bounded fan-in circuits with more than logarithmic depth; see the
exercises on the chapter on circuits. Hence we want to show this for an explicit function, e.g.
CLIQUE.)

Valiant thought about this problem in the ’70s. His initial candidates for lowerbounds boiled
down to showing that a certain graph called a superconcentrator needed to have superlinear size.
He failed to prove thisand instead ended up proving that such superconcentrators do exist!

Another sideproduct of Valiant’s investigations was the following important lemma concerning
depth-reduction for such circuits.

Lemma 13.14 (Valiant)
In any circuit with m edges and depth d, there are km/ log d edges whose removal leaves a circuit

with depth at most d/2k−1.

This lemma can be applied as follows. Suppose we have a circuit C of depth c log n with n
inputs {x1, . . . , xn} and n outputs {y1, . . . , yn}, and suppose 2k ∼ c/ε where ε > 0 is arbitrarily
small. Removing O(n/ log log n) edges from C then results in a circuit with depth at most ε log n.
But then, since C has bounded fan-in, we must have that each output yi is connected to at most
2ε log n = nε inputs. So each output yi in C is completely determined by nε inputs and the values
of the omitted edges. So we have a “dense” encoding for the function fi(x1, . . . , xn) = yi. We do
not expect this to be the case for any reasonably difficult function.

13.4.4 Branching Programs

Just as circuits are used to investigate time requirements of Turing Machines, branching programs
are used to investigate space complexity.

A branching program on n input variables x1, x2, . . . , xn is a directed acyclic graph all of whose
nodes of nonzero outdegree are labeled with a variable xi. It has two nodes of outdegree zero that
are labeled with an output value, ACCEPT or REJECT. The edges are labeled by 0 or 1. One of
the nodes is designated the start node. A setting of the input variables determines a way to walk

Web draft 2007-01-08 22:02

DRAFT

p13.14 (244) 13.5. APPROACHES USING COMMUNICATION COMPLEXITY

on the directed graph from the start node to an output node. At any step, if the current node has
label xi, then we take an edge going out of the node whose label agrees with the value of xi. The
branching program is deterministic if every nonoutput node has exactly one 0 edge and one 1 edge
leaving it. Otherwise it is nondeterministic. The size of the branching program is the number of
nodes in it. The branching program complexity of a language is defined analogously with circuit
complexity. Sometimes one may also require the branching program to be leveled, whereby nodes
are arranged into a sequence of levels with edges going only from one level to the next. Then the
width is the size of the largest level.

Theorem 13.15
If S(n) ≥ log n and L ∈ SPACE(S(n)) then L has branching program complexity at most cS(n)

for some constant c > 1.

Proof: Essentially mimics our proof of Theorem‘?? that SPACE(S(n)) ⊆ DTIME(2O(S(n))).
The nodes of the branching program correspond to the configurations of the space-bounded TM,
and it is labeled with variable xi if the configuration shows the TM reading the ith bit in the input.
�

Of course, a similar theorem is true about NDTMs and nondeterministic branching program
complexity.

Frontier 4: Describe a problem in P (or even NP) that requires branching programs of size greater
than n1+ε for some constant ε > 0.

There is some evidence that branching programs are more powerful than one may imagine. For
instance, branching programs of constant width (reminiscent of a TM with O(1) bits of memory)
seem inherently weak. Thus the next result is unexpected.

Theorem 13.16 (Barrington [?])
A language has polynomial size, width 5 branching programs iff it is in NC1.

13.5 Approaches using communication complexity

Here we outline a concrete approach (rather, a setting) in which better lowerbounds may lead to a
resolution of some of the questions above. It relates to generalizations of communication complexity
introduced earlier. Mostly we will use multiparty communication complexity, though Section 13.5.4
will use communication complexity of a relation.

13.5.1 Connection to ACC0 Circuits

Suppose f(x1, . . . , xk) has a depth-2 circuit with a symmetric gate with fan-in N at the output and
∧ gates with fan-in k−1 at the input level (figure 2). The claim is that f ’s k-party communication
complexity is at most k log N . (This observation is due to Razborov and Wigderson [?]). To see
the claim, first partition the ∧ gates amongst the players. Each bit is not known to exactly one
player, so the input bits of each ∧ gate are known to at least one player; assign the gate to such a
player with the lowest index. Players then broadcast how many of their gates output 1. Since this
number has at most log N bits, the claim follows.

Web draft 2007-01-08 22:02

DRAFT

13.5. APPROACHES USING COMMUNICATION COMPLEXITY p13.15 (245)

Figure unavailable in pdf file.

Figure 13.4: If f is computed by the above circuit, then f has a k-party protocol of complexity k log N .

Our hope is to employ this connection with communication complexity in conjunction with
Theorem 13.13 to obtain lower bounds on ACC0 circuits. For example, note that the function in
Example ?? above cannot have k < log n/4. However, this is not enough to obtain a lower bound
on ACC0 circuits since we need to show that k is not polylogarithmic to employ Theorem 13.13.
Thus a strengthening of the Babai Nisan Szegedy lowerbound to Ω(n/poly(k)) for say the CLIQUE
function would close Frontier 2.

13.5.2 Connection to Linear Size Logarithmic Depth Circuits

Suppose that f : {0, 1}n × {0, 1}log n → {0, 1}n has bounded fan-in circuits of linear size and
logarithmic depth. If f(x, j, i) denotes the ith bit of f(x, j), then Valiant’s Lemma implies that
f(x, j, i) has a simultaneous 3-party protocol—that is, a protocol where all parties speak only once
and write simultaneously on the blackboard (i.e., non-adaptively)—where,

• (x, j) player sends n/ log log n bits;

• (x, i) player sends nε bits; and

• (i, j) player sends O(log n) bits.

So, if we can show that a function does not have such a protocol, then we would have a lower bound
for the function on linear size logarithmic depth circuits with bounded fan-in.

Conjecture: The function f(x, j, i) = xj⊕i, where j ⊕ i is the bitwise xor, is conjectured to be
hard, i.e., f should not have a compact representation.

13.5.3 Connection to branching programs

The notion of multiparty communication complexity (at least the “number on the forehead” model
discussed here) was invented by Chandra Furst and Lipton [?] for proving lowerbounds on branching
programs, especially constant-width branching programs discussed in Section ??

13.5.4 Karchmer-Wigderson communication games and depth lowerbounds

The result that PARITY is not in AC0 separates NC1 from AC0. The next step would be to
separate NC2 from NC1. (Of course, ignoring for the moment the issue of separating ACC0 from
NC1.) Karchmer and Wigderson [?] described how communication complexity can be used to prove
lowerbounds on the minimum depth required to compute a function. They showed the following
result about monotone circuits, which we will not prove this result.

Theorem 13.17
Detecting whether a graph has a perfect matching is impossible with monotone circuits of depth
O(log n)

Web draft 2007-01-08 22:02

DRAFT

p13.16 (246) 13.5. APPROACHES USING COMMUNICATION COMPLEXITY

However, we do describe the basic Karchmer-Wigderson game used to prove the above result,
since it is relevant for nonmonotone circuits as well. For a function f : {0, 1}n → {0, 1} this game
is defined as follows.

There are two players, ZERO and ONE. Player ZERO receives an input x such that f(x) = 0
and Player ONE receives an input y such that f(y) = 1. They communicate bits to each other,
until they can agree on an i ∈ {1, 2, . . . , n} such that xi 6= yi.

The mechanism of communication is defined similarly as in Chapter 12; there is a protocol that
the players agree on in advance before receiving the input. Note that the key difference from the
scenario in Chapter 12 is that the final answer is not a single bit, and furthermore, the final answer
is not unique (the number of acceptable answers is equal to the number of bits that x, y differ on).
Sometimes this is described as computing a relation. The relation in this case consists of all triples
(x, y, i) such that f(x) = 0, f(y) = 1 and xi 6= yi.

We define CKW (f) as the communication complexity of the above game; namely, the maximum
over all x ∈ f−1(0), y ∈ f−1(1) of the number of bits exchanged in computing an answer for x, y. The
next theorem shows that this parameter has a suprising alternative characterization. It assumes
that circuits don’t have NOT gates and instead the NOT gates are pushed down to the inputs
using De Morgan’s law. (In other words, the inputs may be viewed as x1, x2, . . . , xn, x1, x2, . . . , xn.)
Furthermore, AND and OR gates have fanin 2. (None of these assumptions is crucial and affects
the theorem only marginally.)

Theorem 13.18 ([?])
CKW (f) is exactly the minimum depth among all circuits that compute f .

Proof: First, we show that if there is a circuit C of depth K that computes f then CKW (f) ≤ K.
Each player has a copy of C, and evaluates this circuit on the input given to him. Of course, it
ealuates to 0 for Player ZERO and to 1 for Player ONE. Suppose the top gate is an OR. Then
at least one of the two incoming wires to this gate must be 1, and in the first round, Player ONE
sends one bit communicating which of these wires it was. Note that this wire is 0 for Player ZERO.
In the next round the players focus on the gate that produced the value on this wire. (If the top
gate is an AND on the other hand, then in the first round Player ZERO speaks, conveying which
of the two incoming wires was 0. This wire will be 1 for Player ONE.) This goes on and the players
go deeper down the circuit, always maintaining the invariant that the current gate has value 1 for
Player ONE and 0 for Player ZERO. Finally, after at most K steps they arrive at an input bit.
According to the invariant being maintained, this bit must be 1 for Player ONE and 0 for Player
ZERO. Thus they both know an index i that is a valid answer.

For the reverse direction, we have to show that if CKW (f) = K then there is a circuit of depth
at most K that computes f . We prove a more general result. For any two disjoint nonempty
subsets A ⊆ f−1(0) and B ⊆ f−1(1), let CKW (A,B) be the communication complexity of the
Karchmer-Wigderson game when x always lies in A and y in B. We show that there is a circuit
of depth CKW (A,B) that outputs 0 on every input from A and 1 on every input from B. Such a
circuit is called a distinguisher for sets A,B. The proof is by induction on K = CKW (A,B). The
base case K = 0 is trivial since this means the players do not have to communicate at all to agree
on an answer, say i. Hence xi 6= yi for all x ∈ A, y ∈ B, which implies that either (a) xi = 0 for

Web draft 2007-01-08 22:02

DRAFT

13.5. APPROACHES USING COMMUNICATION COMPLEXITY p13.17 (247)

every x ∈ A and yi = 0 for every y ∈ B or (b) xi = 1 for every x ∈ A and yi = 1 for every y ∈ B.
In case (a) we can use the depth 0 circuit xi and in case (b) we can use the circuit xi to distinguish
A,B.

For the inductive step, suppose CKW (A,B) = K, and at the first round Player ZERO speaks.
Then A is the disjoint union of two sets A0, A1 where Ab is the set of inputs in A for which Player
ZERO sends bit b. Then CKW (Ab, B) ≤ K − 1 for each b, and the inductive hypothesis gives a
circuit Cb of depth at most K − 1 that distinguishes Ab, B. We claim that C0 ∧ C1 distinguishes
A,B (note that it has depth at most K). The reason is that C0(y) = C1(y) = 1 for every y ∈ B
whereas for every x ∈ A, C0(x) ∧ C1(x) = 0 since if x ∈ Ab then Cb(x) = 0. �

Thus we have the following frontier.

Frontier 5: Show that some function f in P (or even NEXP!) has CKW (f) = Ω(log n log log n).

Karchmer, Raz, and Wigderson [?] describe a candidate function that may work. It uses the
fact a function on k bits has a truth table of size 2k, and that most functions on k bits are hard
(e.g., require circuit size Ω(2k/k), circuit depth Ω(k), etc.). They define the function by assuming
that part of the n-bit input encodes a very hard function, and this hard function is applied to the
remaining input in a “tree” fashion.

For any function g :{0, 1}k → {0, 1} and s ≥ 1 define g◦s :{0, 1}ks

→ {0, 1} as follows. If s = 1
then g◦s = g. Otherwise express the input x ∈ {0, 1}ks

as x1x2x3 · · ·xk where each xi ∈ {0, 1}ks−1

and define

g◦s(x1x2 · · ·xk) = g(g◦(s−1)(x1)g◦(s−1)(x2) · · · g◦(s−1)(xk)).

Clearly, if g can be computed in depth d then g◦s can be computed in depth sd. Furthermore, if
one fails to see how one could reduce the depth for an arbitrary function.

Now we describe the KRW candidate function f : {0, 1}n → {0, 1}. Let k = dlog n
2 e and s be

the largest integer such that ks ≤ n/2 (thus s = Θ(log n
log log n).) For any n-bit input x, let gx be the

function whose truth table is the first 2k bits of x. Let x|2 be the string of the last ks bits of x.
Then

f(x) = g◦sx (x|2).

According to our earlier intuition, when the first 2k bits of x represent a really hard function —as
they must for many choices of the input— then g◦sx (x|2) should require depth Ω(sk) = Ω(log2 n

log log n).
Of course, proving this seems difficult.

This type of complexity questions, whereby we are asking whether s instances of a problem are
s times as hard as a single instance, are called direct sum questions. Similar questions have been
studied in a variety of computational models, and sometimes counterintuitive results have been
proven for them. One example is that by a counting argument there exists an n× n matrix A over
{0, 1}, such that the smallest circuit computing the linear function v 7→ Av for v ∈ {0, 1}n is of size
Ω(n2). However, computing this function on n instances v1, . . . , vn can be done significantly faster
than n3 steps using fast matrix multiplication [?] (the current record is roughly O(n2.38) [?]).

Web draft 2007-01-08 22:02

DRAFT

p13.18 (248) 13.5. APPROACHES USING COMMUNICATION COMPLEXITY

Chapter notes and history

Shannon defined circuit complexity, including monotone circuit complexity, in 1949. The topic was
studied in Russia since the 1950s. (See Trakhtenbrot [?] for some references.) Savage [?] was the
first to observe the close relationship between time required to decide a language on a TM and its
circuit complexity, and to suggest circuit lowerbounds as a way to separate complexity classes. A
burst of results in the 1980s, such as the separation of P from AC0 [?, ?] and Razborov’s separation
of monotone NP from monotone P/poly [?] raised hopes that a resolution of P versus NP might
be near. These hopes were dashed by Razborov himself [?] when he showed that his method of
approximations was unlikely to apply to nonmonotone circuits. Later Razborov and Rudich [?]
formalized what they called natural proofs to show that all lines of attack considered up to that
point were unlikely to work. (See Chapter 22.)

Our presentation in Sections 13.2 and 13.3 closely follows that in Boppana and Sipser’s excellent
survey of circuit complexity [?], which is still useful and current 15 years later. (It omits discussion
of lowerbounds on algebraic circuits; see [?] for a recent result.)

H̊astad’s switching lemma [?] is a stronger form of results from[?, ?, ?]. The Razborov-
Smolensky method of using approximator polynomials is from [?], strengthened in[?]. Valiant’s
observations about superlinear circuit lowerbounds are from a 1975 paper [?] and an unpublished
manuscript—lack of progress on this basic problem gets more embarrassing by the day!.

The 4.5n− o(n) lowerbound on general circuits is from Lachish-Raz [?].

Exercises

§1 Suppose that f is computable by an AC 0 circuit C of depth d and size S. Prove that f is
computable by an AC 0 circuit C ′ of size 10S and depth d that does not contain NOT gates
but instead has n additional inputs that are negations of the original n inputs.

Hint:eachgateintheoldcircuitgetsatwinthatcomputesits
negation.

§2 Suppose that f is computable by an AC 0 circuit C of depth d and size S. Prove that f is
computable by an AC0 C ′ circuit of size (10S)d and depth d where each gate has fanout 1.

§3 Prove that for t > n/2,
(

n
t+k

)
≤

(
n
t

) (
n

n−t

)k
. Use this to complete the proof of Lemma 13.2

(Section 13.1.2).

§4 Show that ACC0 ⊆ NC1.

§5 Identify reasons why the Razborov-Smolensky method does not work when the circuit has
modm gates, where m is a composite number.

§6 Show that representing the OR of n variables x1, x2, . . . , xn exactly with a polynomial over
GF (q) where q is prime requires degree exactly n.

§7 The Karchmer-Wigderson game can be used to prove upperbounds, and not just lowerbounds.
Show using this game that PARITY and MAJORITY are in NC1.

Web draft 2007-01-08 22:02

DRAFT

13.5. APPROACHES USING COMMUNICATION COMPLEXITY p13.19 (249)

§8 Show that if a language is computed by a polynomial-size branching program of width 5 then
it is in NC1.

§9 Prove Valiant’s Lemma (Lemma 13.14).

Hint:Adirectedacyclicgraphcanbebeturnedintoaleveled
graph,suchthatifu→visanedgethenuoccursatalower
levelthanv.Labelthisedgebylookingatthenumbersgivento
thelevelsofu,vandremovetheedgescorrespondingtotheleast
popularlabel.

Web draft 2007-01-08 22:02

DRAFT

p13.20 (250) 13.5. APPROACHES USING COMMUNICATION COMPLEXITY

Web draft 2007-01-08 22:02

	Circuit lowerbounds
	AC0 and Håstad's Switching Lemma
	The switching lemma
	Proof of the switching lemma (Lemma 13.2)

	Circuits With ``Counters'':ACC
	Lowerbounds for monotone circuits
	Proving Theorem 13.9
	Clique Indicators
	Approximation by clique indicators.

	Circuit complexity: The frontier
	Circuit lowerbounds using diagonalization
	Status of ACC versus P
	Linear Circuits With Logarithmic Depth
	Branching Programs

	Approaches using communication complexity
	Connection to ACC 0 Circuits
	Connection to Linear Size Logarithmic Depth Circuits
	Connection to branching programs
	Karchmer-Wigderson communication games and depth lowerbounds

	Chapter notes and history
	Exercises

