Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007

Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University
complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you
will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

About this book

Computational complexity theory has developed rapidly in the past three decades. The list of
surprising and fundamental results proved since 1990 alone could fill a book: these include new
probabilistic definitions of classical complexity classes (IP = PSPACE and the PCP Theorems)
and their implications for the field of approximation algorithms; Shor’s algorithm to factor integers
using a quantum computer; an understanding of why current approaches to the famous P versus
NP will not be successful; a theory of derandomization and pseudorandomness based upon com-
putational hardness; and beautiful constructions of pseudorandom objects such as extractors and
expanders.

This book aims to describe such recent achievements of complexity theory in the context of
the classical results. It is intended to both serve as a textbook as a reference for self-study. This
means it must simultaneously cater to many audiences, and it is carefully designed with that goal.
Throughout the book we explain the context in which a certain notion is useful, and why things
are defined in a certain way. Examples and solved exercises accompany key definitions. We assume
essentially no computational background and very minimal mathematical background, which we
review in Appendix A.

We have also provided a web site for this book at http://www.cs.princeton.edu/theory/complexity/
with related auxiliary material. This includes web chapters on automata and computability theory,
detailed teaching plans for courses based on this book, a draft of all the book’s chapters, and links
to other online resources covering related topics.

The book is divided into three parts:

Part I: Basic complexity classes. This volume provides a broad introduction to the field. Start-
ing from the definition of Turing machines and the basic notions of computability theory, this
volumes covers the basic time and space complexity classes, and also includes a few more
modern topics such probabilistic algorithms, interactive proofs and cryptography.

Part II: Lower bounds on concrete computational models. This part describes lower bounds
on resources required to solve algorithmic tasks on concrete models such as circuits, decision
trees, etc. Such models may seem at first sight very different from Turing machines, but
looking deeper one finds interesting interconnections.

Part ITI: Advanced topics. This part is largely devoted to developments since the late 1980s. It
includes average case complexity, derandomization and pseudorandomness, the PCP theorem
and hardness of approximation, proof complexity and quantum computing.

Almost every chapter in the book can be read in isolation (though we recommend reading
Chapters 1, 2 and 7 before reading later chapters). This is important because the book is aimed

iii
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

iv

at many classes of readers:

e Physicists, mathematicians, and other scientists. This group has become increasingly inter-

ested in computational complexity theory, especially because of high-profile results such as
Shor’s algorithm and the recent deterministic test for primality. This intellectually sophisti-
cated group will be able to quickly read through Part I. Progressing on to Parts IT and III
they can read individual chapters and find almost everything they need to understand current
research.

Computer scientists (e.g., algorithms designers) who do not work in complezity theory per se.
They may use the book for self-study or even to teach a graduate course or seminar.

All those —professors or students— who do research in complexity theory or plan to do so.
They may already know Part I and use the book for Parts II and III, possibly in a seminar
or reading course. The coverage of advanced topics there is detailed enough to allow this.

This book can be used as a textbook for several types of courses. We will provide several

teaching plans and material for such courses on the book’s web site.

e Undergraduate Theory of Computation Course. Part I may be suitable for an undergraduate

course that is an alternative to the more traditional Theory of Computation course currently
taught in most computer science departments (and exemplified by Sipser’s excellent book
with the same name [SIP96]). Such a course would have a greater emphasis on modern topics
such as probabilistic algorithms and cryptography. We note that in contrast to Sipser’s book,
the current book has a quite minimal coverage of computability and no coverage of automata
theory, but we provide web-only chapters with more coverage of these topics on the book’s web
site. The prerequisite mathematical background would be some comfort with mathematical
proofs and elementary probability on finite sample spaces, topics that are covered in typical
“discrete math” /“math for CS” courses currently offered in most CS departments.

Advanced undergraduate/beginning graduate introduction to complexity course. The book can
be used as a text for an introductory complexity course aimed at undergraduate or non-theory
graduate students (replacing Papadimitriou’s 1994 book [Pap94] that does not contain many
recent results). Such a course would probably include many topics from Part I and then
a sprinkling from Parts II and III, and assume some background in algorithms and/or the
theory of computation.

Graduate Complexity course. The book can serve as a text for a graduate complexity course
that prepares graduate students interested in theory to do research in complexity and related
areas. Such a course can use parts of Part I to review basic material, and then move on to the
advanced topics of Parts II and III. The book contains far more material than can be taught
in one term, and we provide on our website several alternative outlines for such a course.

We hope that this book conveys our excitement about this new field and the insights it provides

in a host of older disciplines.

Contents

About this book

Introduction

I Basic Complexity Classes

1 The computational model —and why it doesn’t matter

1.1 Encodings and Languages: Some conventions
1.1.1 Representing objects as strings
1.1.2 Decision problems / languages
1.1.3 Big-Oh notation

1.2 Modeling computation and efficiency
1.2.1 The Turing Machine
1.2.2 Robustness of our definition.
1.2.3 The expressive power of Turing machines.

1.3 Machines as strings and the universal Turing machines.
1.3.1 The Universal Turing Machine

1.4 Uncomputable functions.
1.4.1 The Halting Problem

1.5 Deterministic time and theclass P.
1.5.1 On the philosophical importance of P
1.5.2 Criticisms of P and some efforts to address them
1.5.3 Edmonds’ quote o

Chapter notes and history o

Exercises e e

1.A" Proof of Theorem 1.13: Universal Simulation in O(7 logT)-time

2 NP and NP completeness

2.1 Theclass NP
2.1.1 Relation between NP and P
2.1.2 Non-deterministic Turing machines.

2.2 Reducibility and NP-completeness

iii

p0.1 (1)

p0.9 (9)

pl.1 (11)

Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are

still incomplete.

vi CONTENTS
2.3 The Cook-Levin Theorem: Computation is Local p2.6 (44)
2.3.1 Boolean formulae and the CNF form. p2.7 (45)
2.3.2 The Cook-Levin Theorem p2.7 (45)
2.3.3 Warmup: Expressiveness of boolean formulae p2.8 (46)
2.3.4 Proof of Lemma 2.12 p2.9 (47)
2.3.5 Reducing SAT to 3SAT. p2.11 (49)
2.3.6 More thoughts on the Cook-Levin theorem p2.11 (49)
2.4 The web of reductions p2.12 (50)
In praise of reductionso p2.16 (54)
Coping with NP hardness. p2.16 (54)
2.5 Decision versus search L e p2.17 (55)
2.6 coNP, EXP and NEXP p2.18 (56)
2.6.1 coNP . . . e p2.18 (56)
2.6.2 EXP and NEXP e p2.19 (57)
2.7 More thoughts about P, NP, and all that p2.20 (58)
2.7.1 The philosophical importance of NP p2.20 (58)
2.7.2 NP and mathematical proofs p2.20 (58)
2.73 What if P=NP? p2.21 (59)
2.74 What if NP =coNP? p2.21 (59)
Chapter notes and history L p2.22 (60)
Exercises p2.23 (61)
3 Diagonalization p3.1 (65)
3.1 Time Hierarchy Theorem p3.2 (66)
3.2 Space Hierarchy Theorem p3.2 (66)
3.3 Nondeterministic Time Hierarchy Theorem p3.3 (67)
3.4 Ladner’s Theorem: Existence of NP-intermediate problems. p3.4 (68)
3.5 Oracle machines and the limits of diagonalization? p3.6 (70)
Chapter notes and history L p3.8 (72)
Exercises e e p3.9(73)
4 Space complexity p4.1 (75)
4.1 Configuration graphs. L L p4.2 (76)
4.2 Some space complexity classes. Lo p4.4 (78)
4.3 PSPACE completeness e p4.5 (79)
4.3.1 Savitch’s theorem. p4.8 (82)
4.3.2 The essence of PSPACE: optimum strategies for game-playing. p4.8 (82)
4.4 NL completeness L p4.10 (84)
4.4.1 Certificate definition of NL: read-once certificates p4.12 (86)
442 NL=coNL e p4.13 (87)
Chapter notes and history L p4.14 (88)
Exerciseso e e e e e e p4.14 (88)

CONTENTS vii

5 The Polynomial Hierarchy and Alternations p5.1 (91)
5.1 Theclasses X5 and II5 oL p5.1(91)
5.2 The polynomial hierarchy. p5.3 (93)
5.2.1 Properties of the polynomial hierarchy.. p5.3 (93)
5.2.2 Complete problems for levelsof PH p5.4 (94)
5.3 Alternating Turing machines o L p5.5 (95)
5.3.1 Unlimited number of alternations? p5.6 (96)
5.4 Time versus alternations: time-space tradeoffs for SAT.. p5.6 (96)
5.5 Defining the hierarchy via oracle machines. p5.8 (98)
Chapter notes and history p5.9 (99)
Exercises e p5.10 (100)
6 Circuits p6.1 (101)
6.1 Boolean circuits L L e p6.1 (101)
6.1.1 Turing machines that take advice oo p6.5 (105)
6.2 Karp-Lipton Theorem e p6.6 (106)
6.3 Circuit lowerbounds p6.7 (107)
6.4 Non-uniform hierarchy theorem p6.8 (108)
6.5 Finer gradations among circuit classes o oL p6.8 (108)
6.5.1 Parallel computation and NC p6.9 (109)
6.5.2 P-completeness p6.10 (110)
6.6 Circuits of exponential size L L p6.11 (111)
6.7 Circuit Satisfiability and an alternative proof of the Cook-Levin Theorem p6.12 (112)
Chapter notes and history L p6.13 (113)
Exercises p6.13 (113)
7 Randomized Computation p7.1 (115)
7.1 Probabilistic Turing machines L oo p7.2 (116)
7.2 Some examples of PTMs p7.3 (117)
7.2.1 Probabilistic Primality Testing p7.3 (117)
7.2.2 Polynomial identity testing oo oo p7.4 (118)
7.2.3 'Testing for perfect matching in a bipartite graph. p7.5(119)
7.3 One-sided and zero-sided error: RP, coRP,ZPP p7.6 (120)
7.4 The robustness of our definitions L oL p7.7 (121)
7.4.1 Role of precise constants, error reduction.o p7.7 (121)
7.4.2 Expected running time versus worst-case running time. p7.10 (124)
7.4.3 Allowing more general random choices than a fair random coin. p7.10 (124)
7.5 Randomness efficient error reduction.o o oL p7.11 (125)
7.6 BPP CP/poly e p7.12 (126)
77 BPPisin PH p7.13 (127)
7.8 State of our knowledge about BPP o000 p7.14 (128)
Complete problems for BPP? L p7.14 (128)
Does BPTIME have a hierarchy theorem? p7.15 (129)

viii CONTENTS
7.9 Randomized reductions Lo p7.15 (129)
7.10 Randomized space-bounded computation oL p7.15 (129)
Chapter notes and history L p7.17 (131)
Exercises e p7.18 (132)
7.A Random walks and eigenvalues p7.21 (135)
7.A.1 Distributions as vectors and the parameter \(G). p7.21 (135)
7.A.2 Analysis of the randomized algorithm for undirected connectivity. p7.24 (138)
7.B Expander graphs.o p7.25 (139)
7.B.1 The Algebraic Definition p7.25 (139)
7.B.2 Combinatorial expansion and existence of expanders. p7.27 (141)
7.B.3 Error reduction using expanders. L oo p7.29 (143)
8 Interactive proofs p8.1 (147)
8.1 Warmup: Interactive proofs with a deterministic verifier p8.1(147)
8.2 TheclassIP e p8.3 (149)
8.3 Proving that graphs are not isomorphic. o 0oL p8.4 (150)
8.4 Public coins and AM e p8.5 (151)
8.4.1 Set Lower Bound Protocol. o p8.6 (152)
Tool: Pairwise independent hash functions. p8.7 (153)
The lower-bound protocol. p8.9 (155)
8.4.2 Some properties of IP and AM oL, p8.10 (156)
8.4.3 Can Gl be NP-complete? p8.11 (157)
85 IP =PSPACE p8.11 (157)
8.5.1 Arithmetization. p8.12 (158)
8.5.2 Interactive protocol for #SATp e p8.12 (158)
Sumcheck protocol. p8.13 (159)
8.5.3 Protocol for TQBF: proof of Theorem 817 p8.14 (160)
8.6 The power of the prover e p8.15 (161)
8.7 Program Checking p8.16 (162)
8.7.1 Languages that have checkers p8.17 (163)
8.8 Multiprover interactive proofs (MIP) p8.18 (164)
Chapter notes and history p8.19 (165)
Exercises e e p8.20 (166)
8.A Interactive proof for the Permanent L. p8.21 (167)
8.A.1 The protocol e p8.23 (169)
9 Complexity of counting p9.1 (171)
9.1 Theclass #P o e p9.2 (172)
9.1.1 The class PP: decision-problem analog for #P.. p9.3 (173)
9.2 #P completeness. L p9.4 (174)
9.2.1 Permanent and Valiant’s Theorem, p9.4 (174)
9.2.2 Approximate solutions to #P problems L. p9.8 (178)
9.3 Toda’s Theorem: PH C P#SAT . p9.9 (179)

CONTENTS

ix
9.3.1 The class @P and hardness of satisfiability with unique solutions. p9.9 (179)
Proof of Theorem 9.15 p9.11 (181)
9.3.2 Step 1: Randomized reduction from PHto ®P p9.11 (181)
9.3.3 Step 2: Making the reduction deterministic p9.13 (183)

9.4 Open Problems e p9.14 (184)

Chapter notes and history p9.14 (184)

Exerciseso e p9.15 (185)

10 Cryptography p10.1 (187)

10.1 Hard-on-average problems and one-way functions pl10.2 (188)
10.1.1 Discussion of the definition of one-way function p10.4 (190)
10.1.2 Random self-reducibilityo pl10.5 (191)

10.2 What is a random-enough string?o oo pl10.5 (191)
10.2.1 Blum-Micali and Yao definitions pl10.6 (192)
10.2.2 Equivalence of the two definitionso pl10.8 (194)

10.3 Omne-way functions and pseudorandom number generators p10.10 (196)
10.3.1 Goldreich-Levin hardcore bit, p10.10 (196)
10.3.2 Pseudorandom number generation p10.13 (199)

10.4 Applications e p10.13 (199)
10.4.1 Pseudorandom functions p10.13 (199)
10.4.2 Private-key encryption: definition of security p10.14 (200)
10.4.3 Derandomization Lo p10.15 (201)
10.4.4 Tossing coins over the phone and bit commitment p10.16 (202)
10.4.5 Secure multiparty computationso p10.16 (202)
10.4.6 Lowerbounds for machine learning p10.17 (203)

10.5 Recent developments L p10.17 (203)

Chapter notes and history L p10.17 (203)

Exercises e p10.18 (204)

II Lowerbounds for Concrete Computational Models p10.21 (207)
11 Decision Trees pl1.2 (211)

11.1 Certificate Complexity o L pll.4 (213)

11.2 Randomized Decision Trees o o o pl1.6 (215)

11.3 Lowerbounds on Randomized Complexity pl1.6 (215)

11.4 Some techniques for decision tree lowerbounds. pl1.8 (217)

11.5 Comparison trees and sorting lowerbounds pl1.9 (218)

11.6 Yao’s MinMax Lemma L o pl1.9 (218)

Exercises pl1.9 (218)

Chapter notes and history

CONTENTS

b
12 Communication Complexity pl2.1 (221)

12.1 Definition L L e pl2.1 (221)

12.2 Lowerbound methods pl12.2 (222)
12.2.1 Fooling set e p12.2 (222)
12.2.2 The tiling lowerbound pl12.3 (223)
12.2.3 Rank lowerboundo pl12.4 (224)
12.2.4 Discrepancy o o i e e e e pl12.5 (225)

A technique for upperbounding the discrepancy p12.6 (226)

12.2.5 Comparison of the lowerbound methods p12.7 (227)

12.3 Multiparty communication complexity Lo L. p12.8 (228)
Discrepancy-based lowerbound o0 p12.9 (229)

12.4 Probabilistic Communication Complexity p12.10 (230)

12.5 Overview of other communication models p12.10 (230)

12.6 Applications of communication complexity pl2.11 (231)

Exercises e pl12.11 (231)

Chapter notes and history pl12.12 (232)

13 Circuit lowerbounds pl3.1 (235)

13.1 AC" and Hastad’s Switching Lemma pl3.1(235)
13.1.1 The switching lemma oo p13.2 (236)
13.1.2 Proof of the switching lemma (Lemma 13.2) p13.3 (237)

13.2 Circuits With “Counters”: ACC pl13.5 (239)

13.3 Lowerbounds for monotone circuits p13.8 (242)
13.3.1 Proving Theorem 13.9 p13.8 (242)

Clique Indicators L p13.8 (242)
Approximation by clique indicators. L. p13.9 (243)

13.4 Circuit complexity: The frontier L. pl3.11 (245)
13.4.1 Circuit lowerbounds using diagonalization pl13.11 (245)
13.4.2 Statusof ACC versus P. p13.12 (246)
13.4.3 Linear Circuits With Logarithmic Depth pl13.13 (247)
13.4.4 Branching Programs p13.13 (247)

13.5 Approaches using communication complexity L. pl13.14 (248)
13.5.1 Connection to ACCY Circuitsot pl3.14 (248)
13.5.2 Connection to Linear Size Logarithmic Depth Circuits p13.15 (249)
13.5.3 Connection to branching programs p13.15 (249)
13.5.4 Karchmer-Wigderson communication games and depth lowerbounds p13.15 (249)

Chapter notes and history pl13.17 (251)

Exercises e p13.18 (252)

14 Algebraic computation models pld.1 (255)

14.1 Algebraic circuits e pl4.2 (256)

14.2 Algebraic Computation Trees pld.4 (258)

14.3 The Blum-Shub-Smale Model oL pl4.8 (262)

CONTENTS xi
14.3.1 Complexity Classes over the Complex Numbers p14.9 (263)
14.3.2 Hilbert’s Nullstellensatz pl4.10 (264)
14.3.3 Decidability Questions: Mandelbrot Set p14.10 (264)
Exercises e pl4.11 (265)
Chapter notes and history pl4.11 (265)

IIT Advanced topics

15 Average Case Complexity: Levin’s Theory

15.1 Distributional Problems
15.1.1 Formalizations of “real-life distributions.”
15.2 DistNP and its complete problems
15.2.1 Polynomial-Time on Average
15.2.2 Reductions
15.2.3 Proofs using the simpler definitions
15.3 Existence of Complete Problems
15.4 Polynomial-Time Samplability
Exercises e e
Chapter notes and history

16 Derandomization, Expanders and Extractors

16.1 Pseudorandom Generators and Derandomization
16.1.1 Hardness and Derandomization

16.2 Proof of Theorem 16.10: Nisan-Wigderson Construction
16.2.1 Warmup: two toy examples oo
Extending the input by one bit using Yao’s Theorem.

Extending the input by two bits using the averaging principle.

Beyond two bits:

16.2.2 The NW Construction

16.3 Derandomization requires circuit lowerbounds
16.4 Explicit construction of expander graphs
16.4.1 Rotation maps.
16.4.2 The matrix/path product
16.4.3 The tensor producto oL
16.4.4 The replacement product
16.4.5 The actual construction. oL
16.5 Deterministic logspace algorithm for undirected connectivity.
16.6 Weak Random Sources and Extractors
16.6.1 Min Entropy Lo
16.6.2 Statistical distance and Extractors

pl4.13 (267)

pl15.1 (269)

....... p15 8 (276

)
)
)
....... p15 4 (272)
)
)
....... p15.10 (278

)
278)
)
)

....... p16.10 (29

xii CONTENTS
16.6.3 Extractors based upon hash functions p16.27 (307)
16.6.4 Extractors based upon random walks on expanders p16.28 (308)
16.6.5 An extractor based upon Nisan-Wigderson p16.28 (308)
16.7 Applications of Extractors e pl16.31 (311)
16.7.1 Graph constructions pl16.31 (311)
16.7.2 Running randomized algorithms using weak random sources pl6.32 (312)
16.7.3 Recycling random bitso oL p16.33 (313)
16.7.4 Pseudorandom generators for spacebounded computation p16.33 (313)
Chapter notes and history p16.37 (317)
Exercises e e pl16.38 (318)
17 Hardness Amplification and Error Correcting Codes pl7.1 (321)

17.1 Hardness and Hardness Amplification. pl7.1(321)

17.2 Mild to strong hardness: Yao’s XOR Lemma. pl7.2 (322)

Proof of Yao’s XOR Lemma using Impagliazzo’s Hardcore Lemma. pl7.3 (323)

17.3 Proof of Impagliazzo’s Lemma pl7.4 (324)

17.4 Error correcting codes: the intuitive connection to hardness amplification pl17.8 (328)
17.4.1 Local decoding pl17.10 (330)
17.5 Constructions of Error Correcting Codes pl7.12 (332)
17.5.1 Walsh-Hadamard Code. pl7.12 (332)
17.5.2 Reed-Solomon Code pl17.13 (333)
17.5.3 Concatenated codes pl7.14 (334)
17.5.4 Reed-Muller Codes. e pl17.15 (335)
17.5.5 Decoding Reed-Solomon. oL pl7.16 (336)
Randomized interpolation: the case of p < 1/(d+1) pl7.16 (336)
Berlekamp-Welch Procedure: the case of p < (m—d)/(2m) pl7.16 (336)
17.5.6 Decoding concatenated codes.o pl7.17 (337)
17.6 Local Decoding of explicit codes. pl7.17 (337)
17.6.1 Local decoder for Walsh-Hadamard. pl7.17 (337)
17.6.2 Local decoder for Reed-Muller pl17.18 (338)
17.6.3 Local decoding of concatenated codes. p17.19 (339)
17.6.4 Putting it all together.o p17.20 (340)
17.7 List decoding oL pl7.21 (341)
17.7.1 List decoding the Reed-Solomon code pl7.22 (342)

17.8 Local list decoding: gettingto BPP=P. pl17.23 (343)
17.8.1 Local list decoding of the Walsh-Hadamard code. pl7.24 (344)
17.8.2 Local list decoding of the Reed-Muller code pl7.24 (344)
17.8.3 Local list decoding of concatenated codes. pl7.26 (346)
17.8.4 Putting it all together. Lo pl7.26 (346)
Chapter notes and history L pl7.27 (347)
Exercises oo p17.28 (348)

CONTENTS xiii

18 PCP and Hardness of Approximation pl18.1 (351)

18.1 PCP and Locally Testable Proofs p18.2 (352)

18.2 PCP and Hardness of Approximation pl8.5 (355)
18.2.1 Gap-producing reductions p18.6 (356)
18.2.2 Gap problems p18.6 (356)
18.2.3 Constraint Satisfaction Problems p18.7 (357)
18.2.4 An Alternative Formulation of the PCP Theorem p18.8 (358)
18.2.5 Hardness of Approximation for 3SAT and INDSET. p18.9 (359)

18.3 n~%-approximation of independent set is NP-hard. pl18.11 (361)

18.4 NP C PCP(poly(n),1): PCP based upon Walsh-Hadamard code p18.13 (363)
18.4.1 Tool: Linearity Testing and the Walsh-Hadamard Code p18.13 (363)
18.4.2 Proof of Theorem 18.21 p18.15 (365)
18.4.3 PCP’s of proximity e pl18.17 (367)

18.5 Proof of the PCP Theorem. p18.19 (369)
18.5.1 Gap Amplification: Proof of Lemma 1829 pl8.21 (371)
18.5.2 Alphabet Reduction: Proof of Lemma 18.30 p18.27 (377)

18.6 The original proof of the PCP Theorem. p18.29 (379)

Exercises e e p18.29 (379)

19 More PCP Theorems and the Fourier Transform Technique pl19.1 (385)

19.1 Parallel Repetition of PCP’s e p19.1 (385)

19.2 Hastad’s 3-bit PCP Theorem p19.3 (387)

19.3 Tool: the Fourier transform technique p19.4 (388)
19.3.1 Fourier transform over GF(2)" o p19.4 (388)

The connection to PCPs: High level view p19.6 (390)
19.3.2 Analysis of the linearity test over GF(2) p19.6 (390)
19.3.3 Coordinate functions, Long code and its testing p19.7 (391)

19.4 Proof of Theorem 19.5 p19.9 (393)

19.5 Learning Fourier Coefficients L p19.13 (397)

19.6 Other PCP Theorems: A Survey o v i ittt e p19.14 (398)
19.6.1 PCP’s with sub-constant soundness parameter. p19.14 (398)
19.6.2 Amortized query complexity. oL p19.15 (399)
19.6.3 Unique games.« oo e e e p19.15 (399)

Exercises e p19.15 (399)

20 Quantum Computation p20.1 (401)

20.1 Quantum weirdness e e e e e e e e p20.2 (402)
20.1.1 The 2-slit experiment L p20.2 (402)
20.1.2 Quantum entanglement and the Bell inequalities. p20.3 (403)

20.2 A new view of probabilistic computation. 00000 p20.5 (405)

20.3 Quantum superposition and the class BQP oo p20.8 (408)
20.3.1 Universal quantum operations p20.13 (413)

20.3.2 Spooky coordination and Bell’sstate 0oL p20.13 (413)

CONTENTS

xiv
20.4 Quantum programmer’s toolkit L L p20.15 (415)
20.5 Grover’s search algorithm. p20.16 (416)
20.6 Simon’s Algorithm L p20.21 (421)
20.6.1 The algorithm p20.21 (421)
20.7 Shor’s algorithm: integer factorization using quantum computers. p20.22 (422)
20.7.1 Quantum Fourier Transform over Zpy;. o p20.23 (423)
Definition of the Fourier transform over Zps. p20.23 (423)
Fast Fourier Transform p20.24 (424)
Quantum Fourier transform: proof of Lemma 20.20. p20.24 (424)
20.7.2 The Order-Finding Algorithm. p20.25 (425)
Analysis: the case that |[M p20.26 (426)
The case that © fM p20.26 (426)
20.7.3 Reducing factoring to order finding. L. p20.28 (428)
20.8 BQP and classical complexity classes oo p20.29 (429)
Chapter notes and history L p20.29 (429)
Exercises e e e p20.31 (431)
20.A Rational approximation of real numbers, p20.32 (432)
21 Logic in complexity theory p21.1 (433)
21.1 Logical definitions of complexity classes p21.2 (434)
21.1.1 Fagin’s definition of NP p21.2 (434)
21.1.2 MAX-SNP . . e p21.3 (435)
21.2 Proof complexity as an approach to NP versus coNP p21.3 (435)
21.2.1 Resolution Lo p21.3 (435)
21.2.2 Frege Systems e p21.4 (436)
21.2.3 Polynomial calculus p21.4 (436)
21.3 Is P # NP unproveable? p21.4 (436)
22 Why are circuit lowerbounds so difficult? p22.1 (437)
22.1 Formal Complexity Measures e p22.1 (437)
22.2 Natural Properties o e p22.3 (439)
22.3 Limitations of Natural Proofs p22.5 (441)
22.4 My personal view L L p22.6 (442)
Exercises p22.7 (443)
Chapter notes and history L p22.7 (443)
Appendices p22.9 (445)
A Mathematical Background. pPA.1 (447)
A.1 Mathematical Proofs pA.1 (447)
A.2 Sets, Functions, Pairs, Strings, Graphs, Logic. pA.3 (449)
A.3 Probability theory pA.4 (450)
A.3.1 Random variables and expectations. pA.5 (451)

CONTENTS

XV
A.3.2 The averaging argument Lo o pA.6 (452)
A.3.3 Conditional probability and independence pA.7 (453)
A.3.4 Deviation upperbounds PA.7 (453)
A.3.5 Some other inequalities. pA.9 (455)

Jensen’s inequality. Lo pPA.9 (455)
Approximating the binomial coefficient L. pA.9 (455)
More useful estimates. L pA.10 (456)

A4 Finite fields and groups e pA.10 (456)
A.4.1 Non-prime fields. L pA.11 (457)
Ad2 Groups. . . . o o i e pA.11 (457)

A5 Vector spaces and Hilbert spaces pA.12 (458)

A6 Polynomials pA.12 (458)

xvi CONTENTS

Introduction

“As long as a branch of science offers an abundance of problems, so long it is alive;
a lack of problems foreshadows extinction or the cessation of independent develop-
ment.”

David Hilbert, 1900

“The subject of my talk is perhaps most directly indicated by simply asking two ques-
tions: first, is it harder to multiply than to add? and second, why?...I (would like
to) show that there is no algorithm for multiplication computationally as simple as
that for addition, and this proves something of a stumbling block.”

Alan Cobham, 1964 [Cob64]

The notion of computation has existed in some form for thousands of years. In its everyday
meaning, this term refers to the process of producing an output from a set of inputs in a finite
number of steps. Here are three examples for computational tasks:

e Given two integer numbers, compute their product.
e Given a set of n linear equations over n variables, find a solution if it exists.

e Given a list of acquaintances and a list of containing all pairs of individuals who are not
on speaking terms with each other, find the largest set of acquaintances you can invite to a
dinner party such that you do not invite any two who are not on speaking terms.

In the first half of the 20th century, the notion of “computation” was made much more precise
than the hitherto informal notion of “a person writing numbers on a note pad following certain
rules.” Many different models of computation were discovered —Turing machines, lambda calculus,
cellular automata, pointer machines, bouncing billiards balls, Conway’s Game of life, etc.— and
found to be equivalent. More importantly, they are all universal, which means that each is capable
of implementing all computations that we can conceive of on any other model (see Chapter 1). The
notion of universality motivated the invention of the standard electronic computer, which is capable
of executing all possible programs. The computer’s rapid adoption in society in the subsequent
half decade brought computation into every aspect of modern life, and made computational issues
important in design, planning, engineering, scientific discovery, and many other human endeavors.

However, computation is not just a practical tool, but also a major scientific concept. General-
izing from models such as cellular automata, scientists have come to view many natural phenomena

p0.1 (1)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p0.2 (2) CONTENTS

as akin to computational processes. The understanding of reproduction in living things was trig-
gered by the discovery of self-reproduction in computational machines. (In fact, a famous article
by Pauli predicted the existence of a DNA-like substance in cells almost a decade before Watson
and Crick discovered it.) Today, computational models underlie many research areas in biology
and neuroscience. Several physics theories such as QED give a description of nature that is very
reminiscent of computation, motivating some scientists to even suggest that the entire universe
may be viewed as a giant computer (see Lloyd [?]). In an interesting twist, such physical theories
have been used in the past decade to design a model for quantum computation; see Chapter 20.

From 1930s to the 1950s, researchers focused on the theory of computability and showed that
several interesting computational tasks are inherently uncomputable: no computer can solve them
without going into infinite loops (i.e., never halting) on certain inputs. Though a beautiful theory,
it will not be our focus here. (But, see the texts [SIP96, HMUO1, Koz97, ?].) Instead, we focus on
issues of computational efficiency. Computational complexity theory is concerned with how much
computational resources are required to solve a given task. The questions it studies include the
following:

1. Many computational tasks involve searching for a solution across a vast space of possibilities
(for example, the aforementioned tasks of solving linear equations and finding a maximal set
of invitees to a dinner party). Is there an efficient search algorithm for all such tasks, or do
some tasks inherently require an exhaustive search?

As we will see in Chapter 2, this is the famous “P vs. NP” question that is considered the
central problem of complexity theory. Computational search tasks of the form above arise
in a host of disciplines including the life sciences, social sciences and operations research,
and computational complexity has provided strong evidence that many of these tasks are
inherently intractable.

2. Can algorithms use randomness (i.e., coin tossing) to speed up computation?

Chapter 7 presents probabilistic algorithms and shows several algorithms and techniques that
use probability to solve tasks more efficiently. But Chapters 16 and 17 show a surprising
recent result giving strong evidence that randomness does not help speed up computation,
in the sense that any probabilistic algorithm can be replaced with a deterministic algorithm
(tossing no coins) that is almost as efficient.

3. Can hard problems be solved quicker if we allow the algorithms to err on a small number of
inputs, or to only compute an approximate solution?

Awverage-case complexity and approximation algorithms are studied in Chapters 15, 17, 18
and 19. These chapters also show fascinating connections between these questions, the power
of randomness, different notions of mathematical proofs, and the theory of error correcting
codes.

4. Is there any use for computationally hard problems? For example, can we use them to
construct secret codes that are unbreakable? (at least in the universe’s lifetime).

Our society increasingly relies on digital cryptography for commerce and security. As de-
scribed in Chapter 10, these secret codes are built using certain hard computational tasks

CONTENTS p0.3 (3)

such as factoring integers. The security of digital cryptography is intimately related to the P
vs. NP question (see Chapter 2) and average-case complexity (see Chapters 15).

5. Can we use the counterintuitive quantum mechanical properties of our universe to solve hard
problems faster?

Chapter 20 describes the fascinating notion of quantum computers that use such properties to
speed up certain computations. Although there are many theoretical and practical obstacles
to actually building such computers, they have generated tremendous interest in recent years.
This is not least due to Shor’s algorithm that showed that, if built, quantum computers will be
able to factor integers efficiently. (Thus breaking many of the currently used cryptosystems.)

6. Can we generate mathematical proofs automatically? Can we check a mathematical proof
by only reading 3 probabilistically chosen letters from it? Do interactive proofs, involving
a dialog between prover and verifier, have more power than standard “static” mathematical
proofs?

The notion of proof, central to mathematics, turns out to be central to computational com-
plexity as well, and complexity has shed new light on the meaning of mathematical proofs.
Whether mathematical proofs can be generated automatically turns out to depend on the
P vs. NP question (see Chapter 2). Chapter 18 describes probabilistically checkable proofs.
These are surprisingly robust mathematical proofs that can checked by only reading them in
very few probabilistically chosen locations. Interactive proofs are studied in Chapter 8. Fi-
nally, proof complexity, a subfield of complexity studying the minimal proof length of various
statements, is studied in Chapter 21.

At roughly 40 years of age, Complexity theory is still an infant science. Thus we still do not
have complete answers for any of these questions. (In a surprising twist, computational complexity
has also been used to provide evidence for the hardness to solve some of the questions of ...
computational complexity; see Chapter 22.) Furthermore, many major insights on these questions
were only found in recent years.

Meaning of efficiency

Now we explain the notion of computational efficiency, using the three examples for computational
tasks we mentioned above. We start with the task of multiplying two integers. Consider two
different methods (or algorithms) to perform this task. The first is repeated addition: to compute
a-b, just add a to itself b — 1 times. The other is the grade-school algorithm illustrated in Figure 1.
Though the repeated addition algorithm is perhaps simpler than the grade-school algorithm, we
somehow feel that the latter is better. Indeed, it is much more efficient. For example, multiplying
577 by 423 using repeated addition requires 422 additions, whereas doing it with the grade-school
algorithm requires only 3 additions and 3 multiplications of a number by a single digit.

We will quantify the efficiency of an algorithm by studying the number of basic operations it
performs as the size of the input increases. Here, the basic operations are addition and multiplication
of single digits. (In other settings, we may wish to throw in division as a basic operation.) The

p0.4 (4) CONTENTS

5 77

4 2 3
1 7 31
1 1 5 4
2 3 0 8
2440071

Figure 1: Grade-school algorithm for multiplication. Illustrated for computing 577 - 423.

size of the input is the number of digits in the numbers. The number of basic operations used to
multiply two n-digit numbers (i.e., numbers between 10"~ and 10") is at most 2n? for the grade-
school algorithm and at least n10"~! for repeated addition. Phrased this way, the huge difference
between the two algorithms is apparent: even for 11-digit numbers, a pocket calculator running the
grade-school algorithm would beat the best current supercomputer running the repeated addition
algorithm. For slightly larger numbers even a fifth grader with pen and paper would outperform a
supercomputer. We see that the efficiency of an algorithm is to a considerable extent much more
important than the technology used to execute it.

Surprisingly enough, there is an even faster algorithm for multiplication that uses the Fast
Fourier Transform. It was only discovered some 40 years ago and multiplies two n-digit numbers
using cnlogn operations where ¢ is some absolute constant independent of n. (Using asymptotic
notation, we call this an O(nlogn)-step algorithm; see Chapter 1.)

Similarly, for the task of solving linear equations, the classic Gaussian elimination algorithm
(named after Gauss but already known in some form to Chinese mathematicians of the first century)
uses O(n3) basic arithmetic operations to solve n equations over n variables. In the late 1960’s,
Strassen found a more efficient algorithm that uses roughly O(n?3!)
algorithm takes O(n?376) operations.

operations, and the best current

The dinner party task also has an interesting story. As in the case of multiplication, there is an
obvious and simple inefficient algorithm: try all possible subsets of the n people from the largest
to the smallest, and stop when you find a subset that does not include any pair of guests who
are not on speaking terms. This algorithm can take as much time as the number of subsets of a
group of n people, which is 2”. This is highly unpractical —an organizer of, say, a 70-person party,
would need to plan it at least a thousand years in advance, even if she has a supercomputer at her
disposal. Surprisingly, we still do not know of a significantly better algorithm. In fact, as we will
see in Chapter 2, we have reasons to suspect that no efficient algorithm ezists for this task. We
will see that it is equivalent to the independent set computational problem, which, together with
thousands of other important problems, is NP-complete. The famous “P versus NP” question
asks whether or not any of these problems has an efficient algorithm.

Proving nonexistence of efficient algorithms

We have seen that sometimes computational tasks have nonintuitive algorithms that are more
efficient than algorithms that were known for thousands of years. It would therefore be really

CONTENTS p0.5 (5)

interesting to prove for some computational tasks that the current algorithm is the best —in other
words, no better algorithms exist. For instance, we could try to prove that the O(nlogn)-step
algorithm for multiplication can never be improved (thus implying that multiplication is inherently
more difficult than addition, which does have an O(n)-step algorithm). Or, we could try to prove
that there is no algorithm for the dinner party task that takes fewer than 27/10 steps.

Since we cannot very well check every one of the infinitely many possible algorithms, the only
way to verify that the current algorithm is the best is to mathematically prove that there is no better
algorithm. This may indeed be possible to do, since computation can be given a mathematically
precise model. There are several precedents for proving impossibility results in mathematics, such
as the independence of Euclid’s parallel postulate from the other basic axioms of geometry, or the
impossibility of trisecting an arbitrary angle using a compass and straightedge. Such results count
among the most interesting, fruitful, and surprising results in mathematics.

Given the above discussion, it is no surprise that mathematical proofs are the main tool of
complexity theory, and that this book is filled with theorems, definitions and lemmas. However,
we hardly use any fancy mathematics and so the main prerequisite for this book is the ability to
read (and perhaps even enjoy!) mathematical proofs. The reader might want to take a quick look
at Appendix A, that reviews mathematical proofs and other notions used, and come back to it as
needed.

We conclude with another quote from Hilbert’s 1900 lecture:

Proofs of impossibility were effected by the ancients ... [and] in later mathematics, the
question as to the impossibility of certain solutions plays a preminent part. ...

In other sciences also one meets old problems which have been settled in a manner most
satisfactory and most useful to science by the proof of their impossibility. ... After
seeking in vain for the construction of a perpetual motion machine, the relations were
investigated which must subsist between the forces of nature if such a machine is to be
impossible; and this inverted question led to the discovery of the law of the conservation

of energy. ...

It is probably this important fact along with other philosophical reasons that gives rise
to conviction ... that every definite mathematical problem must necessary be susceptible
of an exact settlement, either in the form of an actual answer to the question asked, or
by the proof of the impossibility of its solution and therewith the necessary failure of all
attempts. ... This conviction... is a powerful incentive to the worker. We hear within
us the perpetual call: There is the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no ignorabimus.

p0.6 (6)

CONTENTS

CONTENTS p0.7 (7)

Conventions: A whole number is a number in the set Z = {0,£1,4+2,...}. A number denoted
by one of the letters i, j, k, ¢, m,n is always assumed to be whole. If n > 1, then we denote by [n]
the set {1,...,n}. For a real number x, we denote by | x] the smallest n € Z such that n > x and
by | z | the largest n € Z such that n < z. Whenever we use a real number in a context requiring
a whole number, the operator | | is implied. We denote by log z the logarithm of = to the base 2.
We say that a condition holds for sufficiently large n if it holds for every n > N for some number N
(for example, 2" > 100n? for sufficiently large n). We use expressions such as >, f(i) (as opposed
to, say, ., f(i)) when the range of values i takes is obvious from the context. If u is a string or
vector, then u; denotes the value of the i*® symbol/coordinate of .

p0.8 (8)

CONTENTS

Part 1

Basic Complexity Classes

p0.9 (9)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

DRAFT

Chapter 1

The computational model —and why
it doesn’t matter

“The idea behind digital computers may be explained by saying that these machines
are intended to carry out any operations which could be done by a human computer.
The human computer is supposed to be following fixed rules; he has no authority to
deviate from them in any detail. We may suppose that these rules are supplied in a
book, which is altered whenever he is put on to a new job. He has also an unlimited
supply of paper on which he does his calculations.”

Alan Turing, 1950

“[Turing] has for the first time succeeded in giving an absolute definition of an in-
teresting epistemological notion, i.e., one not depending on the formalism chosen.”
Kurt Godel, 1946

The previous chapter gave an informal introduction to computation and efficient computations
in context of arithmetic. IN this chapter we show a more rigorous and general definition. As
mentioned earlier, one of the surprising discoveries of the 1930s was that all known computational
models are able to simulate each other. Thus the set of computable problems does not depend upon
the computational model.

In this book we are interested in issues of computational efficiency, and therefore in classes of
“efficiently computable” problems. Here, at first glance, it seems that we have to be very careful
about our choice of a computational model, since even a kid knows that whether or not a new video
game program is “efficiently computable” depends upon his computer’s hardware. Surprisingly
though, we can restrict attention to a single abstract computational model for studying many
questions about efficiency—the Turing machine. The reason is that the Turing Machine seems able
to simulate all physically realizable computational models with very little loss of efficiency. Thus
the set of “efficiently computable” problems is at least as large for the Turing Machine as for any
other model. (One possible exception is the quantum computer model, but we do not currently
know if it is physically realizable.)

pl.1 (11)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pl.2 (12) 1.1. ENCODINGS AND LANGUAGES: SOME CONVENTIONS

The Turing machine is a simple embodiment of the age-old intuition that computation consists
of applying mechanical rules to manipulate numbers, where the person/machine doing the manip-
ulation is allowed a scratch pad on which to write the intermediate results. The Turing Machine
can be also viewed as the equivalent of any modern programming language — albeit one with no
built-in prohibition about memory size'. In fact, this intuitive understanding of computation will
suffice for most of the book and most readers can skip many details of the model on a first reading,
returning to them later as needed.

The rest of the chapter formally defines the Turing Machine and the notion of running time,
which is one measure of computational effort. It also presents the important notion of the universal
Turing machine. Section 1.5 introduces a class of “efficiently computable” problems called P (which
stands for Polynomial time) and discuss its philosophical significance. The section also points out
how throughout the book the definition of the Turing Machine and the class P will be a starting
point for definitions of many other models, including nondeterministic, probabilistic and quantum
Turing machines, Boolean circuits, parallel computers, decision trees, and communication games.
Some of these models are introduced to study arguably realizable modes of physical computation,
while others are mainly used to gain insights on Turing machines.

1.1 Encodings and Languages: Some conventions

Below we specify some of the notations and conventions used throughout this chapter and this
book to represent computational problem. We make use of some notions from discrete math such
as strings, sets, functions, tuples, and graphs. All of these notions are reviewed in Appendix ?77.

1.1.1 Representing objects as strings

In general we study the complexity of computing a function whose input and output are finite
strings of bits. (A string of bits is a finite sequence of zeroes and ones. The set of all strings of
length n is denoted by {0,1}", while the set of all strings is denoted by {0,1}* = U,>0 {0,1}"; see
Appendix A.) Note that simple encodings can be used to represent general objects—integers, pairs
of integers, graphs, vectors, matrices, etc.— as strings of bits. For example, we can represent an
integer as a string using the binary expansion (e.g., 34 is represented as 100010) and a graph as
its adjacency matrix (i.e., an n vertex graph G is represented by an n x n 0/1-valued matrix A
such that A; ; = 1 iff the edge (i, j) is present in G). We will typically avoid dealing explicitly with
such low level issues of representation, and will use z, to denote some canonical (and unspecified)
binary representation of the object x. Often we will drop the symbols |, and simply use x to
denote both the object and its representation.

Representing pairs and tuples. We use the notation (z, y) to denote the ordered pair consisting
of x and y. A canonical representation for (x,y) can be easily obtained from the representations
of x and y. For example, we can first encode (z,y) as the string z, o0 # o gy, over the alphabet

!Though the assumption of an infinite memory may seem unrealistic at first, in the complexity setting it is of no
consequence since we will restrict the machine to use a finite amount of tape cells for any given input (the number
allowed will depend upon the input size).

1.1. ENCODINGS AND LANGUAGES: SOME CONVENTIONS pl.3 (13)

{0,1,#} (where o denotes concatenation) and then use the mapping 0 — 00,1 — 11,# — 01 to
convert this into a string of bits. To reduce notational clutter, instead of (z,y), we use (z,y) to
denote not only the pair consisting of x and y but also the representation of this pair as a binary
string. Similarly, we use (z,y,z) to denote both the ordered triple consisting of z,y,z and its
representation, and use similar notation for 4-tuples, 5-tuples etc..

1.1.2 Decision problems / languages

An important special case of functions mapping strings to strings is the case of Boolean functions,
whose output is a single bit. We identify such a function f with the set Ly = {x: f(z) = 1} and
call such sets languages or decision problems (we use these terms interchangeably). We identify the
computational problem of computing f (i.e., given x compute f(x)) with the problem of deciding
the language Ly (i.e., given z, decide whether x € Ly).

ExampLE 1.1

By representing the possible invitees to a dinner party with the vertices of a graph having an edge
between any two people that can’t stand one another, the dinner party computational problem
from the introduction becomes the problem of finding a maximum sized independent set (set of
vertices not containing any edges) in a given graph. The corresponding language is:

INDSET = {(G, k) : 3S C V(G) s.t. |S| > k and Yu,v € S,uv € E(G)}

An algorithm to solve this language will tell us, on input a graph G and a number k, whether
there exists a conflict-free set of invitees, called an independent set, of size at least k. It is not
immediately clear that such an algorithm can be used to actually find such a set, but we will see
this is the case in Chapter 2. For now, let’s take it on faith that this is a good formalization of this
problem.

1.1.3 Big-Oh notation

As mentioned above, we will typically measure the computational efficiency algorithm as the number
of a basic operations it performs as a function of its input length. That is, the efficiency of an
algorithm can be captured by a function T from the set of natural numbers N to itself such that
T'(n) is equal to the maximum number of basic operations that the algorithm performs on inputs
of length n. However, this function is sometimes be overly dependant on the low-level details of
our definition of a basic operation. For example, the addition algorithm will take about three times
more operations if it uses addition of single digit binary (i.e., base 2) numbers as a basic operation,
as opposed to decimal (i.e., base 10) numbers. To help us ignore these low level details and focus
on the big picture, the following well known notation is very useful:

pl.4 (14) 1.2. MODELING COMPUTATION AND EFFICIENCY

DEFINITION 1.2 (BIG-OH NOTATION)
If f,g are two functions from N to N, then we (1) say that f = O(g) if there exists a constant ¢
such that f(n) < c- g(n) for every sufficiently large n, (2) say that f = Q(g) if g = O(f), (3) say
that f = 0O(g) is f = O(g) and g = O(f), (4) say that f = o(g) if for every € > 0, f(n) < e-g(n)
for every sufficiently large n, and (5) say that f = w(g) if g = o(f).

To emphasize the input parameter, we often write f(n) = O(g(n)) instead of f = O(g), and
use similar notation for o, 2, w, ©.

EXAMPLE 1.3
Here are some examples for use of big-Oh notation:

1. If f(n) = 100nlogn and g(n) = n? then we have the relations f = O(g), g = Q(f), f = o(g),
= w(/f).

2. If f(n) = 100n? + 24n +2logn and g(n) = n? then f = O(g). We will often write this relation
as f(n) = O(n?). Note that we also have the relation ¢ = O(f) and hence f = ©(g) and

g=90(f).

3. If f(n) = min{n, 10} and g(n) = 1 for every n then f = O(g). We use the notation f = O(1)
to denote this. Similarly, if A is a function that tends to infinity with n (i.e., for every c it
holds that h(n) > ¢ for n sufficiently large) then we write h = w(1).

4. If f(n) = 2™ then for every number ¢ € N, if g(n) = n¢ then g = o(f). We sometimes write
this as 2" = n*(1). Similarly, we also write h(n) = n°() to denote the fact that & is bounded
from above by some polynomial. That is, there exist a number ¢ > 0 such that for sufficiently
large n, h(n) < n.

For more examples and explanations, see any undergraduate algorithms text such as [KT06,
CLRSO01] or Section 7.1 in Sipser’s book [SIP96].

1.2 Modeling computation and efficiency

We start with an informal description of computation. Let f be a function that takes a string
of bits (i.e., a member of the set {0,1}") and outputs, say, either 0 or 1. Informally speaking, an
algorithm for computing f is a set of mechanical rules, such that by following them we can compute
f(x) given any input x € {0,1}". The set of rules being followed is fixed (i.e., the same rules must
work for all possible inputs) though each rule in this set may be applied arbitrarily many times.
Each rule involves one or more of the following “elementary” operations:

1. Read a bit of the input.

1.2. MODELING COMPUTATION AND EFFICIENCY pl.5 (15)

2. Read a bit (or possibly a symbol from a slightly larger alphabet, say a digit in the set
{0,...,9}) from the “scratch pad” or working space we allow the algorithm to use.

Based on the values read,
3. Write a bit/symbol to the scratch pad.

4. Either stop and output 0 or 1, or choose a new rule from the set that will be applied next.

Finally, the running time is the number of these basic operations performed.
Below, we formalize all of these notions.

1.2.1 The Turing Machine

The k-tape Turing machine is a concrete realization of the above informal notion, as follows (see
Figure 1.1).

Scratch Pad: The scratch pad consists of k& tapes. A tape is an infinite one-directional line of
cells, each of which can hold a symbol from a finite set I' called the alphabet of the machine. Each
tape is equipped with a tape head that can potentially read or write symbols to the tape one cell
at a time. The machine’s computation is divided into discrete time steps, and the head can move
left or right one cell in each step.

The first tape of the machine is designated as the input tape. The machine’s head can can only
read symbols from that tape, not write them —a so-called read-only head.

The k — 1 read-write tapes are called work tapes and the last one of them is designated as the
output tape of the machine, on which it writes its final answer before halting its computation.

Finite set of operations/rules: The machine has a finite set of states, denoted (). The machine
contains a “register” that can hold a single element of @); this is the ”state” of the machine at
that instant. This state determines its action at the next computational step, which consists of the
following: (1) read the symbols in the cells directly under the k heads (2) for the k — 1 read/write
tapes replace each symbol with a new symbol (it has the option of not changing the tape by writing
down the old symbol again), (3) change its register to contain another state from the finite set @
(it has the option not to change its state by choosing the old state again) and (4) move each head
one cell to the left or to the right.

One can think of the Turing machine as a simplified modern computer, with the machine’s tape
corresponding to a computer’s memory, and the transition function and register corresponding to
the computer’s central processing unit (CPU). However, it’s best to think of Turing machines as
simply a formal way to describe algorithms. Even though algorithms are often best described
by plain English text, it is sometimes useful to express them by such a formalism in order to
argue about them mathematically. (Similarly, one needs to express an algorithm in a programming
language in order to execute it on a computer.)

Formal definition. Formally, a TM M is described by a tuple (I, Q), d) containing;:

pl.6 (16)

1.2. MODELING COMPUTATION AND EFFICIENCY

read only head

% FRlBERLLLRG LTI
o CETabblle I T T TTIC
coe F} T T T T I TITIC

Figure 1.1: A snapshot of the execution of a 3-tape Turing machine M with an input tape, a work tape, and an

output tape.

e A set I' of the symbols that M’s tapes can contain. We assume that I" contains a designated
“blank” symbol, denoted [J, a designated “start” symbol, denoted > and the numbers 0 and
1. We call T" the alphabet of M.

e A set @) of possible states M’s register can be in. We assume that) contains a designated
start state, denoted ¢sart and a designated halting state, denoted gnayt-

e A function §:Q x T* — Q x I'* 1 x {L, S, R}k describing the rule M uses in performing each
step. This function is called the transition function of M (see Figure 1.2.)

IF THEN
input | work/ current move new move new
symbol | output state input work/ work/ state
read tape head Output Output
symbol tape tape
read symbol
a b q — b’ -~ q

Figure 1.2: The transition function of a two tape TM (i.e., a TM with one input tape and one work/output tape).

If the machine is in state ¢ € Q and (01,02, ...,0k) are the symbols currently being read in the
k tapes, and 0(q, (o1, ...,0k4+1)) = (¢, (0%, ...,0},), 2) where z € {L, SR}" then at the next step the
o symbols in the last k — 1 tapes will be replaced by the ¢’ symbols, the machine will be in state

1.2. MODELING COMPUTATION AND EFFICIENCY pl.7 (17)

¢’, and the k + 1 heads will move Left, Right or Stay in place, as given by z. (If the machine tries
to move left from the leftmost position of a tape then it will stay in place.)

All tapes except for the input are initialized in their first location to the start symbol > and in
all other locations to the blank symbol [J. The input tape contains initially the start symbol >, a
finite non-blank string (“the input”), and the rest of its cells are initialized with the blank symbol
0. All heads start at the left ends of the tapes and the machine is in the special starting state gstart.
This is called the start configuration of M on input x. Each step of the computation is performed
by applying the function ¢ as described above. The special halting state g, has the property that
once the machine is in gna, the transition function § does not allow it to further modify the tape
or change states. Clearly, if the machine enters gna; then it has halted. In complexity theory we
are typically only interested in machines that halt for every input in a finite number of steps.

Now we formalize the notion of running time. As every non-trivial algorithm needs to at least
read its entire input, by “quickly” we mean that the number of basic steps we use is small when
considered as a function of the input length.

DEFINITION 1.4 (COMPUTING A FUNCTION AND RUNNING TIME)

Let f:{0,1}" — {0,1}" and let T : N — N be some functions, and let M be a
Turing machine. We say that M computes f in T(n)-time? if for every z € {0,1}",
if M is initialized to the start configuration on input x, then after at most 7'(|x|)
steps it halts with f(x) written on its output tape.

We say that M computes f if it computes f in T'(n) time for some function 7' : N —
N.

REMARK 1.5 (TIME-CONSTRUCTIBLE FUNCTIONS)

We say that a function 7' : N — N is time constructible if T(n) > n and there is a TM M
that computes the function x — T'(|z|), in time T'(n). (As usual, T'(|x|), denotes the binary
representation of the number T'(|z|).)

Examples for time-constructible functions are n, nlogn, n?, 2. Almost all functions encoun-
tered in this book will be time-constructible and, to avoid annoying anomalities, we will restrict
our attention to time bounds of this form. (The restriction T'(n) > n is to allow the algorithm time
to read its input.)

EXAMPLE 1.6

Let PAL be the Boolean function defined as follows: for every x € {0,1}*, PAL(z) is equal to 1 if
x is a palindrome and equal to 0 otherwise. That is, PAL(z) = 1 if and only if x reads the same
from left to right as from right to left (i.e., z1x2... 2y = TpTp—1...21). We now show a TM M
that computes PAL within less than 3n steps.

*Formally we should write “T-time” instead of “T'(n)-time”, but we follow the convention of writing T'(n) to
emphasize that T is applied to the input length.

pl.8 (18) 1.2. MODELING COMPUTATION AND EFFICIENCY

Our TM M will use 3 tapes (input, work and output) and the alphabet {>,,0, 1}. It operates
as follows:

1. Copy the input to the read/write work tape.
2. Move the input head to the beginning of the input.

3. Move the input-tape head to the right while moving the work-tape head to the left. If at any
moment the machine observes two different values, it halts and output O.

4. Halt and output 1.

We now describe the machine more formally: The TM M uses 5 states denoted by {gstart; Gcopy, Gright Gtest, Ghalt } -
Its transition function is defined as follows:

1. On state gstart, move the input-tape head to the right, and move the work-tape head to the
right while writing the start symbol >; change the state to geopy. (Unless we mention this
explicitly, the function does not change the output tape’s contents or head position.)

2. On state geopy:

e If the symbol read from the input tape is not the blank symbol [J then move both the
input-tape and work-tape heads to the right, writing the symbol from the input-tape on
the work-tape; stay in the state geopy-

e If the symbol read from the input tape is the blank symbol (1, then move the input-tape
head to the left, while keeping the work-tape head in the same place (and not writing
anything); change the state to gright.

3. On state gright:

e If the symbol read from the input tape is not the start symbol > then move the input-
head to the left, keeping the work-tape head in the same place (and not writing anything);
stay in the state gight.

e If the symbol read from the input tape is the start symbol > then move the input-tape
to the right and the work-tape head to the left (not writing anything); change to the
state Gest-

4. On state Gest:

e If the symbol read from the input-tape is the blank symbol [J and the symbol read from
the work-tape is the start symbol > then write 1 on the output tape and change state
tO Ghalt-

e Otherwise, if the symbols read from the input tape and the work tape are not the same
then write 0 on the output tape and change state to gpat.

1.2. MODELING COMPUTATION AND EFFICIENCY pl.9 (19)

e Otherwise, if the symbols read from the input tape and the work tape are the same,
then move the input-tape head to the right and the work-tape head to the left; stay in
the state grest.

As you can see, fully specifying a Turing machine is somewhat tedious and not always very
informative. While it is useful to work out one or two examples for yourself (see Exercise 4), in the
rest of the book we avoid such overly detailed descriptions and specify TM’s in a more high level
fashion.

REMARK 1.7

Some texts use as their computational model single tape Turing machines, that have one read/write
tape that serves as input, work and output tape. This choice does not make any difference for most
of this book’s results (see Exercise 10). However, Example 1.6 is one exception: it can be shown
that such machines require (n?) steps to compute the function PAL.

1.2.2 Robustness of our definition.

Most of the specific details of our definition of Turing machines are quite arbitrary. For example,
the following simple claims show that restricting the alphabet I' to be {0,1,0, >}, restricting the
machine to have a single work tape, or allowing the tapes to be infinite in both directions will not
have a significant effect on the time to compute functions: (Below we provide only proof sketches
for these claims; completing these sketches into full proofs is a very good way to gain intuition on
Turing machines, see Exercises 5, 6 and 7.)

CrAamm 1.8

For every f :{0,1}* — {0,1} and time-constructible T : N — N, if f is computable in time T'(n)
by a TM M using alphabet T’ then it is computable in time 4log |T'|T'(n) by a TM M using the
alphabet {0,1,0,>}.

s tepe: |> [mfa[c[n[i [nfe] | [[[[[| []]C

s ave: [o[t o o [o o o a[o[o o1 1 | IC

Figure 1.3: We can simulate a machine M using the alphabet {I>,,a,b,...,z} by a machine M’ using {>,,0, 1}
via encoding every tape cell of M using 5 cells of M’.

PROOF SKETCH: Let M be a TM with alphabet I', k tapes, and state set () that computes the
function f in T'(n) time. We will show a TM M computing f with alphabet {0,1,0,>}, k tapes
and a set Q" of states which will be described below. The idea behind the proof is simple: one can
encode any member of I' using log |I'| bits.> Thus, each of M’s work tapes will simply encode one

3Recall our conventions that log is taken to base 2, and non-integer numbers are rounded up when necessary.

pl.10 (20) 1.2. MODELING COMPUTATION AND EFFICIENCY

of M’s tapes: for every cell in M’s tape we will have log|T'| cells in the corresponding tape of M
(see Figure 1.3).

To simulate one step of M, the machine M will: (1) use log |T'| steps to read from each tape the
log |T'| bits encoding a symbol of I" (2) use its state register to store the symbols read, (3) use M’s
transition function to compute the symbols M writes and M’s new state given this information,
(3) store this information in its state register, and (4) use log |I'| steps to write the encodings of
these symbols on its tapes.

One can verify that this can be carried out if M has access to registers that can store M’s state,
k symbols in T and a counter from 1 to k. Thus, there is such a machine M utilizing no more than
10|Q||T'|*k states. (In general, we can always simulate several registers using one register with a
larger state space. For example, we can simulate three registers taking values in the sets A,B and
C respectively with one register taking a value in the set A x B x C which is of size |A||B||C].)

It is not hard to see that for every input = € {0,1}", if on input z the TM M outputs f(z)
within 7'(n) steps, then M will output the same value within less than 4 log |T|T(n) steps. B

CramM 1.9

For every f : {0,1}* — {0,1}, time-constructible T : N — N, if f is computable in time T(n)
by a TM M using k tapes (plus additional input and output tapes) then it is computable in time
5kT(n)? by a TM M using only a single work tape (plus additional input and output tapes).

M’s 3 work tapes:

o e pIAe el b TTTTTTTIC
o2 e b (a[e 44 [[[T [[[T TIC
tave o [l o S [T TT T T TTIC

Encoding this in one tape of M:

L blaleh ol [oh Bl Lol e Lol a

Figure 1.4: Simulating a machine M with 3 work tapes using a machine M with a single work tape (in addition to
the input and output tapes).

PROOF SKETCH: Again the idea is simple: the TM M encodes the k tapes of M on a single tape
by using locations 1,k+1,2k+1,... to encode the first tape, locations 2, k+2,2k+2,... to encode
the second tape etc.. (see Figure 1.4). For every symbol a in M’s alphabet, M will contain both
the symbol a and the symbol a. In the encoding of each tape, exactly one symbol will be of the “
type”, indicating that the corresponding head of M is positioned in that location (see figure). M
uses the input and output tape in the same way M does. To simulate one step of M, the machine
M makes two sweeps of its work tape: first it sweeps the tape in the left-to-right direction and

1.2. MODELING COMPUTATION AND EFFICIENCY pl.11 (21)

records to its register the k symbols that are marked by . Then M uses M’s transition function
to determine the new state, symbols, and head movements and sweeps the tape back in the right-
to-left direction to update the encoding accordingly. Clearly, M will have the same output as M.
Also, since on n-length inputs M never reaches more than location T'(n) of any of its tapes, M will
never need to reach more than location kT (n) of its work tape, meaning that for each the at most
T(n) steps of M, M performs at most 5kT(n) work (sweeping back and forth requires about 27°(n)

steps, and some additional steps may be needed for updating head movement and book keeping).
|

REMARK 1.10

With a bit of care, one can ensure that the proof of Claim 1.9 yields a TM M with the following
property: the head movements of M are independent of the contents of its tapes but only on the
input length (i.e., M always performs a sequence of left to right and back sweeps of the same form
regardless of what is the input). A machine with this property is called oblivious and the fact that
every TM can be simulated by an oblivious TM will be useful for us later on (see Exercises 8 and 9
and the proof of Theorem 2.10).

Cram 1.11

Define a bidirectional TM to be a TM whose tapes are infinite in both directions. For every
f:4{0,1}" — {0,1}" and time constructible T : N — N, if f is computable in time T'(n) by a
bidirectional TM M then it is computable in time 4T (n) by a standard (unidirectional) TM M.

M’s tape is infinite in both directions:

DL [fefolmfp[tefefeft [y [[] [C

([ECITRRRANS
~ [rE 1110

et fodefrolvel [[[[[1 1€

Eigure 1.5: To simulate a machine M with alphabet I" that has tapes infinite in both directions, we use a machine
M with alphabet I'? whose tapes encode the “folded” version of M’s tapes.

PRrROOF SKETCH: The idea behind the proof is illustrated in Figure 1.5. If M uses alphabet I' then
M will use the alphabet I'2 (i.e., each symbol in M’s alphabet corresponds to a pair of symbols in
M’s alphabet). We encode a tape of M that is infinite in both direction using a standard (infinite in
one direction) tape by “folding” it in an arbitrary location, with each location of M’s tape encoding
two locations of M’s tape. At first, M will ignore the second symbol in the cell it reads and act
according to M’s transition function. However, if this transition function instructs M to go “over
the edge” of its tape then instead it will start ignoring the first symbol in each cell and use only the
second symbol. When it is in this mode, it will translate left movements into right movements and
vice versa. If it needs to go “over the edge” again then it will go back to reading the first symbol
of each cell, and translating movements normally. B

pl.12 (22) 1.3. MACHINES AS STRINGS AND THE UNIVERSAL TURING MACHINES.

Other changes that will not have a very significant effect include having two or three dimensional
tapes, allowing the machine random access to its tape, and making the output tape write only (see
Exercises 11 and 12; also the texts [SIP96, HMUO1] contain more examples). In particular none
of these modifications will change the class P of polynomial-time computable decision problems
defined below in Section 1.5.

1.2.3 The expressive power of Turing machines.

When you encounter Turing machines for the first time, it may not be clear that they do indeed
fully encapsulate our intuitive notion of computation. It may be useful to work through some simple
examples, such as expressing the standard algorithms for addition and multiplication in terms of
Turing machines computing the corresponding functions (see Exercise 4). You can also verify that
you can simulate a program in your favorite programming language using a Turing machine. (The
reverse direction also holds: most programming languages can simulate a Turing machine.)

EXAMPLE 1.12
(This example assumes some background in computing.) We give a hand-wavy proof that Turing
machines can simulate any program written in any of the familiar programming languages such
as C or Java. First, recall that programs in these programming languages can be translated (the
technical term is compiled) into an equivalent machine language program. This is a sequence of
simple instructions to read from memory into one of a finite number of registers, write a register’s
contents to memory, perform basic arithmetic operations, such as adding two registers, and control
instructions that perform actions conditioned on, say, whether a certain register is equal to zero.

All these operations can be easily simulated by a Turing machine. The memory and register can
be implemented using the machine’s tapes, while the instructions can be encoded by the machine’s
transition function. For example, it’s not hard to show TM’s that add or multiply two numbers,
or a two-tape TM that, if its first tape contains a number ¢ in binary representation, can move the
head of its second tape to the i*" location.

Exercise 13 asks you to give a more rigorous proof of such a simulation for a simple tailor-made
programming language.

1.3 Machines as strings and the universal Turing machines.

It is almost obvious that a Turing machine can be represented as a string: since we can write the
description of any TM M on paper, we can definitely encode this description as a sequence of zeros
and ones. Yet this simple observation— that we can treat programs as data— has had far reaching
consequences on both the theory and practice of computing. Without it, we would not have had
general purpose electronic computers, that, rather than fixed to performing one task, can execute
arbitrary programs.

1.3. MACHINES AS STRINGS AND THE UNIVERSAL TURING MACHINES. pl.13 (23)

Because we will use this notion of representing TM’s as strings quite extensively, it may be
worth to spell out our representation out a bit more concretely. Since the behavior of a Turing
machine is determined by its transition function, we will use the list of all inputs and outputs of
this function (which can be easily encoded as a string in {0,1}") as the encoding of the Turing
machine.* We will also find it convenient to assume that our representation scheme satisfies the
following properties:

1. Every string in {0, 1}* represents some Turing machine.

This is easy to ensure by mapping strings that are not valid encodings into some canonical
trivial TM, such as the TM that immediately halts and outputs zero on any input.

2. Every TM is represented by infinitely many strings.

This can be ensured by specifying that the representation can end with an arbitrary number of
1’s, that are ignored. This has somewhat similar effect as the comments of many programming
languages (e.g., the /*...*/ construct in C,C++ and Java) that allows to add superfluous
symbols to any program.

If M is a Turing machine, then we use M, to denotes M’s representation as a binary string.
If v is a string then we denote the TM that o represents by M,. As is our convention, we will also
often use M to denote both the TM and its representation as a string. Exercise 14 asks you to
fully specify a representation scheme for Turing machines with the above properties.

1.3.1 The Universal Turing Machine

It was Turing that first observed that general purpose computers are possible, by showing a universal
Turing machine that can simulate the execution of every other TM M given M’s description as
input. Of course, since we are so used to having a universal computer on our desktops or even
in our pockets, today we take this notion for granted. But it is good to remember why it was
once counterintuitive. The parameters of the universal TM are fixed —alphabet size, number
of states, and number of tapes. The corresponding parameters for the machine being simulated
could be much larger. The reason this is not a hurdle is, of course, the ability to use encodings.
Even if the universal TM has a very simple alphabet, say {0, 1}, this is sufficient to allow it to
represent the other machine’s state and and transition table on its tapes, and then follow along in
the computation step by step.

Now we state a computationally efficient version of Turing’s construction due to Hennie and
Stearns [HS66]. To give the essential idea we first prove a slightly relaxed variant where the term
Tlog T below is replaced with 72. But since the efficient version is needed a few times in the book,
a full proof is also given at the end of the chapter (see Section 1.A).

4Note that the size of the alphabet, the number of tapes, and the size of the state space can be deduced from
the transition function’s table. We can also reorder the table to ensure that the special states gstart, ghait are the first
2 states of the TM. Similarly, we may assume that the symbols >,[],0,1 are the first 4 symbols of the machine’s
alphabet.

pl.14 (24) 1.3. MACHINES AS STRINGS AND THE UNIVERSAL TURING MACHINES.

THEOREM 1.13 (EFFICIENT UNIVERSAL TURING MACHINE)

There exists a TM U such that for every x,a € {0,1}", U(z, o) = M, (x), where M,
denotes the TM represented by a.

Furthermore, if M, halts on input x within T' steps then U(x,«) halts within
CTlogT steps, where C is a number independent of |z| and depending only on
M, ’s alphabet size, number of tapes, and number of states.

REMARK 1.14

A common exercise in programming courses is to write an interpreter for a particular programming
language using the same language. (An interpreter takes a program P as input and outputs the
result of executing the program P.) Theorem 1.13 can be considered a variant of this exercise.

PRrROOF: Our universal TM U is given an input z, a, where « represents some TM M, and needs
to output M (z). A crucial observation is that we may assume that M (1) has a single work tape
(in addition to the input and output tape) and (2) uses the alphabet {r>,[J,0,1}. The reason is
that U can transform a representation of every TM M into a representation of an equivalent TM
M that satisfies these properties as shown in the proofs of Claims 1.8 and 1.9. Note that these
transformations may introduce a quadratic slowdown (i.e., transform M from running in 7" time to
running in C’T? time where C’ depends on M’s alphabet size and number of tapes).

:gsgt ’>‘0‘00 1‘1‘0‘1‘0‘0‘0‘1‘0‘0‘0‘0‘ ‘ ‘E?
(used in the same way as M)
gggz Simulation of M’s work tape. Q
(used in the same way as M)
’ Description of M Q
’ Current state of M (‘)
oo PLDTTTTTTTTTITITTTITIC

(used in the same way as M)

Figure 1.6: The universal TM U has in addition to the input and output tape, three work tapes. One work tape
will have the same contents as the simulated machine M, another tape includes the description M (converted to an
equivalent one-work-tape form), and another tape contains the current state of M.

The TM U uses the alphabet {>,0,0,1} and three work tapes in addition to its input and
output tape (see Figure 1.6). U uses its input tape, output tape, and one of the work tapes in
the same way M uses its three tapes. In addition, U will use its first extra work tape to store the
table of values of M’s transition function (after applying the transformations of Claims 1.8 and 1.9
as noted above), and its other extra work tape to store the current state of M. To simulate one
computational step of M, U scans the table of M’s transition function and the current state to find
out the new state, symbols to be written and head movements, which it then executes. We see that
each computational step of M is simulated using C steps of U, where C' is some number depending
on the size of the transition function’s table.

1.4. UNCOMPUTABLE FUNCTIONS. pl.15 (25)

This high level description can turned into an exact specification of the TM U, though we leave
this to the reader. If you are not sure how this can be done, think first of how you would program
these steps in your favorite programming language and then try to transform this into a description
of a Turing machine. W

REMARK 1.15

It is sometimes useful to consider a variant of the universal TM U that gets a number ¢ as an
extra input (in addition to = and «), and outputs M, (x) if and only if M, halts on x within ¢
steps (otherwise outputting some special failure symbol). By adding a counter to U, the proof of
Theorem 1.13 can be easily modified to give such a universal TM with the same efficiency.

1.4 Uncomputable functions.

It may seem “obvious” that every function can be computed, given sufficient time. However, this
turns out to be false: there exist functions that cannot be computed within any finite number of
steps!

THEOREM 1.16
There exists a function UC : {0,1}" — {0,1} that is not computable by any TM.

PROOF: The function UC is defined as follows: for every « € {0,1}, let M be the TM represented
by a. If on input «, M halts within a finite number of steps and outputs 1 then UC(«) is equal to
0, otherwise UC(«) is equal to 1.

Suppose for the sake of contradiction that there exists a TM M such that M(a) = UC(«) for
every a € {0,1}*. Then, in particular, M(M,) = UC(_M,). But this is impossible: by the
definition of UC, if UC(M,) = 1 then M(.M,) cannot be equal to 1, and if UC(_M,) = 0 then
M(.M,) cannot be equal to 0. This proof technique is called “diagnoalization”, see Figure 1.7. B

1.4.1 The Halting Problem

One might ask why should we care whether or not the function UC described above is computable—
why would anyone want to compute such a contrived function anyway? We now show a more natural
uncomputable function. The function HALT takes as input a pair «, x and outputs 1 if and only if
the TM M, represented by « halts on input & within a finite number of steps. This is definitely a
function we want to compute: given a computer program and an input we’d certainly like to know
if the program is going to enter an infinite loop on this input. Unfortunately, this is not possible,
even if we were willing to wait an arbitrary long time:

THEOREM 1.17
HALT is not computable by any TM.

PROOF: Suppose, for the sake of contradiction, that there was a TM Mya T computing HALT. We
will use Myart to show a TM Myc computing UC, contradicting Theorem 1.16.

The TM Myc is simple: on input «, we run Mpa 7(c, «). If the result is 0 (meaning that the
machine represented by « does not halt on «) then we output 1. Otherwise, we use the universal

pl.16 (26) 1.4. UNCOMPUTABLE FUNCTIONS.

061 [1]* [0/ 1]0 Mg(@)

00 * |0 |fo 01

011 |*|o g1+ 0

q©) - ' %) 1-M(a)|.

Figure 1.7: Suppose we order all strings in lexicographic order, and write in a table the value of M, (z) for all
strings «, x, where M, denotes the TM represented by the string o and we use x to denote the case that My (x) is
not a value in {0,1} or that M, does not halt on input x. Then, UC is defined by “negating” the diagonal of this
table, and by its definition it cannot be computed by any TM.

TM U to compute M («), where M is the TM represented by «. If M(«) = 0 we output 1, and
otherwise we output 1. Note that indeed, under the assumption that Mya (@,) outputs within
a finite number of steps HALT («, z), the TM Myc(a) will output UC(«r) within a finite number of
steps. B

REMARK 1.18
The proof technique employed to show Theorem 1.17— namely showing that HALT is uncomputable
by showing an algorithm for UC using a hypothetical algorithm for HALT— is called a reduction.
We will see many reductions in this book, often used (as is the case here) to show that a problem
B is at least as hard as a problem A, by showing an algorithm that could solve A given a procedure
that solves B.

There are many other examples for interesting uncomputable (also known as undecidable) func-
tions, see Exercise 15. There are even uncomputable functions whose formulation has seemingly
nothing to do with Turing machines or algorithms. For example, the following problem cannot
be solved in finite time by any TM: given a set of polynomial equations with integer coefficients,
find out whether these equations have an integer solution (i.e., whether there is an assignment of
integers to the variables that satisfies the equations). This is known as the problem of solving
Diophantine equations, and in 1900 Hilbert mentioned finding such algorithm to solve it (which he
presumed to exist) as one of the top 23 open problems in mathematics.

For more on computability theory, see the chapter notes and the book’s website.

1.5. DETERMINISTIC TIME AND THE CLASS P. pl.17 (27)

1.5 Deterministic time and the class P.

A complexity class is a set of functions that can be computed within a given resource. We will
now introduce our first complexity classes. For reasons of technical convenience, throughout most
of this book we will pay special attention to Boolean functions (that have one bit output), also
known as decision problems or languages. (Recall that we identify a Boolean function f with the

language Ly = {z : f(x) = 1}.)

DEFINITION 1.19 (THE cLass DTIME.)
Let T': N — N be some function. We let DTIME(T'(n)) be the set of all Boolean (one bit output)
functions that are computable in ¢ - T'(n)-time for some constant ¢ > 0.

The following class will serve as our rough approximation for the class of decision problems that
are efficiently solvable.

DEFINITION 1.20 (THE cLAsS P)
P = U.>; DTIME(n®)

Thus, we can phrase the question from the introduction as to whether the dinner party problem
has an efficient algorithm as follows: “Is INDSET in P ?”, where INDSET is the language defined
in Example 1.6.

1.5.1 On the philosophical importance of P

The class P is felt to capture the notion of decision problems with “feasible” decision procedures.
Of course, one may argue whether DTIME (n'%) really represents “feasible” computation in the
real world. However, in practice, whenever we show that a problem is in P, we usually find an n?
or n° time algorithm (with reasonable constants), and not an n'%" algorithm. (It has also happened
a few times that the first polynomial-time algorithm for a problem had high complexity, say n?,
but soon somebody simplified it to say an n® algorithm.)

Note that the class P is useful only in a certain context. Turing machines are a poor model
if one is designing algorithms that must run in a fraction of a second on the latest PC (in which
case one must carefully account for fine details about the hardware). However, if the question is
whether any subexponential algorithms exist for say INDSET then even an n?® algorithm would be
a fantastic breakthrough.

P is also a natural class from the viewpoint of a programmer. Suppose undergraduate program-
mers are asked to invent the definition of an “efficient” computation. Presumably, they would agree
that a computation that runs in linear or quadratic time is “efficient.” Next, since programmers
often write programs that call other programs (or subroutines), they might find it natural to con-
sider a program “efficient” if it performs only “efficient” computations and calls subroutines that
are “efficient”. The notion of “efficiency” obtained turns out to be exactly the class P [Cob64].

pl.18 (28) 1.5. DETERMINISTIC TIME AND THE CLASS P.

1.5.2 Criticisms of P and some efforts to address them

Now we address some possible criticisms of the definition of P, and some related complexity classes
that address these.

Worst-case exact computation is too strict. The definition of P only considers algorithms
that compute the function ezxactly on every possible input. However, not all possible inputs
arise in practice (although it’s not always easy to characterize the inputs that do). Chapter 15
gives a theoretical treatment of average-case complexity and defines the analogue of P in that
context. Sometimes, users are willing to settle for approximate solutions. Chapter 18 contains
a rigorous treatment of the complexity of approximation.

Other physically realizable models. If we were to make contact with an advanced alien civi-
lization, would their class P be any different from the class defined here?

Most scientists believe the Church-Turing (CT) thesis, which states that every physically
realizable computation device— whether it’s silicon-based, DNA-based, neuron-based or using
some alien technology— can be simulated by a Turing machine. Thus they believe that the
set of computable problems would be the same for aliens as it is for us. (The CT thesis is not
a theorem, merely a belief about the nature of the world.)

However, when it comes to efficiently computable problems, the situation is less clear. The
strong form of the CT thesis says that every physically realizable computation model can
be simulated by a TM with polynomial overhead (in other words, ¢ steps on the model can
be simulated in ¢¢ steps on the TM, where ¢ is a constant that depends upon the model).
If true, it implies that the class P defined by the aliens will be the same as ours. However,
several objections have been made to this strong form.

(a) Issue of precision: TM’s compute with discrete symbols, whereas physical quantities may
be real numbers in R. Thus TM computations may only be able to approximately simulate
the real world. Though this issue is not perfectly settled, it seems so far that TMs do not
suffer from an inherent handicap. After all, real-life devices suffer from noise, and physical
quantities can only be measured up to finite precision. Thus a TM could simulate the real-life
device using finite precision. (Note also that we often only care about the most significant bit
of the result, namely, a 0/1 answer.)

Even so, in Chapter 14 we also consider a modification of the TM model that allows computa-
tions in R as a basic operation. The resulting complexity classes have fascinating connections
with the usual complexity classes.

(b) Use of randomness: The TM as defined is deterministic. If randomness exists in the
world, one can conceive of computational models that use a source of random bits (i.e.,
”coin tosses”). Chapter 7 considers Turing Machines that are allowed to also toss coins, and
studies the class BPP, that is the analogue of P for those machines. (However, we will see in
Chapters 16 and 17 the intriguing possibility that randomized computation may be no more
powerful than deterministic computation.)

(c) Use of quantum mechanics: A more clever computational model might use some of the
counterintuitive features of quantum mechanics. In Chapter 20 we define the class BQP,

1.5. DETERMINISTIC TIME AND THE CLASS P. pl.19 (29)

that generalizes P in such a way. We will see problems in BQP that are currently not known
to be in P. However, currently it is unclear whether the quantum model is truly physically
realizable. Even if it is realizable it currently seems only able to efficiently solve only very
few ”well-structured” problems that are (presumed to be) not in P. Hence insights gained
from studying P could still be applied to BQP.

(d) Use of other exotic physics, such as string theory. Though an intriguing possibility, it
hasn’t yet had the same scrutiny as quantum mechanics.

Decision problems are too limited. Some computational problems are not easily expressed as
decision problems. Indeed, we will introduce several classes in the book to capture tasks such
as computing non-Boolean functions, solving search problems, approximating optimization
problems, interaction, and more. Yet the framework of decision problems turn out to be
surprisingly expressive, and we will often use it in this book.

1.5.3 Edmonds’ quote

We conclude this section with a quote from Edmonds [Edm65], that in the paper showing a
polynomial-time algorithm for the maximum matching problem, explained the meaning of such
a result as follows:

For practical purposes computational details are vital. However, my purpose is only
to show as attractively as I can that there is an efficient algorithm. According to the
dictionary, “efficient” means “adequate in operation or performance.” This is roughly
the meaning I want in the sense that it is conceivable for mazximum matching to have
no efficient algorithm.

... There is an obvious finite algorithm, but that algorithm increases in difficulty expo-
nentially with the size of the graph. It is by no means obvious whether or not there exists
an algorithm whose difficulty increases only algebraically with the size of the graph.

... When the measure of problem-size is reasonable and when the sizes assume values
arbitrarily large, an asymptotic estimate of ... the order of difficulty of an algorithm is
theoretically important. It cannot be rigged by making the algorithm artificially difficult
for smaller sizes.

...One can find many classes of problems, besides mazimum matching and its general-
izations, which have algorithms of exponential order but seemingly none better ... For
practical purposes the difference between algebraic and exponential order is often more
crucial than the difference between finite and non-finite.

.1t would be unfortunate for any rigid criterion to inhibit the practical development of
algorithms which are either not known or known not to conform nicely to the criterion.
Many of the best algorithmic idea known today would suffer by such theoretical pedantry.
... Howewver, if only to motivate the search for good, practical algorithms, it is important
to realize that it is mathematically sensible even to question their existence. For one
thing the task can then be described in terms of concrete conjectures.

p1.20 (30) 1.5. DETERMINISTIC TIME AND THE CLASS P.

WHAT HAVE WE LEARNED?

e There are many equivalent ways to mathematically model computational pro-
cesses; we use the standard Turing machine formalization.

e Turing machines can be represented as strings. There is a universal TM that
can emulate (with small overhead) any TM given its representation.

e There exist functions, such as the Halting problem, that cannot be computed
by any TM regardless of its running time.

e The class P consists of all decision problems that are solvable by Turing ma-
chines in polynomial time. We say that problems in P are efficiently solvable.

e All low-level choices (number of tapes, alphabet size, etc..) in the definition of
Turing machines are immaterial, as they will not change the definition of P.

Chapter notes and history

Although certain algorithms have been studied for thousands of years, and some forms of computing
devices were designed before the 20th century (most most notably Charles Babbage’s difference and
analytical engines in the mid 1800’s), it seems fair to say that the foundations of modern computer
science were only laid in the 1930’s.

In 1931, Kurt Godel shocked the mathematical world by showing that certain true statements
about the natural numbers are inherently unprovable, thereby shattering an ambitious agenda set
in 1900 by David Hilbert to base all of mathematics on solid axiomatic foundations. In 1936,
Alonzo Church defined a model of computation called A-calculus (which years later inspired the
programming language LISP) and showed the existence of functions inherently uncomputable in this
model [Chu36]. A few months later, Alan Turing independently introduced his Turing machines
and showed functions inherently uncomputable by such machines [Tur36]. Turing also introduced
the idea of the wuniversal Turing machine that can be loaded with arbitrary programs. The two
models turned out to be equivalent, but in the words of Church himself, Turing machines have “the
advantage of making the identification with effectiveness in the ordinary (not explicitly defined)
sense evident immediately”. The anthology [Dav65] contains many of the seminal papers in the
theory of computability. Part II of Sipser’s book [SIP96] is a good gentle introduction to this theory,
while the books [?, HMUO1, Ko0z97] go into a bit more depth. This book’s web site also contains
some additional coverage of this theory.

During World War II Turing designed mechanical code-breaking devices and played a key role
in the effort to crack the German “Enigma” cipher, an achievement that had a decisive effect on
the war’s progress (see the biographies [Hod83, Lea05]).° After World War II, efforts to build
electronic universal computers were undertaken in both sides of the Atlantic. A key figure in these

5Unfortunately, Turing’s wartime achievements were kept confidential during his lifetime, and so did not keep him
from being forced by British courts to take hormones to “cure” his homosexuality, resulting in his suicide in 1954.

1.5. DETERMINISTIC TIME AND THE CLASS P. pl.21 (31)

efforts was John von-Neumann, an extremely prolific scientist that was involved in anything from
the Manhattan project to founding game theory in economics. To this day essentially all digital
computers follow the “von-Neumann architecture” he pioneered while working on the design of the
EDVAC, one of the earliest digital computers [vN45].

As computers became more prevalent, the issue of efficiency in computation began to take
center stage. Cobham [Cob64] defined the class P and suggested it may be a good formalization
for efficient computation. A similar suggestion was made by Edmonds ([Edm65], see quote above)
in the context of presenting a highly non-trivial polynomial-time algorithm for finding a maximum
matching in general graphs. Hartmanis and Stearns [HS65] defined the class DTIME(T'(n)) for
every function T', and proved the slightly relaxed version of Theorem 1.13 we showed above (the
version we stated and prove below was given by Hennie and Stearns [HS66]). They also coined
the name “computational complexity” and proved an interesting “speed-up theorem”: if a function
f is computable by a TM M in time T'(n) then for every constant ¢ > 1, f is computable by a
TM M (possibly with larger state size and alphabet size than M) in time T'(n)/c. This speed-up
theorem is another justification for ignoring constant factors in the definition of DTIME(T'(n)).
Blum [Blu67] suggested an axiomatic formalization of complexity theory, that does not explicitly
mention Turing machines.

We have omitted a discussion of some of the “bizarre conditions” that may occur when con-
sidering time bounds that are not time-constructible, especially “huge” time bounds (i.e., function
T'(n) that are much larger than exponential in n). For example, there is a non-time constructible
function T': N — N such that every function computable in time T'(n) can also be computed in the
much shorter time log 7'(n). However, we will not encounter non time-constructible time bounds
in this book.

Exercises

§1 For each of the following pairs of functions f,g determine whether f = o(g), g = o(f) or
f=0(g). If f =o0(g) then find the first number n such that f(n) < g(n):

(a) f(n) =n?, g(n) = 2n®+ 100y/n.
(b) f(n) = nlOO, g(n) = 9n/100

(c) f(n) = n1007 g(n) = onl/100

(d) f(n) =+/n,g(n) = 9Viogn

(e) f(n)=n'%, g(n) = 200sm)",

(f) f(n)=1000n, g(n) = nlogn.

§2 For each of the following recursively defined functions f, find a closed (non-recursive) expres-
sion for a function g such that f(n) = ©(g(n)).

(Note: below we only supply the recursive rule, you can assume that f(1) = f(2) = --- =
f(10) = 1 and the recursive rule is applied for n > 10; in any case regardless how the base
case it won’t make any difference to the answer - can you see why?)

pl.22 (32) 1.5. DETERMINISTIC TIME AND THE CLASS P.

§3

§4

§5

§6

§7

(a) f(n)=f(n—1)+10
(b) f(n)=f(n—1)+n
(¢) f(n)=2f(n—-1)
(d) f(n) = f(n/2)+10
(e) f(n)=f(n/2)+n
(f) f(n) =2f(n/2)+n
(8) f(n) =3f(n/2).

The MIT museum contains a kinetic sculpture by Arthur Ganson called “Machine with con-
crete” (see Figure 1.8). It consists of 13 gears connected to one another in a series such that
each gear moves 50 times slower than the previous one. The fastest gear is constantly rotated
by an engine at a rate of 212 rotations per minute. The slowest gear is fixed to a block of
concrete and so apparently cannot move at all. How come this machine does not break apart?

Figure 1.8: Machine with concrete by Arthur Ganson.

Let f be the addition function that maps the representation of a pair of numbers x,y to the
representation of the number x + y. Let g be the multiplication function that maps (x,y) to
. -y,. Prove that both f and g are computable by writing down a full description (including
the states, alphabet and transition function) of the corresponding Turing machines.

"SWJLIOS[® [00YISOpRIS oY) MO[[0] :JUTH

Complete the proof of Claim 1.8 by writing down explicitly the description of the machine
M.

Complete the proof of Claim 1.9.

Complete the proof of Claim 1.11.

1.5. DETERMINISTIC TIME AND THE CLASS P. pl.23 (33)

§8

§9

§10

§11

§12

§13

Define a TM M to be oblivious if its head movement does not depend on the input but only
on the input length. That is, M is oblivious if for every input x € {0,1}* and i € N, the
location of each of M’s heads at the i step of execution on input z is only a function of |z|
and i. Show that for every time-constructible 7': N — N, if L € DTIME(T(n)) then there
is an oblivious TM that decides L in time O(T(n)?). Furthermore, show that there is such a
TM that uses only two tapes: one input tape and one work/output tape.

'6°T wrer) jo jooxd oy o)) UL

Show that for every time-constructible T': N — N, if L € DTIME(T(n)) then there is an
oblivious TM that decides L in time O(T(n)log T (n)).

"STIOIAT[(O 9 07 PoeoM) O UeD §'] UIDI0d T,
jo jooid oY) Aq paure)qo 7 JNJ, [BSIPAIUN oY) YR} MOUS :JUIE]

Define a single-tape Turing machine to be a TM that has only one read/write tape, that is
used as input, work and output tape. Show that for every (time-constructible) 7: N — N
and f € DTIME(T(n)), f can be computed in O(T(n)?) steps by a single-tape TM.

Define a two dimensional Turing machine to be a TM where each of its tapes is an infinite
grid (and the machine can move not only Left and Right but also Up and Down). Show that
for every (time-constructible) T : N — N and every Boolean function f, if g can be computed
in time T'(n) using a two-dimensional TM then f € DTIME(T(n)?).

Define a RAM Turing machine to be a Turing machine that has random access memory. We
formalize this as follows: the machine has additional two symbol on its alphabet we denote
by R and W and an additional state we denote by ¢ucces. We also assume that the machine
has an infinite array A that is initialized to all blanks. Whenever the machine enters ¢,ccoss,
if its address tape contains ¢ R (where i, denotes the binary representation of i) then the
value A[i] is written in the cell next to the R symbol. If its tape contains i, Wo (where o is
some symbol in the machine’s alphabet) then A[i] is set to the value o.

Show that if a Boolean function f is computable within time 7'(n) (for some time-constructible
T) by a RAM TM, then it is in DTIME(T'(n)?).

Consider the following simple programming language. It has a single infinite array A of
elements in {0,1,0} (initialized to 0J) and a single integer variable i. A program in this
language contains a sequence of lines of the following form:

label : If A[i] equals o then cmds

Where o € {0,1,0} and c¢mds is a list of one or more of the following commands: (1) Set
Ali] to 7 where 7 € {0,1,0}, (2) Goto label, (3) Increment i by one, (4) Decrement
i by one, and (5) Output b and halt. where b € {0,1}. A program is executed on an
input = € {0,1}" by placing the i*" bit of x in A[i] and then running the program following
the obvious semantics.

pl.24 (34) 1.5. DETERMINISTIC TIME AND THE CLASS P.

§14

§15

§16

Prove that for every functions f : {0,1}" — {0,1} and (time constructible) T': N — N, if f
is computable in time 7'(n) by a program in this language, then f € DTIME(T(n)).

Give a full specification of a representation scheme of Turing machines as binary string strings.
That is, show a procedure that transforms any TM M (e.g., the TM computing the function
PAL described in Example 1.6) into a binary string M,. It should be possible to recover
M from M., or at least recover a functionally equivalent TM (i.e., a TM M computing the
same function as M with the same running time).

A partial function from {0,1}" to {0,1}" is a function that is not necessarily defined on all
its inputs. We say that a TM M computes a partial function f if for every x on which f is
defined, M (z) = f(z) and for every z on which f is not defined M gets into an infinite loop
when executed on input z. If S is a set of partial functions, we define fs to be the Boolean
function that on input « outputs 1 iff M, computes a partial function in S. Rice’s Theorem
says that for every non-trivial S (a set that is not the empty set nor the set of all partial
functions), the fs is not computable.

(a) Show that Rice’s Theorem yields an alternative proof for Theorem 1.17 by showing that
the function HALT is not computable.

(b) Prove Rice’s Theorem.

‘) 1'T WIS T, WOIJ WAI0dY], S,901Y SUIALIOP Aq219Y3} | VH
Surnduod 0y | yH Surnduod sonpal uay [, ‘T ndul o sjrey °py
pr o mdur o 1 syndino yorgm £ yH uonoung o) sndurod urd Sf
ondwod 0} WYILIOF[e Ue JRY) MOYS O} SIY} 9S[) S UI J0U SI Jer}
2 qndur ewos uo pauyep sI Jey) [UOIPOUNJ SWOS SI 919y} UL SI
(1mdur Aue wo paugep jo0u sI 1e1)) () uorouny Ajduwe o) eY) Swnsse
Aewr om “quowroidurod s91 01 @ woxy Jurdueyd oqissod Aq :JUIH

Prove that the following languages/decision problems on graphs are in P: (You may pick
either the adjacency matrix or adjacency list representation for graphs; it will not make a
difference. Can you see why?)

(a) CONNECTED — the set of all connected graphs. That is, G € CONNECTED if every
pair of vertices u,v in G are connected by a path.

(b) TRIANGLEFREE — the set of all graphs that do not contain a triangle (i.e., a triplet
u, v, w of connected distinct vertices.

(c) BIPARTITE — the set of all bipartite graphs. That is, G € BIPARTITE if the vertices of
G can be partitioned to two sets A, B such that all edges in G are from a vertex in A to
a vertex in B (there is no edge between two members of A or two members of B).

(d) TREE — the set of all trees. A graph is a tree if it is connected and contains no cycles.
Equivalently, a graph G is a tree if every two distinct vertices u,v in G are connected
by exactly one simple path (a path is simple if it has no repeated vertices).

1.A. PROOF OF THEOREM ??: UNIVERSAL SIMULATION IN O(T LOGT)-TIME p1.25 (35)

§17 Recall that normally we assume that numbers are represented as string using the binary
basis. That is, a number n is represented by the sequence xg,z1,...,Z1ogn such that n =
Yoo x;2'. However, we could have used other encoding schemes. If n € N and b > 2, then
the representation of n in base b, denoted by n,, is obtained as follows: first represent n as

a sequence of digits in {0,...,b — 1}, and then replace each digit by a sequence of zeroes and
ones. The unary representation of n, denoted by 7, wnary is the string 1" (i.e., a sequence
of n ones).

(a) Show that choosing a different base of representation will make no difference to the
class P. That is, show that for every subset S of the natural numbers, if we define
LY% = { n,, :n € S} then for every b > 2, L% € P iff L% € P.

(b) Show that choosing the unary representation make make a difference by showing that
the following language is in P:

UNARYFACTORING = {{ ., ynary; Liumary, Ksunary) © there is j € (¢, k) dividing n}

It is not known to be in P if we choose the binary representation (see Chapters 10
and 20). In Chapter 3 we will see that there is a problem that is proven to be in P when
choosing the unary representation but not in P when using the binary representation.

1.A Proof of Theorem 1.13: Universal Simulation in O(7T'logT)-
time

We now show how to prove Theorem 1.13 as stated. That is, we show a universal TM U such
that given an input x and a description of a TM M that halts on x within T steps, U outputs
M (z) within O(T'logT) time (where the constants hidden in the O notation may depend on the
parameters of the TM M being simulated).

The general structure of & will be as in Section 1.3.1, using the input and output tape as M
does, and with extra work tapes to store M’s transition table and current state. We will also
have another “scratch” work tape to assist in certain computation. The main obstacle we need to
overcome is that we cannot use Claim 1.9 to reduce the number of M’s work tapes to one, as that
claim introduces too much of overhead in the simulation. Therefore, we need to show a different
way to encode all of M’s work tapes using one tape of U.

Let k be the number of tapes that M uses and I' its alphabet. Following the proof of Claim 1.8,
we may assume that U uses the alphabet T'* (as this can be simulated with a overhead depending
only on |I'|). Thus we can encode in each cell of U’s work tape k symbols of T', each corresponding
to a symbol from one of M’s tapes. However, we still have to deal with the fact that M has k
read/write heads that can each move independently to the left or right, whereas U’s work tape only
has a single head. Paraphrasing the famous saying, our strategy to handle this can be summarized
as follows:

“If Muhammad will not come to the mountain then the mountain will go to Muhammad”.

pl1.26 (36) 1.A. PROOF OF THEOREM ??7: UNIVERSAL SIMULATION IN O(T LOGT)-TIME

That is, since we can not move U’s read/write head in different directions at once, we simply
move the tape “under” the head. To be more specific, since we consider I’s alphabet to be I'*, we
can think of U’s main work tape not as a single tape but rather k parallel tapes; that is, we can
think of U as having k tapes with the property that in each step either all their read/write heads
go in unison one location to the left or they all go one location to the right (see Figure 1.9).

To simulate a single step of M we shift all the non-blank symbols in each of these parallel tapes
until the head’s position in these parallel tapes corresponds to the heads’ positions of M’s k tapes.
For example, if £ = 3 and in some particular step M’s transition function specifies the movements
L, R, R then U will shift all the non-blank entries of its first parallel tape one cell to the right, and
shift the non-blank entries of its second and third tapes one cell to the left. (U can easily perform
these shifts using the additional “scratch” work tape.)

M’s 3 independent tapes:

r= —=>
AL felolmlplileftyel]y] | [[C
< 7
UL r]elefplafelefdfofy] | | [|
L= d
r=1—>
CITT T T Iafan filalesT T TTTC

U’s 3 parallel tapes (i.e., one tape encoding 3 tapes)

1
tl
T

DTl o[ML TTTC
PARRRAGE AUAAEENTE=SY;e
)' | | |+|_|r4a|ci|h_[‘:i|n|c|e|s| | | |(,

Figure 1.9: Packing k tapes of M into one tape of U{. We consider U’s single work tape to be composed of k parallel
tapes, whose heads move in unison, and hence we shift the contents of these tapes to simulate independent head
movement.

The approach above is still not good enough to get O(T logT')-time simulation. The reason is
that there may be as much as T non-blank symbols in each tape, and so each shift operation may
cost U at least T operations per each step of M. Our approach to deal with this is to create “buffer
zones”: rather than having each of U’s parallel tapes correspond exactly to a tape of M, we add a
special kind of blank symbol ® to the alphabet of U’s parallel tapes with the semantics that this
symbol is ignored in the simulation. For example, if the non-blank contents of M’s tape are 010
then this can be encoded in the corresponding parallel tape of U not just by 010 but also by 001
or ORIKI1RI0 and so on.

1.A. PROOF OF THEOREM ??: UNIVERSAL SIMULATION IN O(T LOGT)-TIME p1.27 (37)

Before:
Ly L L Ri R Ry
- I 10 Il |1 -
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —
<2 Llelolmeltfejdfelef-|-|- [-|- [1y[C
S B
2L rlelele]-]tale]e]-]-|- | 4%
,,,,,,,,,,,,,,,

After:
Ly L, L Ri R Ry
- I [0 11 Il |1 N
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —
,, A CEEEEROS NSNS RESIS,
I -
11T |~rt:,?,,:r?,,-5|' lale[e|-]-|- [+T1&

1, I. —T 7\
<Z | [| [male] oyl [tn-[-]-[-]-]e]s]C
T - -

Figure 1.10: Performing a shift of the parallel tapes. The left shift of the first tape involves zones
L1, Ry, Lo, Ro, L3, R3, the right shift of the second tape involves only Li, Ri, while the left shift of the third tape
involves zones L1, R1, L2, R2. We maintain the invariant that each zone is either empty, half-full or full. Note that -
denotes [d.

For convenience, we think of U’s parallel tapes as infinite in both the left and right directions
(this can be easily simulated with minimal overhead, see Claim 1.11). Thus, we index their locations
by 0,+1,42,.... Normally we keep U’s head on location 0 of these parallel tapes. We will only
move it temporarily to perform a shift when, following our general approach, we simulate a left
head movement by shifting the tape to the right and vice versa. At the end of the shift we return
the head to location 0.

We split the tapes into zones Lo, Ro, L1, R1, ... (well only need to go up to Liog 741, Riog7+1)
where zone L; contains the 2¢ cells in the interval [2¢..2¢71 — 1] and zone R; contains the cells in the
interval [—27+1 + 1.. — 2%] (location 0 is not in any zone). We shall always maintain the following
invariants:

e Each of the zones is either empty, full, or half-full with non-@ symbols. That is, the number
of symbols in zone L; that are not & is either 0,2'~!, or 2¢ and the same holds for R;. (We
treat the ordinary [symbol the same as any other symbol in I and in particular a zone full
of (s is considered full.)

We assume that initially all the zones are half-full. We can ensure this by filling half of each
zone with @ symbols in the first time we encounter it.

e The total number of non-g symbols in L; U R; is 2°. That is, if L; is full then R; is empty
and vice versa.

pl.28 (38) 1.A. PROOF OF THEOREM ?7: UNIVERSAL SIMULATION IN O(T LOGT)-TIME

e Location 0 always contains a non-[&] symbol.

The advantage in setting up these zones is that now when performing the shifts, we do not
always have to move the entire tape, but by using the “buffer zones” made up of ® symbols, we can
restrict ourselves to only using some of the zones. We illustrate this by showing how U performs a
left shift on the first of its parallel tapes (see Figure 1.10):

1. U finds the smallest ¢ such that R; is not empty. Note that this is also the smallest ¢ such
that L; is not full.

2. U puts the leftmost non-gl symbol of R; in position 0 and shifts the remaining leftmost 2/~ —1
non-g symbols from R; into the zones Ry, ..., R;_1 filling up exactly half the symbols of each
zone. Note that there is room to perform this since all the zones Ry, ..., R;_1 were empty
and that indeed 271 = Zé;% 27 + 1.

3. U performs the symmetric operation to the left of position 0: it shifts into L; the 2¢=1 left-
most symbols in the zones L;_1, ..., L; and reorganizes L;_1,..., L; such that the remaining
Z;;ll 2J —2i=1 = 2i=1 _1 symbols, plus the symbol that was originally in position 0 (modified
appropriately according to M’s transition function) take up exactly half of each of the zones
L; q,...,L;.

4. Note that at the end of the shift, all of the zones Lg, Ry, ..., L;_1, Ri_1 are half-full and so
we haven’t violated our invariant.

Performing such a shift costs O(Z;Zl 27) = O(2%) operations. However, once we do this, we will
not touch I; again until we perform at least 2¢~! shifts (since now the zones Lo, Ry, ..., L;_1, R;_1
are half-full). Thus, when simulating 7" steps of M, we perform a shift involving L; and R; during
the simulation of at most a 21—1_1 fraction of these steps. Thus, the total number of operations used

by these shifts is when simulating T" steps is

log T+1
r A
oy 5i72) = O0(TlogT).
=1

Chapter 2

NP and NP completeness

“(if p(n) = Kn?)* then this would have consequences of the greatest magnitude. That
is to say, it would clearly indicate that, despite the unsolvability of the (Hilbert)
Entscheidungsproblem, the mental effort of the mathematician in the case of the
yes-or-no questions would be completely replaced by machines.... (this) seems to me,
however, within the realm of possibility.”

Kurt Godel in a letter to John von Neumann, 1956

“In modern terminology, if SAT has a quadratic time algorithm

“I conjecture that there is mno good algorithm for the traveling salesman problem.
My reasons are the same as for any mathematical conjecture: (1) It is a legitimate
mathematical possibility, and (2) I do not know.”

Jack Edmonds, 1966

“In this paper we give theorems that suggest, but do not imply, that these problems,
as well as many others, will remain intractable perpetually.”
Richard Karp, 1972

If you have ever attempted a crossword puzzle, you know that there is often a big difference
between solving a problem from scratch and verifying a given solution. In the previous chapter we
encountered P, the class of decision problems that can be efficiently solved. In this chapter, we
define the complexity class NP that aims to capture the set of problems whose solutions can be
efficiently verified. The famous P versus NP question asks whether or not the two are the same.
The resolution of this conjecture will be of great practical, scientific and philosophical interest; see
Section 2.7.

This chapter also introduces NP-completeness, an important class of computational problems
that are in P if and only if P = NP. Notions such as reductions and completeness encountered in
this study motivate many other definitions encountered later in the book.

p2.1 (39)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p2.2 (40) 2.1. THE CLASS NP
2.1 The class NP

As mentioned above, the complexity class NP will serve as our formal model for the class of
problems having efficiently verifiable solutions: a decision problem / language is in NP if given an
input z, we can easily verify that = is a YES instance of the problem (or equivalently, = is in the
language) if we are given the polynomial-size solution for x, that certifies this fact. We will give
several equivalent definitions for NP. The first one is as follows:

DEFINITION 2.1 (THE cLAss NP)
A language L C {0,1}" is in NP if there exists a polynomial p : N — N and a
polynomial-time TM M such that for every = € {0,1}",

ze L e Jue {0,110 st Mz,u) =1

If x € L and u € {0, 1}p(|x|) satisfy M(z,u) = 1 then we call u a certificate'for x
(with respect to the language L and machine M).

ExXAMPLE 2.2
Here are a few examples for decision problems in NP:

Independent set: (See Example 1.1 in the previous chapter.) Given a graph G and a number k,
decide if there is a k-size independent subset of G’s vertices. The certificate for membership
is the list of k vertices forming an independent set.

Traveling salesperson: Given a set of n nodes, (g‘) numbers d; ; denoting the distances between
all pairs of nodes, and a number k, decide if there is a closed circuit (i.e., a “salesperson
tour”) that visits every node exactly once and has total length at most k. The certificate is
the sequence of nodes in the tour.

Subset sum: Given a list of n numbers A4, ..., A, and a number T, decide if there is a subset of
the numbers that sums up to T'. The certificate is the list of members in this subset.

Linear programming: Given a list of m linear inequalities with rational coefficients over n vari-
ables uq,...,u, (a linear inequality has the form aju; + asug + ... + apu, < b for some
coefficients aq, . .., a,,b), decide if there is an assignment of rational numbers to the variables
u1, ..., U, that satisfies all the inequalities. The certificate is the assignment.

Integer programming: Given a list of m linear inequalities with rational coefficients over n
variables u1,..., Uy, find out if there is an assignment of integer numbers to wuq,...,u,
satisfying the inequalities. The certificate is the assignment.

1Some texts use the term witness instead of certificate.

2.1. THE CLASS NP p2.3 (41)

Graph isomorphism: Given two n X n adjacency matrices My, Mo, decide if My and M, define
the same graph, up to renaming of vertices. The certificate is the permutation 7 : [n] — [n]
such that My is equal to M; after reordering M;’s indices according to 7.

Composite numbers: Given a number N decide if N is a composite (i.e., non-prime) number.
The certificate is the factorization of N.

Factoring: Given three numbers N, L,U decide if N has a factor M in the interval [L,U]. The
certificate is the factor M.

Connectivity: Given a graph G and two vertices s,t in G, decide if s is connected to ¢ in G. The
certificate is the path from s to t.

2.1.1 Relation between NP and P

We have the following trivial relationships between NP and the classes P and DTIME(T'(n))
defined in the previous chapter:

CrLAmM 2.3
P C NP C .., DTIME(2™).

Proor: (P C NP): Suppose L € P is decided in polynomial-time by a TM N. Then L € NP
since we can take N as the machine M in Definition 2.1 and make p(z) the zero polynomial (in
other words, u is an empty string).

(NP C J.o; DTIME(2™)): If L € NP and M, p() are as in Definition 2.1 then we can decide
L in time 29(®() by enumerating all possible u and using M to check whether u is a valid certificate
for the input x. The machine accepts iff such a u is ever found. Since p(n) = O(n¢) for some ¢ > 1
then this machine runs in 2°(") time. Thus the theorem is proven. W

At the moment, we do not know of any stronger relation between NP and deterministic time
classes than the trivial ones stated in Claim 2.3. The question whether or not P = NP is considered
the central open question of complexity theory, and is also an important question in mathematics
and science at large (see Section 2.7). Most researchers believe that P # NP since years of effort
has failed to yield efficient algorithms for certain NP languages.

EXAMPLE 2.4

Here is the current knowledge regarding the NP decision problems mentioned in Example 2.2:
The Connectivity, Composite Numbers and Linear programming problems are known to be
in P. For connectivity this follows from the simple and well known breadth-first search algorithm
(see [KT06, CLRSO1]). The composite numbers problem was only recently shown to be in P
by Agrawal, Kayal and Saxena [?], who gave a beautiful algorithm to solve it. For the linear
programming problem this is again highly non-trivial, and follows from the Ellipsoid algorithm of
Khachiyan [?] (there are also faster algorithms, following Karmarkar’s interior point paradigm [?]).

p2.4 (42) 2.1. THE CLASS NP

All the rest of the problems are not known to have a polynomial-time algorithm, although we
have no proof that they are not in P. The Independent Set, Traveling Salesperson, Subset
Sum, and Integer Programming problems are known to be NP-complete, which, as we will see
in this chapter, implies that they are not in P unless P = NP. The Graph Isomorphism and
Factoring problems are not known to be either in P nor NP-complete.

2.1.2 Non-deterministic Turing machines.

The class NP can also be defined using a variant of Turing machines called non-deterministic
Turing machines (abbreviated NDTM). In fact, this was the original definition and the reason for
the name NP, which stands for non-deterministic polynomial-time. The only difference between an
NDTM and a standard TM is that an NDTM has two transition functions dg and §;. In addition
the NDTM has a special state we denote by gaccept. When an NDTM M computes a function,
we envision that at each computational step M makes an arbitrary choice as to which of its two
transition functions to apply. We say that M outputs 1 on a given input z if there is some sequence
of these choices (which we call the non-deterministic choices of M) that would make M reach gaccept
on input z. Otherwise— if every sequence of choices makes M halt without reaching gaccept— then
we say that M(x) = 0. We say that M runs in T'(n) time if for every input x € {0,1}* and every
sequence of non-deterministic choices, M reaches either the halting state or gaccept Within T'(|x|)
steps.

DEFINITION 2.5
For every function 7 : N — N and L C {0,1}", we say that L € NTIME(T(n)) if there is a
constant ¢ > 0 and a ¢T'(n)-time NDTM M such that for every x € {0,1}", z € L & M(x) =1

The next theorem gives an alternative definition of NP, the one that appears in most texts.

THEOREM 2.6
NP = U,enNTIME(n€)

PROOF: The main idea is that the sequence of nondeterministic choices made by an accepting
computation of an NDTM can be viewed as a certificate that the input is in the language, and vice
versa.

Suppose p : N — N is a polynomial and L is decided by a NDTM N that runs in time p(n). For
every x € L, there is a sequence of nondeterministic choices that makes IV reach gaccept On input .
We can use this sequence as a certificate for x. Notice, this certificate has length p(|z|) and can be
verified in polynomial time by a deterministic machine, which checks that N would have entered
accept after using these nondeterministic choices. Thus L € NP according to Definition 2.1.

Conversely, if L € NP according to Definition 2.1, then we describe a polynomial-time NDTM
N that decides L. On input z, it uses the ability to make non-deterministic choices to write down
a string u of length p(|z|). (Concretely, this can be done by having transition dp correspond to
writing a 0 on the tape and transition d; correspond to writing a 1.) Then it runs the deterministic

2.2. REDUCIBILITY AND NP-COMPLETENESS p2.5 (43)

verifier M of Definition 2.1 to verify that u is a valid certificate for z, and if so, enters gaccept-
Clearly, N enters gaccept 00 if and only if a valid certificate exists for . Since p(n) = O(n°) for
some ¢ > 1, we conclude that L € NTIME(n¢). B

As is the case with deterministic TM’s, NDTM’s can be easily represented as strings and there
exists a universal non-deterministic Turing machine, see Exercise 1. (In fact, using non-determinism
we can even make the simulation by a universal TM slightly more efficient.)

2.2 Reducibility and NP-completeness

It turns out that the independent set problem is at least as hard as any other language in NP: if
it has a polynomial-time algorithm then so do all the problems in NP. This fascinating property
is called NP-hardness. Since most scientists conjecture that NP # P, the fact that a language is
NP-hard can be viewed as evidence that it cannot be decided in polynomial time.

How can we prove that a language B is at least as hard as some other language A? The crucial
tool we use is the notion of a reduction (see Figure 2.1):

DEFINITION 2.7 (REDUCTIONS, NP-HARDNESS AND NP-COMPLETENESS)

We say that a language A C {0, 1} is polynomial-time Karp reducible to a language
B C {0,1}* (sometimes shortened to just “polynomial-time reducible”?) denoted by
A <, B if there is a polynomial-time computable function f : {0,1}" — {0,1}" such
that for every z € {0,1}", z € A if and only if f(x) € B.

We say that B is NP-hard if A <, B for every A € NP. We say that B is
NP-complete if B is NP-hard and B € NP.

I
___________ -___.(—)—I Algorithm for L

output:

C e = Input: x fix - : 1 iff £(x) in L
LT - | ¢ (x) | Algorithm for L)

Figure 2.1: A Karp reduction from L to L is a polynomial-time function f that maps strings in L to strings in L'
and strings in L = {0,1}" \ L to strings in L’. It can be used to transform a polynomial-time TM M’ that decides
L’ into a polynomial-time TM M for L by setting M (z) = M'(f(x)).

Now we observe some properties of polynomial-time reductions. Part 1 of the following Theorem
shows that this relation is transitive. (Later we will define other notions of reduction, and all will

2Some texts call this notion “many-to-one reducibility” or “polynomial-time mapping reducibility”.

p2.6 (44) 2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL

satisfy transitivity.) Part 2 suggests the reason for the term NP-hard —mnamely, an NP-hard
languages is at least as hard as any other NP language. Part 3 similarly suggests the reason
for the term NP-complete: to study the P versus NP question it suffices to study whether any
NP-complete problem can be decided in polynomial time.

THEOREM 2.8
1. (Transitivity) If A <, B and B <, C, then A <, C.

2. If language A is NP-hard and A € P then P = NP.

3. If language A is NP-complete then A € P if and only if P = NP.

PROOF: The main observation is that if p,q are two functions that have polynomial growth then
their composition p(g(n)) also has polynomial growth. We prove part 1 and leave the others as
simple exercises.

If f1 is a polynomial-time reduction from A to B and fs is a reduction from B to C' then
the mapping = — fo(fi(x)) is a polynomial-time reduction from A to C since fo(fi(x)) takes
polynomial time to compute given x and fo(f1(z)) € Ciff x € A. W

Do NP-complete languages exist? It may not be clear that NP should possess a language that
is as hard as any other language in the class. However, this does turn out to be the case:

THEOREM 2.9
The following language is NP-complete:

TMSAT = {{a,2,1™,1") : 3u € {0,1}" s.t. M,, outputs 1 on input {x,u) within t steps}
where M, denotes the TM represented by the string o.?

Once you internalize the definition of NP, the proof of Theorem 2.9 is straightforward and so
is left to the reader as Exercise 2. But TMSAT is not a very useful NP-complete problem since
its definition is intimately tied to the notion of the Turing machine, and hence the fact that it is
NP-complete does not provide much new insight.

2.3 The Cook-Levin Theorem: Computation is Local

Around 1971, Cook and Levin independently discovered the notion of NP-completeness and gave
examples of combinatorial NP-complete problems whose definition seems to have nothing to do
with Turing machines. Soon after, Karp showed that NP-completeness occurs widely and many
problems of practical interest are NP-complete. To date, thousands of computational problems in
a variety of disciplines have been found to be NP-complete.

3Recall that 1% denotes the string consisting of k 1’s. it is a common convention in complexity theory to provide
a polynomial TM with such an input to allow it to run in time polynomial in k.

2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL p2.7 (45)
2.3.1 Boolean formulae and the CNF form.

Some of the simplest examples of NP-complete problems come from propositional logic. A Boolean
formula over the variables uy,...,u, consists of the variables and the logical operators AND (A),
NOT (=) and OR (V); see Appendix A for their definitions. For example, (a Ab)V (a Ac)V (bAc)
is a Boolean formula that is TRUE if and only if the majority of the variables a, b, ¢ are TRUE. If
¢ is a Boolean formula over variables uy,...,u,, and z € {0,1}", then ¢(2) denotes the value of
© when the variables of ¢ are assigned the values z (where we identify 1 with TRUE and 0 with
FALSE). A formula ¢ is satisfiable if there there exists some assignment z such that ¢(z) is TRUE.
Otherwise, we say that ¢ is unsatisfiable.

A Boolean formula over variables u1, ..., u, is in CNF form (shorthand for Conjunctive Normal
Form) if it is an AND of OR’s of variables or their negations. For example, the following is a 3CNF
formula:

(ul\/ﬂg\/u?,)/\ (UQ\/ﬂg\/U4)/\ (ﬂ1VU3Vﬁ4).

where @ denotes the negation of the variable w.
More generally, a CNF formula has the form

/\ \/”ij ’

(J

where each v;; is either a variable uy or to its negation —uy. The terms v;; are called the literals
of the formula and the terms (V;v;;) are called its clauses. A kCNF is a CNF formula in which all
clauses contain at most k literals.

2.3.2 The Cook-Levin Theorem

The following theorem provides us with our first natural NP-complete problems:

THEOREM 2.10 (CoOK-LEVIN THEOREM [C0071, LEVT73])
Let SAT be the language of all satisfiable CNF formulae and 3SAT be the language
of all satisfiable 3CNF formulae. Then,

1. SAT is NP-complete.

2. 3SAT is NP-complete.

REMARK 2.11
An alternative proof of the Cook-Levin theorem, using the notion of Boolean circuits, is described
in Section 6.7.

Both SAT and 3SAT are clearly in NP, since a satisfying assignment can serve as the certificate
that a formula is satisfiable. Thus we only need to prove that they are NP-hard. We do so by first

p2.8 (46) 2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL

proving that SAT is NP-hard and then showing that SAT is polynomial-time Karp reducible to
3SAT. This implies that 3SAT is NP-hard by the transitivity of polynomial-time reductions. Thus
the following lemma is the key to the proof.

LEMMA 2.12

SAT is NP-hard.

Notice, to prove this we have to show how to reduce every NP language L to SAT, in other
words give a polynomial-time transformation that turns any z € {0,1}" into a CNF formula ¢,
such that z € L iff p, is satisfiable. Since we know nothing about the language L except that it is
in NP, this reduction has to rely just upon the definition of computation, and express it in some
way using a Boolean formula.

2.3.3 Warmup: Expressiveness of boolean formulae

As a warmup for the proof of Lemma 2.12 we show how to express various conditions using CNF
formulae.

EXAMPLE 2.13
The formula (a V b) A (@ V b) is in CNF form. It is satisfied by only those values of a,b that are
equal. Thus, the formula

(@1 VI A @V Y1) A A2V Tp) A (Tn V Yn)

is TRUE if and only if the strings z,y € {0,1}" are equal to one another.

Thus, though = is not a standard boolean operator like V or A, we will use it as a convenient
shorthand since the formula ¢; = ¢2 is equivalent to (in other words, has the same satisfying
assignments as) (¢ V ¢2) A (o1 V ¢2).

In fact, CNF formulae of sufficient size can express every Boolean condition, as shown by the
following simple claim: (this fact is sometimes known as universality of the operations AND, OR
and NOT)

CLam 2.14

For every Boolean function f : {0,1}* — {0,1} there is an (-variable CNF formula ¢ of size (2
such that ¢(u) = f(u) for every u € {0,1}", where the size of a CNF formula is defined to be the
number of A/V symbols it contains.

PROOF SKETCH: For every v € {0, 1}Z, it is not hard to see that there exists a clause C, such that
Cy(v) =0 and Cy(u) =1 for every u # v. For example, if v = (1,1,0, 1), the corresponding clause
iswy Vs Vug Vuy.

We let ¢ be the AND of all the clauses C,, for v such that f(v) = 0 (note that ¢ is indeed of
size at most £2¢). Then for every u such that f(u) = 0 it holds that Cy(u) = 0 and hence p(u) is
also equal to 0. On the other hand, if f(u) = 1 then C,(u) = 1 for every v such that f(v) =0 and
hence p(u) = 1. We get that for every u, p(u) = f(u). R

In this chapter we will use Claim 2.14 only when the number of variables is some fixed constant.

2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL p2.9 (47)
2.3.4 Proof of Lemma 2.12

Let L be an NP language and let M be the polynomial time TM such that that for every z € {0,1}",
x €L < M(x,u) =1 for some u € {0, 1}p(|x|), where p : N — N is some polynomial. We show L is
polynomial-time Karp reducible to SAT by describing a way to transform in polynomial-time every
string z € {0,1}" into a CNF formula ¢, such that z € L iff o, is satisfiable.

How can we construct such a formula ¢,? By Claim 2.14, the function that maps v € {0,1}” (I=1)
to M(x,u) can be expressed as a CNF formula v, (i.e., ¥z(u) = M(z,u) for every u € {0, l}p(|m|)).
Thus a string w such that M (z,u) = 1 exists if and only if v, is satisfiable. But this is not useful
for us, since the size of the formula 1/, obtained from Claim 2.14 can be as large as p(|z|)2°(*D. To
get a smaller formula we use the fact that M runs in polynomial time, and that each basic step of
a Turing machine is highly local (in the sense that it examines and changes only a few bits of the
machine’s tapes).

In the course of the proof we will make the following simplifying assumptions about the TM
M: (1) M only has two tapes: an input tape and a work/output tape and (2) M is an oblivious
TM in the sense that its head movement does not depend on the contents of its input tape. In
particular, this means that M’s computation takes the same time for all inputs of size n and for
each time step i the location of M’s heads at the i*? step depends only on i and M’s input length.

We can make these assumptions without loss of generality because for every T'(n)-time TM
M there exists a two-tape oblivious TM M computing the same function in O(T(n)?) time (see
Remark 1.10 and Exercise 8 of Chapter 1).* Thus in particular, if L is in NP then there ex-
ists a two-tape oblivious polynomial-time TM M and a polynomial p such that x € L < Ju €
{0, 13P0=D s ¢ M (2, u) = 1.

The advantage of assuming that M is oblivious is that for any given input length, we can define
functions inputpos(i), prev(i) where inputpos(i) denotes the location of the input tape head at
the i'" step and prev(i) denotes the last step before i that M visited the same location on its work
tape, see Figure 2.3.° These values can be computed in polynomial time by simulating M on, say,
the all-zeroes input.

Denote by @) the set of M’s possible states and by I its alphabet. The snapshot of M’s execution
on some input y at a particular step i is the triple (a, b, q) € I' x ' x @ such that a, b are the symbols
read by M’s heads from the two tapes and ¢ is the state M is in at the i** step (see Figure 2.2).
For every m € N and y € {0,1}"™, the snapshot of M’s execution on input y at the i*” step depends
on (1) its state in the i — 1°¢ step and (2) the contents of the current cells of its input and work
tapes. We write this relation as

2 = F(Zifly Zprev(i)ayinputpos(i)))

where inputpos(i) and prev(i) are as defined earlier, z; is the encoding of the i** snapshot as a
binary string of some length ¢, and F' is some function (derived from M’s transition function) that

“In fact, with some more effort we even simulate a non-oblivious 7'(n)-time TM by an oblivious TM running in
O(T(n)log T'(n))-time, see Exercise 9 of Chapter 1. This oblivious machine may have more than two tapes, but the
proof below easily generalizes to this case.

°If i is the first step that M visits a certain location, then we define prev(i) = 1.

p2.10 (48) 2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL

snapshot

INNRES Lo | |

a b q

read only head

{gg:t ’>‘0‘0‘0‘1‘1‘0‘1‘0‘0‘0‘1!‘_0‘50‘0‘0‘ ‘ K—,
o, BTl To[a T TTTTC

State register i__q7 |

Figure 2.2: A snapshot of a TM contains the current state and symbols read by the TM at a particular step. If at
the i*" step M reads the symbols 0,1 from its tapes and is in the state g7 then the snapshot of M at the i*" step is

<07 17q7>'

maps {0,1}%“™ to {0,1}°. (Note that ¢ is a constant depending only on M’s state and alphabet
size, and independent of the input size.)

1 inputpos(i)

input: | | ... NN

snapshots:l | | | | | | | | |
1 prev(i) i-1 i T

Figure 2.3: The snapshot of M at the it" step depends on its previous state (contained in the snapshot at the
i — 1°" step), and the symbols read from the input tape, which is in position inputpos(i), and from the work tape,
which was last written to in step prev(7).

Let n € N and = € {0,1}". We need to construct a CNF formula ¢, such that z € L <

¢s € SAT. Recall that z € L if and only if there exists some u € {0, 1}*™ such that M(y) = 1
where y = zowu (with o denoting concatenation). Since the sequence of snapshots in M’s execution
completely determines its outcome, this happens if and only if there exists a string y € {0, 1}”+p ")
and a sequence of strings z1,...,2r € {0,1}° (where T' = T'(n) is the number of steps M takes on

inputs of length n + p(n)) satisfying the following four conditions:

1. The first n bits of y are equal to x.

2. The string z; encodes the initial snapshot of M (i.e., the triple (>, 0, gstart) Where > is the
start symbol of the input tape, [is the blank symbol, and gstart is the initial state of the TM

2.3. THE COOK-LEVIN THEOREM: COMPUTATION IS LOCAL p2.11 (49)
M).

3. For every i € {2,..,T}, 2i = F(2i—1, Zinputpos(i)s Zprev(i))-

4. The last string zy encodes a snapshot in which the machine halts and outputs 1.

The formula ¢, will take variables y € {0,1}"™™ and z € {0,1}* and will verify that y, z
satisfy the AND of these four conditions. Clearly x € L < ¢, € SAT and so all that remains is to
show that we can express ¢, as a polynomial-sized CNF formula.

Condition 1 can be expressed as a CNF formula of size 4n (see Example 2.13). Conditions 2
and 4 each depend on ¢ variables and hence by Claim 2.14 can be expressed by CNF formulae of
size ¢2¢. Condition 3, which is an AND of T' conditions each depending on at most 3¢+ 1 variables,
can be expressed as a CNF formula of size at most T'(3¢ + 1)23¢T!. Hence the AND of all these
conditions can be expressed as a CNF formula of size d(n + T') where d is some constant depending
only on M. Moreover, this CNF formula can be computed in time polynomial in the running time
of M. R

2.3.5 Reducing SAT to 3SAT.

Since both SAT and 3SAT are clearly in NP, Lemma 2.12 completes the proof that SAT is NP-
complete. Thus all that is left to prove Theorem 2.10 is the following lemma:

LEMMA 2.15
SAT <, 35AT.

ProOOF: We will map a CNF formula ¢ into a 3CNF formula 1 such that v is satisfiable if and only if
pis. We demonstrate first the case that ¢ is a 4CNF'. Let C be a clause of ¢, say C' = w1 Vua VusVuy.
We add a new variable z to the ¢ and replace C' with the pair of clauses C; = u; Vus V z and
Cy =u3VuyV 7z Clearly, if ui; Vus VU3 V ug is true then there is an assignment to z that satisfies
both uy Vs V z and U3 V ugq V Z and vice versa: if C is false then no matter what value we assign
to z either Cy or Cy will be false. The same idea can be applied to a general clause of size 4, and
in fact can be used to change every clause C of size k (for k > 3) into an equivalent pair of clauses
C1 of size k — 1 and Cs of size 3 that depend on the k variables of C' and an additional auxiliary
variable z. Applying this transformation repeatedly yields a polynomial-time transformation of a
CNF formula ¢ into an equivalent 3CNF formula . B

2.3.6 More thoughts on the Cook-Levin theorem

The Cook-Levin theorem is a good example of the power of abstraction. Even though the theorem
holds regardless of whether our computational model is the C programming language or the Turing
machine, it may have been considerably more difficult to discover in the former context.

Also, it is worth pointing out that the proof actually yields a result that is a bit stronger than
the theorem’s statement:

p2.12 (50) 2.4. THE WEB OF REDUCTIONS

1. If we use the efficient simulation of a standard TM by an oblivious TM (see Exercise 9,
Chapter 1) then for every = € {0,1}", the size of the formula ¢, (and the time to compute
it) is O(T'logT), where T is the number of steps the machine M takes on input z (see
Exercise 10).

2. The reduction f from an NP-language L to SAT presented in Lemma 2.12 not only satisfied
that z € L < f(z) € SAT but actually the proof yields an efficient way to transform a
certificate for z to a satisfying assignment for f(x) and vice versa. We call a reduction with
this property a Levin reduction. One can also verify that the proof supplied a one-to-one and
onto map between the set of certificates for x and the set of satisfying assignments for f(x),
implying that they are of the same size. A reduction with this property is called parsimonious.
Most of the known NP-complete problems (including all the ones mentioned in this chapter)
have parsimonious Levin reductions from all the NP languages (see Exercise 11). As we will
see in this book, this fact is sometimes useful for certain applications.

Why 3SAT? The reader may wonder why is the fact that 3SAT is NP-complete so much more
interesting than the fact that, say, the language TMSAT of Theorem 2.9 is NP-complete. One
answer is that 3SAT is useful for proving the NP-completeness of other problems: it has very
minimal combinatorial structure and thus easy to use in reductions. Another answer has to do
with history: propositional logic has had a central role in mathematical logic —in fact it was
exclusively the language of classical logic (e.g. in ancient Greece). This historical resonance is one
reason why Cook and Levin were interested in 3SAT in the first place. A third answer has to do
with practical importance: it is a simple example of constraint satisfaction problems, which are
ubiquitous in many fields including artificial intelligence.

2.4 The web of reductions

Cook and Levin had to show how every NP language can be reduced to SAT. To prove the NP-
completeness of any other language L, we do not need to work as hard: it suffices to reduce SAT or
3SAT to L. Once we know that L is NP-complete we can show that an NP-language L' is in fact
NP-complete by reducing L to L’. This approach has been used to build a “web of reductions”
and show that thousands of interesting languages are in fact NP-complete. We now show the
NP-completeness of a few problems. More examples appear in the exercises (see Figure 2.4). See
the classic book by Garey and Johnson [GJ79] and the Internet site [?] for more.

THEOREM 2.16 (INDEPENDENT SET IS NP-COMPLETE)
Let INDSET = {(G, k) : G has independent set of size k}. Then INDSET is NP-complete.

PrROOF: Since INDSET is clearly in NP, we only need to show that it is NP-hard, which we do by
reducing 3SAT to INDSET. Let ¢ be a 3CNF formula on n variables with m clauses. We define a
graph G of 7m vertices as follows: we associate a cluster of 7 vertices in G with each clause of .
The vertices in cluster associated with a clause C correspond to the 7 possible partial assignments to
the three variables C' depends on (we call these partial assignments, since they only give values for
some of the variables). For example, if C' is uz V5 V@7 then the 7 vertices in the cluster associated

2.4. THE WEB OF REDUCTIONS p2.13 (51)

VL € NP
Theorem 2.10 (Lemma 2.12)

SAT. Theorem 2.10 (Lemma 2.15)

Theorem 2.18 Theorem 2.17

INTEGERPROG

dHAMPATH
/L6/ 3SQT«E 16
Ex 1 Th 92, X
l 17 e Exactone3SAT
HAMPATH INDSET
Ex 16
AX 17
SUBSETSUM
TSP Ex 14
Ex 6
THEOREMS CLIQUE VERTEXCOVER
lEX 15
Ex 18 MAXCUT
QUADEQ

Figure 2.4: Web of reductions between the NP-completeness problems described in this chapter
and the exercises. Thousands more are known.

p2.14 (52) 2.4. THE WEB OF REDUCTIONS

with C' correspond to all partial assignments of the form u; = a,us = b, us = ¢ for a binary vector
(a,b,c) # (1,1,1). (If C depends on less than three variables then we repeat one of the partial
assignments and so some of the 7 vertices will correspond to the same assignment.) We put an
edge between two vertices of G if they correspond to inconsistent partial assignments. Two partial
assignments are consistent if they give the same value to all the variables they share. For example,
the assignment u; = 1,us = 0,ug = 0 is inconsistent with the assignment ug = 1,u5 = 0,u; = 1
because they share a variable (u3) to which they give a different value. In addition, we put edges
between every two vertices that are in the same cluster.

Clearly transforming ¢ into G can be done in polynomial time. We claim that ¢ is satisfiable if
and only if G has a clique of size m. Indeed, suppose that ¢ has a satisfying assignment u. Define
a set S of m vertices as follows: for every clause C of ¢ put in S the vertex in the cluster associated
with C that corresponds to the restriction of u to the variables C' depends on. Because we only
choose vertices that correspond to restrictions of the assignment u, no two vertices of .S correspond
to inconsistent assignments and hence S is an independent set of size m.

On the other hand, suppose that G has an independent set S of size m. We will use S to
construct a satisfying assignment u for ¢. We define u as follows: for every i € [n], if there is a
vertex in .S whose partial assignment gives a value a to u;, then set u; = a; otherwise set u; = 0.
This is well defined because S is an independent set, and hence each variable u; can get at most
a single value by assignments corresponding to vertices in S. On the other hand, because we put
all the edges within each cluster, S can contain at most a single vertex in each cluster, and hence
there is an element of S in every one of the m clusters. Thus, by our definition of w, it satisfies all
of ¢’s clauses. W

We see that, surprisingly, the answer to the famous NP vs. P question depends on the seemingly
mundane question of whether one can efficiently plan an optimal dinner party. Here are some more
NP-completeness results:

THEOREM 2.17 (INTEGER PROGRAMMING IS NP-COMPLETE)
We say that a set of linear inequalities with rational coefficients over variables ui,...,u, Iis in

IPROG if there is an assignment of integer numbers in {0,1,2,...} to us,...,u, that satisfies it.
Then, IPROG is NP-complete.

ProOF: IPROG is clearly in NP. To reduce SAT to IPROG note that every CNF formula can be
easily expressed as an integer program: first add the constraints 0 < u; < 1 for every ¢ to ensure
that the only feasible assignments to the variables are 0 or 1, then express every clause as an
inequality. For example, the clause uj Vs V3 can be expressed as u; + (1 —ug)+(1—wuz) > 1. B

THEOREM 2.18 (HAMILTONIAN PATH IS NP-COMPLETE)
Let dHAMPATH denote the set of all directed graphs that contain a path visiting all of their vertices
exactly once. Then dHAMPATH is NP-complete.

PRrOOF: Again, dHAMPATH is clearly in NP. To show it’s NP-complete we show a way to map
every CNF formula ¢ into a graph G such that ¢ is satisfiable if and only if G has a Hamiltonian
path (i.e. path that visits all of G’s vertices exactly once).

2.4. THE WEB OF REDUCTIONS p2.15 (53)

m vertices corresponding to clauses c; ¢, .
. For every variable u; we have a “chain” of 6m vertices. i

e AZ] X . TS

chain 1: . left-to-right traversal = TRUE, right-to-left = FALSE

chain 2: C10=U; OR U, OR Uy

L ! link in chain 1:

. link in chain 2:

end vertex

chain n:

link in chain 3:

vertex c,q can be visited if chain 1 is traversed left-to-right
or if chains 2 or 3 are traversed right-to-left :

Figure 2.5: Reducing SAT to dHAMPATH. A formula ¢ with n variables and m clauses is mapped to a graph G
that has m vertices corresponding to the clauses and n doubly linked chains, each of length 6m, corresponding to
the variables. Traversing a chain left to right corresponds to setting the variable to TRUE, while traversing it right
to left corresponds to setting it to FALSE. Note that in the figure every Hamiltonian path that takes the edge from
u to c10 must immediately take the edge from cio to v, as otherwise it would get “stuck” the next time it visits v.

The reduction is described in Figure 2.5. The graph G has (1) m vertices for each of ¢’s clauses
Cly--+5Cm, (2) a special starting vertex vgq,r¢ and ending vertex ve,q and (3) n “chains” of 6m
vertices corresponding to the n variables of ¢. A chain is a set of vertices vy, ..., vgm such that for
every i € [6m — 1], v; and v; 41 are connected by two edges in both directions.

We put edges from the starting vertex vgyq,+ to the two extreme points of the first chain. We
also put edges from the extreme points of the j** chain to the extreme points to the j + 1** chain
for every j € [n —1]. We put an edge from the extreme points of the n” chain to the ending vertex
Vend-

In addition to these edges, for every clause C' of ¢, we put edges between the chains correspond-

ing to the variables appearing in C' and the vertex vc corresponding to C' in the following way: if
C contains the literal u; then we take two neighboring vertices v;, v;41 in the 4t chain and put an
edge from v; to C' and from C to v;41. If C' contains the literal u; then we connect these edges in
the opposite direction (i.e., v;+1 to C' and C' to v;). When adding these edges, we never “reuse”
a link v;,v;41 in a particular chain and always keep an unused link between every two used links.
We can do this since every chain has 6m vertices, which is more than sufficient for this.
(¢ € SAT = G € dHAMPATH.) Suppose that ¢ has a satisfying assignment uq, ..., u,. We will
show a path that visits all the vertices of G. The path will start at vgqyt, travel through all the
chains in order, and end at v.,q. For starters, consider the path that travels the jth chain in left-
to-right order if u; = 1 and travels it in right-to-left order if u; = 0. This path visits all the vertices
except for those corresponding to clauses. Yet, if u is a satisfying assignment then the path can be
easily modified to visit all the vertices corresponding to clauses: for each clause C' there is at least
one literal that is true, and we can use one link on the chain corresponding to that literal to “skip”
to the vertex vo and continue on as before.

p2.16 (54) 2.4. THE WEB OF REDUCTIONS

(G € dHAMPATH = ¢ € SAT.) Suppose that G has an Hamiltonian path P. We first note that
the path P must start in vge¢ (as it has no incoming edges) and end at venq (as it has no outgoing
edges). Furthermore, we claim that P needs to traverse all the chains in order, and within each
chain traverse it either in left-to-right order or right-to-left order. This would be immediate if the
path did not use the edges from a chain to the vertices corresponding to clauses. The claim holds
because if a Hamiltonian path takes the edge u — w, where v is on a chain and w corresponds to
a clause, then it must at the next step take the edge w — v where v is the vertex adjacent to u in
the link. Otherwise, the path will get stuck the next time it visits v (see Figure 2.1). Now, define

an assignment ui,...,u, to ¢ as follows: u; = 1 if P traverses the 4% chain in left-to-right order,
and u; = 0 otherwise. It is not hard to see that because P visits all the vertices corresponding to
clauses, ui,...,u, is a satisfying assignment for ¢. B

In praise of reductions

Though originally invented as part of the theory of NP-completeness, the polynomial-time re-
duction (together with its first cousin, the randomized polynomial-time reduction defined in Sec-
tion 7.9) has led to a rich understanding of complexity above and beyond NP-completeness. Much
of complexity theory and cryptography today (thus, many chapters of this book) consists of using
reductions to make connections between disparate complexity theoretic conjectures. Why do com-
plexity theorists excel at reductions but not at actually proving lower bounds on Turing machines?
A possible explanation is that humans have evolved to excel at problem solving, and hence are
more adept at algorithms (after all, a reduction is merely an algorithm to transform one problem
into another) than at proving lower bounds on Turing machines.

Coping with NP hardness.

NP-complete problems turn up in great many applications, from flight scheduling to genome se-
quencing. What do you do if the problem you need to solve turns out to be NP-complete? On the
outset, the situation looks bleak: if P = NP then there simply does not ezist an efficient algorithm
to solve such a problem. However, there may still be some hope: NP completeness only means
that (assuming P # NP) the problem does not have an algorithm that solves it ezactly on every
input. But for many applications, an approrimate solution on some of the inputs might be good
enough.

A case in point is the traveling salesperson problem (TSP), of computing, given a list of pairwise
distances between n cities, the shortest route that travels through all of them. Assume that you
are indeed in charge of coming up with travel plans for traveling salespersons that need to visit
various cities around your country. Does the fact that TSP is NP-complete means that you are
bound to do a hopelessly suboptimal job? This does not have to be the case.

First note that you do not need an algorithm that solves the problem on all possible lists of
pairwise distances. We might model the inputs that actually arise in this case as follows: the n
cities are points on a plane, and the distance between a pair of cities is the distance between the
corresponding points (we are neglecting here the difference between travel distance and direct/arial
distance). It is an easy exercise to verify that not all possible lists of pairwise distances can be

2.5. DECISION VERSUS SEARCH p2.17 (55)

generated in such a way. We call those that do Fuclidean distances. Another observation is that
computing the ezactly optimal travel plan may not be so crucial. If you could always come up with
a travel plan that is at most 1% longer than the optimal, this should be good enough.

It turns out that neither of these observations on its own is sufficient to make the problem
tractable. The TSP problem is still NP complete even for Euclidean distances. Also if P #
NP then TSP is hard to approximate within any constant factor. However, combining the two
observations together actually helps: for every e there is a poly(n(log n)?(/€)-time algorithm that
given Euclidean distances between n cities comes up with a tour that is at most a factor of (1 + €)
worse than the optimal tour [Aro98].

We see that discovering the problem you encounter is NP-complete should not be cause for
immediate despair. Rather you should view this as indication that a more careful modeling of
the problem is needed, letting the literature on complexity and algorithms guide you as to what
features might make the problem more tractable. Alternatives to worst-case exact computation
are explored in Chapters 15 and 18, that investigate average-case complezxity and approzimation
algorithms respectively.

2.5 Decision versus search

We have chosen to define the notion of NP using Yes/No problems (“Is the given formula sat-
isfiable?”) as opposed to search problems (“Find a satisfying assignment to this formula if one
exists”). Clearly, the search problem is harder than the corresponding decision problem, and so
if P # NP then neither one can be solved for an NP-complete problem. However, it turns out
that for NP-complete problems they are equivalent in the sense that if the decision problem can
be solved (and hence P = NP) then the search version of any NP problem can also be solved in
polynomial time.

THEOREM 2.19
Suppose that P = NP. Then, for every NP language L there exists a polynomial-time TM B that
on input x € L outputs a certificate for x.

That is, if, as per Definition 2.1, x € L iff Ju € {0, 1}p(|x|) s.t. M(z,u) = 1 where p is some
polynomial and M is a polynomial-time TM, then on input x € L, B(x) will be a string u €
{0, 13702) satisfying M(z, B(z)) = 1.

PRrROOF: We start by showing the theorem for the case of SAT. In particular we show that given
an algorithm A that decides SAT, we can come up with an algorithm B that on input a satisfiable
CNF formula ¢ with n variables, finds a satisfying assignment for ¢ using 2n + 1 calls to A and
some additional polynomial-time computation.

The algorithm B works as follows: we first use A to check that the input formula ¢ is satisfiable.
If so, we substitute 1 = 0 and z7 = 1 in ¢ (this transformation, that simplifies and shortens the
formula a little, leaving a formula with n — 1 variables, can certainly be done in polynomial time)
and then use A to decide which of the two is satisfiable (it is possible that both are). Say the first is
satisfiable. Then we fix 1 = 0 from now on and continue with the simplified formula. Continuing
this way we end up fixing all n variables while ensuring that each intermediate formula is satisfiable.
Thus the final assignment to the variables satisfies .

p2.18 (56) 2.6. CONP, EXP AND NEXP

To solve the search problem for an arbitrary NP-language L, we use the fact that the reduction
of Theorem 2.10 from L to SAT is actually a Levin reduction. This means that we have a polynomial-
time computable function f such that not only z € L < f(x) € SAT but actually we can map a
satisfying assignment of f(x) into a certificate for z. Therefore, we can use the algorithm above to
come up with an assignment for f(z) and then map it back into a certificate for . B

REMARK 2.20

The proof above shows that SAT is downward self-reducible, which means that given an algorithm
that solves SAT on inputs of length smaller than n we can solve SAT on inputs of length n. Using
the Cook-Levin reduction, one can show that all NP-complete problems have a similar property,
though we do not make this formal.

2.6 coNP, EXP and NEXP

Now we define some related complexity classes that are very relevant to the study of the P versus
NP question.

2.6.1 coNP

If L C {0,1}" is a language, then we denote by L the complement of L. That is, L = {0,1}*\ L.
We make the following definition:

DEFINITION 2.21
coNP = {L:ZE P}.

It is important to note that coNP is not the complement of the class NP. In fact, they have
a non-empty intersection, since every language in P is in NP N coNP (see Exercise 19). The
following is an example of a coNP language: SAT = {¢ : ¢ is not satisfiable} . Students sometimes
mistakenly convince themselves that SAT is in NP. They have the following polynomial time
NDTM in mind: on input ¢, the machine guesses an assignment. If this assignment does not
satisfy ¢ then it accepts (i.e., goes into gaccept and halts) and if it does satisfy ¢ then the machine
halts without accepting. This NDTM does not do the job: indeed it accepts every unsatisfiable
¢ but in addition it also accepts many satisfiable formulae (i.e., every formula that has a single
unsatisfying assignment). That is why pedagogically we prefer the following definition of coNP
(which is easily shown to be equivalent to the first, see Exercise 20):

DEFINITION 2.22 (coNP, ALTERNATIVE DEFINITION)
For every L C {0,1}", we say that L € coNP if there exists a polynomial p : N — N and a
polynomial-time TM M such that for every z € {0,1}",

zeLevue {0,101 st Mz,u) =1

The key fact to note is the use of “¥” in this definition where Definition 2.1 used 4.
We can define coNP-completeness in analogy to NP-completeness: a language is coNP-
complete if it is in coNP and every coNP language is polynomial-time Karp reducible to it.

2.6. CONP, EXP AND NEXP p2.19 (57)

EXAMPLE 2.23
In classical logic, tautologies are true statements. The following language is coNP-complete:

TAUTOLOGY = {¢: ¢ is a Boolean formula that is satisfied by every assignment} .

It is clearly in coNP by Definition 2.22 and so all we have to show is that for every L € coNP,
L <, TAUTOLOGY. But this is easy: just modify the Cook-Levin reduction from L (which is in
NP) to SAT. For every input = € {0,1}" that reduction produces a formula @, that is satisfiable
iff x € L. Now consider the formula —¢,. It is in TAUTOLOGY iff € L, and this completes the
description of the reduction.

It is a simple exercise to check that if P = NP then NP = coNP = P. Put in the contraposi-
tive, if we can show that NP # colNP then we have shown P # NP. Most researchers believe that
NP # coNP. The intuition is almost as strong as for the P versus NP question: it seems hard to
believe that there is any short certificate for certifying that a given formula is a TAUTOLOGY, in
other words, to certify that every assignment satisfies the formula.

2.6.2 EXP and NEXP

The following two classes are exponential time analogues of P and NP.

DEFINITION 2.24
EXP = U.>oDTIME(2"™).
NEXP = U.>oNTIME(2").

Because every problem in NP can be solved in exponential time by a brute force search for
the certificate, P C NP C EXP C NEXP. Is there any point to studying classes involving
exponential running times? The following simple result —providing merely a glimpse of the rich
web of relations we will be establishing between disparate complexity questions— may be a partial
answer.

THEOREM 2.25
If EXP # NEXP then P # NP.

PRrROOF: We prove the contrapositive: assuming P = NP we show EXP = NEXP. Suppose
L € NTIME(2"") and NDTM M decides it. We claim that then the language

Lpad = {<x, 127y gz e L} (1)

is in NP. Here is an NDTM for Ly,q: given y, first check if there is a string z such that y = (z, 12‘Z|C).
If not, output REJECT. If y is of this form, then run M on z for 21*° steps and output its answer.
Clearly, the running time is polynomial in |y|, and hence Ly,q € NP. Hence if P = NP then Lj,q
is in P. But if L,,q is in P then L is in EXP: to determine whether an input z is in L, we just
pad the input and decide whether it is in Lp,q using the polynomial-time machine for L,,q. B

p2.20 (58) 2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT

REMARK 2.26

The padding technique used in this proof, whereby we transform a language by “padding” every
string in a language with a string of (useless) symbols, is also used in several other results in
complexity theory. In many settings it can be used to show that equalities between complexity
classes “scale up”; that is, if two different type of resources solve the same problems within bound
T'(n) then this also holds for functions T” larger than T. Viewed contrapositively, padding can
be used to show that inequalities between complexity classes involving resurce bound 7"(n) “scale
down” to resource bound T'(n).

Like P and NP, most of the complexity classes studied later are also contained in both EXP
and NEXP.

2.7 More thoughts about P, NP, and all that

2.7.1 The philosophical importance of NP

At a totally abstract level, the P versus NP question may be viewed as a question about the
power of nondeterminism in the Turing machine model. (Similar questions have been completely
answered for simpler models such as finite automata.)

However, the certificate definition of NP also suggests that the P versus NP question captures
a widespread phenomenon of some philosophical importance (and a source of great frustration to
students): recognizing the correctness of an answer is often easier than coming up with the answer.
To give other analogies from life: appreciating a Beethoven sonata is far easier than composing
the sonata; verifying the solidity of a design for a suspension bridge is easier (to a civil engineer
anyway!) than coming up with a good design; verifying the proof of a theorem is easier than coming
up with a proof itself (a fact referred to in Godel’s letter mentioned at the start of the chapter),
and so forth. In such cases, coming up with the right answer seems to involve exhaustive search
over an exponentially large set. The P versus NP question asks whether exhaustive search can be
avoided in general. It seems obvious to most people —and the basis of many false proofs proposed
by amateurs— that exhaustive search cannot be avoided: checking that a given salesperson tour
(provided by somebody else) has length at most k ought to be a lot easier than coming up with
such a tour by oneself. Unfortunately, turning this intuition into a proof has proved difficult.

2.7.2 NP and mathematical proofs

By definition, NP is the set of languages where membership has a short certificate. This is remi-
niscent of another familiar notion, that of a mathematical proof. As noticed in the past century, in
principle all of mathematics can be axiomatized, so that proofs are merely formal manipulations of
axioms. Thus the correctness of a proof is rather easy to verify —just check that each line follows
from the previous lines by applying the axioms. In fact, for most known axiomatic systems (e.g.,
Peano arithmetic or Zermelo-Fraenkel Set Theory) this verification runs in time polynomial in the
length of the proof. Thus the following problem is in NP for any of the usual axiomatic systems
A:
THEOREMS = {(¢,1") : ¢ has a formal proof of length < n in system A} .

2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT p2.21 (59)

In fact, the exercises ask you to prove that this problem is NP-complete. Hence the P versus
NP question is a rephrasing of Godel’s question (see quote at the beginning of the chapter), which
asks whether or not there is a algorithm that finds mathematical proofs in time polynomial in the
length of the proof.

Of course, all our students know in their guts that finding correct proofs is far harder than
verifying their correctness. So presumably, they believe at an intuitive level that P £ NP.

2.7.3 What if P = NP?

If P = NP —specifically, if an NP-complete problem like 3SAT had a very efficient algorithm
running in say O(n?) time— then the world would be mostly a Utopia. Mathematicians could
be replaced by efficient theorem-discovering programs (a fact pointed out in Kurt Godel’s 1956
letter and discovered three decades later). In general for every search problem whose answer can be
efficiently verified (or has a short certificate of correctness), we will be able to find the correct answer
or the short certificate in polynomial time. Al software would be perfect since we could easily do
exhaustive searches in a large tree of possibilities. Inventors and engineers would be greatly aided
by software packages that can design the perfect part or gizmo for the job at hand. VLSI designers
will be able to whip up optimum circuits, with minimum power requirements. Whenever a scientist
has some experimental data, she would be able to automatically obtain the simplest theory (under
any reasonable measure of simplicity we choose) that best explains these measurements; by the
principle of Occam’s Razor the simplest explanation is likely to be the right one. Of course, in
some cases it took scientists centuries to come up with the simplest theories explaining the known
data. This approach can be used to solve also non-scientific problems: one could find the simplest
theory that explains, say, the list of books from the New York Times’ bestseller list. (NB: All these
applications will be a consequence of our study of the Polynomial Hierarchy in Chapter 5.)

Somewhat intriguingly, this Utopia would have no need for randomness. As we will later see, if
P = NP then randomized algorithms would buy essentially no efficiency gains over deterministic
algorithms; see Chapter 7. (Philosophers should ponder this one.)

This Utopia would also come at one price: there would be no privacy in the digital domain.
Any encryption scheme would have a trivial decoding algorithm. There would be no digital cash,
no SSL, RSA or PGP (see Chapter 10). We would just have to learn to get along better without
these, folks.

This utopian world may seem ridiculous, but the fact that we can’t rule it out shows how little
we know about computation. Taking the half-full cup point of view, it shows how many wonderful
things are still waiting to be discovered.

2.7.4 What if NP = coNP?

If NP = coNP, the consequences still seem dramatic. Mostly, they have to do with existence of
short certificates for statements that do not seem to have any. To give an example, remember the
NP-complete problem of finding whether or not a set of multivariate polynomials has a common

p2.22 (60) 2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT

root, in other words, deciding whether a system of equations of the following type has a solution:

fl(azl,...,a:n) =0
fa(z1,. o 2n) =0

fm(z1, ..., 2n) =0

where each f; is a quadratic polynomial.

If a solution exists, then that solution serves as a certificate to this effect (of course, we have to
also show that the solution can be described using a polynomial number of bits, which we omit).
The problem of deciding that the system does not have a solution is of course in coNP. Can we
give a certificate to the effect that the system does not have a solution? Hilbert’s Nullstellensatz
Theorem seems to do that: it says that the system is infeasible iff there is a sequence of polynomials
91,92, .-, 9gm such that Y. f;g; = 1, where 1 on the right hand side denotes the constant polynomial
1.

What is happening? Does the Nullstellensatz prove coNP = NP7 No, because the degrees of
the g;’s —and hence the number of bits used to represent them— could be exponential in n,m.
(And it is simple to construct f;’s for which this is necessary.)

However, if NP = coNP then there would be some other notion of a short certificate to the
effect that the system is infeasible. The effect of such a result on mathematics would probably be
even greater than the effect of Hilbert’s Nullstellensatz. Of course, one can replace Nullstellensatz
with any other coNP problem in the above discussion.

WHAT HAVE WE LEARNED?

e The class NP consists of all the languages for which membership can be cer-
tified to a polynomial-time algorithm. It contains many important problems
not known to be in P. NP can also be defined using non-deterministic Turing
machines.

e NP-complete problems are the hardest problems in NP, in the sense that
they have a polynomial-time algorithm if and only if P =NP. Many natural
problems that seemingly have nothing to do with Turing machines turn out
to be NP-complete. One such example is the language 3SAT of satisfiable
Boolean formulae in 3C N F' form.

e [f P = NP then for every search problem for which one can efficiently verify
a given solution, one can also efficiently find such a solution from scratch.

Chapter notes and history

In the 1950’s, Soviet scientists were aware of the undesirability of using exhaustive or brute force
search, which they called perebor, for combinatorial problems, and asked the question of whether

2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT p2.23 (61)

certain problems inherently require such search (see [Tra84]). In the west the first published
description of this issue is by Edmonds [Edm65], in the paper quoted in the previous chapter.
However, on both sides of the iron curtain it took some time to realize the right way to formulate
the problem and to arrive at the modern definition of the classes NP and P. Amazingly, in his 1956
letter to von Neumann we quoted above, Godel essentially asks the question of P vs. NP, although
there is no hint that he realized that one of the particular problems he mentions is NP-complete.
Unfortunately, von Neumann was very sick at the time, and as far as we know, no further research
was done by either on them on this problem, and the letter was only discovered in the 1980’s.

In 1971 Cook published his seminal paper defining the notion of NP-completeness and showing
that SAT is NP complete [Coo71]. Soon afterwards, Karp [Kar72] showed that 21 important
problems are in fact NP-complete, generating tremendous interest in this notion. Meanwhile in
the USSR Levin independently defined NP-completeness (although he focused on search problems)
and showed that a variant of SAT is NP-complete. (Levin’s paper [Lev73] was published in 1973,
but he had been giving talks on his results since 1971, also in those days there was essentially zero
communication between eastern and western scientists.) See Sipser’s survey [Sip92] for more on
the history of P and NP and a full translation of Godel’s remarkable letter.

The “TSP book” by Lawler et al. [LLKS85] also has a similar chapter, and it traces interest
in the Traveling Salesman Problem back to the 19th century. Furthermore, a recently discovered
letter by Gauss to Schumacher shows that Gauss was thinking about methods to solve the famous
Euclidean Steiner Tree problem —today known to be NP-hard— in the early 19th century.

As mentioned above, the book by Garey and Johnson [GJ79] and the web site [CK00] contain
many more examples of NP complete problem. Also, Aaronson [Aar05] surveys various attempts
to solve NP complete problems via “non-traditional” computing devices.

Even if NP # P, this does not necessarily mean that all of the utopian applications mentioned
in Section 2.7.3 are gone. It may be that, say, 3SAT is hard to solve in the worst case on every input
but actually very easy on the average, See Chapter 15 for a more detailed study of average-case
complexity. Also, Impagliazzo [Imp95] has an excellent survey on this topic.

Exercises

§1 Prove the existence of a non-deterministic Universal TM (analogously to the deterministic
universal TM of Theorem 1.13). That is, prove that there exists a representation scheme of
NDTMs, and an NDTM NU such that for every string «, and input z, NU(x,a) = M, (z).

(a) Prove that there exists such a universal NDTM NU such that if M, halts on 2 within
T steps, then MU halts on z, a within CT log T steps (where C' is a constant depending
only on the machine represented by «).

(b) Prove that there is such a universal NDTM that runs on these inputs for at most C't
steps.

p2.24 (62) 2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT

§2
§3

§4

§5
§6

§7

§8

§9

§10

§11

"JUDJSISU0D 9IoM SISsang [[e 1ers
Ajuiea pue ode) Aq ode) I9A0 08 ‘USY], "UMOP S9SSONS 9SO} SUTILIM
pueR ‘SjuLjuod 9soY} SUISSONS A[eorjsiururejop-uou Aiduwirs Joyjer
Inq ‘sode) JI0M ST JO SIUSIUOD O} FUIPLSI A[[enjoe NoyIm Jy jo
UOIYR[NUIIS ® UNLI }SI 0} ST BIPI U 9} ‘UOIJR[NIIS JUIIDIJO 910U
® Op O, "€1'T WeI0dyJ, Jo Jooid a1} Jo uorjeydepe pIemIojy SreI)s
' AqQ peurejqo aq wed awil} (78077|D|)O Ul uomeNWIS Y JUIE]

Prove Theorem 2.

Let HALT be the Halting language defined in Theorem 1.17. Show that HALT is NP-hard.
Is it NP-complete?

We have defined a relation <, among languages. We noted that it is reflexive (that is, A <, A
for all languages A) and transitive (that is, if A <, B and B <, C then A <, C). Show that
it is not commutative, namely, A <, B need not imply B <, A.

Suppose Ly, Lo € NP. Then is L1 U Lo in NP? What about L; N Ly?

Mathematics can be axiomatized using for example the Zermelo Frankel system, which has a
finite description. Argue at a high level that the following language is NP-complete.

{{p,1™) : math statement ¢ has a proof of size at most n in the ZF system} .

JJUIaUIaYR)S [edIjRUI)RUl
' A)1[Iqeysties weajooq S| {JN Ul ogendue] siq) st AYA\ JUTE]

The question of whether this language is in P is essentially the question asked by Godel in
the chapter’s initial quote.

Show that NP = coNP iff 3SAT and TAUTOLOGY are polynomial-time reducible to one

another.

Can you give a definition of NEXP without using NDTMs, analogous to the definition of
NP in Definition 2.17 Why or why not?

We say that a language is NEXP-complete if it is in NEXP and every language in NEXP
is polynomial-time reducible to it. Describe a NEXP-complete language. Prove that if this
problem is in EXP then NEXP = EXP.

Show that for every time constructible 7': N — N, if L € NTIME(T(n)) then we can give a
polynomial-time Karp reduction from L to 3SAT that transforms instances of size n into SCNF
formulae of size O(T'(n)log T'(n)). Can you make this reduction also run in O(7'(n)logT'(n))?

Recall that a reduction f from an NP-language L to an NP-languages L' is parsimonious if
the number of certificates of f is equal to the number of certificates of f(z).

(a) Prove that the reduction from every NP-language L to SAT presented in the proof of
Lemma 2.12 is parsimonious.

2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT p2.25 (63)

§12

§13

§14

§15

§16

(b) Show a parsimonious reduction from SAT to 3SAT.

The notion of polynomial-time reducibility used in Cook’s paper was somewhat different: a
language A is polynomial-time Cook reducible to a language B if there is a polynomial time
TM M that, given an oracle for deciding B, can decide A. (An oracle for B is a magical extra
tape given to M, such that whenever M writes a string on this tape and goes into a special
“invocation” state, then the string —in a single step!—gets overwritten by 1 or 0 depending
upon whether the string is or is not in B, see Section ?7)

Show that the notion of cook reducibility is transitive and that 3SAT is Cook-reducible to
TAUTOLOGY.

(Berman’s Theorem 1978) A language is called unary if every string in it is of the form 1°
(the string of i ones) for some ¢ > 0. Show that if a unary language is NP-complete then
P = NP. (See Exercise 6 of Chapter 6 for a strengthening of this result.)

‘6T°¢ WOIOST T, JO juomngre AJIIqronpal Jos
pIemumop oy} 3ulsn |yS I0j WYILIoS[R awi)-[erouijod » urejqo
0} UOIJRAIOSO SIY} 9S[) “,U > 1 9I9YM ,T ULIOJ O3 JO SULIYS dWOS 0}
1VSE Jo seoue)sul u az1s deuwr A[Uo ued UOTIONPAI SIY) USY[) 77 93ens
-ue] Areun ® 0} |ySE WOIJ UOIONPaI dWI) ,u © ST aIey) JI :JUIE]

In the CLIQUE problem we are given an undirected graph G and an integer K and have to
decide whether there is a subset S of at least K vertices such that every two distinct vertices
u,v € S have an edge between them (such a subset is called a clique). In the VERTEX COVER
problem we are given an undirected graph G and an integer K and have to decide whether
there is a subset S of at most K vertices such that for every edge {i,j} of G, at least one of
1 or jis in S. Prove that both these problems are NP-complete.

"13SAN| woay sonpal IJUuryg

In the MAX CUT problem we are given an undirected graph G and an integer K and have to
decide whether there is a subset of vertices S such that there are at least K edges that have
one endpoint in S and one endpoint in S. Prove that this problem is NP-complete.

In the Exactly One 3SAT problem, we are given a 3CNF formula ¢ and need to decide if
there exists a satisfying assignment u for ¢ such that every clause of ¢ has exactly one TRUE
literal. In the SUBSET SUM problem we are given a list of n numbers Ay,..., A, and a
number 7" and need to decide whether there exists a subset S C [n] such that) ;. A; =T
(the problem size is the sum of all the bit representations of all numbers). Prove that both
Exactly One3SAT and SUBSET SUM are NP-complete.

p2.26 (64) 2.7. MORE THOUGHTS ABOUT P, NP, AND ALL THAT

"UOTYeS0U S9T PUR d[(RLIRA ® 0} PUOdSOIIOd JeT[} S[RId]

0M] 9PNOUI JOU [[IM 9OUBISUI WINS JOSANS Y} 0} UOIN[OS Y} IBYD
OISO 0} POIMDAI ST DL} [RUOIPPR UY -~ (UF) T:ufz 9 0} [, 1081e)
oY) SUI})0s PUR ‘SOYSIIRS ‘N [RIDI] O} JRY) SOSNR[D JO 39S oY) ST ‘g
oroym (ug) ' >f " raquumu a1y 03 *n TeI)] o[qissod yoes Surddeur
£q aouén,sug INNS 13S9NS & 03 31 dew om ‘ch RNULIOJ © WOATS e[} SI
NS L3SEANS 0% LVSE 2uQ Ajpoex3 jo uorjonpal oYy 105 yoroidde
oy, "HSTV] oq jsnwr 0%z uoyy as[ey st ‘o I jng ASTV] I0 TNUT,
19110 9 0} POMO[[e ST 0%z UaY) ENY,T, ST *2 JT 1) SULINSUD So[qeLIeA
Arerixne pue sosnep pue 0% o[qerrea mou e £q ;) 9sne © ur ‘o
[BIONI] © JO 90UDIINDD0 [oeo dde[dor |ySE suQ Aj3oex3 104 :Jury

§17 Prove that the language HAMPATH of undirected graphs with Hamiltonian paths is NP-
complete. Prove that the language TSP described in Example 2.2 is NP-complete. Prove
that the language HAMCYCLE of undirected graphs that contain Hamiltonian cycle (a simple
cycle involving all the vertices) is NP-complete.

§18 Let quadeq be the language of all satisfiable sets of quadratic equations over 0/1 variables
(a quadratic equations over ui, ..., u, has the form form) a;,; Willy = b), where addition is
modulo 2. Show that quadeq is NP-complete.

1VS WoIj eonpay :JUr
§19 Prove that P C NP N coNP.
§20 Prove that the Definitions 2.21 and 2.22 do indeed define the same class coNP.

8§21 Suppose L1, Ly € NP NcoNP. Then show that Li @ Lo is in NP N coNP, where L1 ® Ly =
{z : x is in exactly one of L, Lo}.

§22 Define the language UNARY SUBSET SUM to be the variant of the SUBSET SUM problem of
Exercise 16 where all numbers are represented by the unary representation (i.e., the number
k is represented as 1¥). Show that UNARY SUBSET SUM is in P.

‘9[qe} e Ul
sonyea pojnduwod Apsnoiaaid Surio)s Aq WjLIoS[e awI-fermouijod
' OJUI J1 9YeUl UeD NOA 9sed SIY} Ul 1By} MOUS pue ‘ANNS 13IS
-4 10] WYILIOS[R SAISINOAI dW}-[RIIUSUOAXS UR [IIM 1IBIS SJUIE]

§23 Prove that if every unary NP-language is in P then EXP = NEXP. (A language L is unary
if it is a subset of {1}, see Exercise 13.)

Chapter 3

Diagonalization

“.the relativized P =7TNP question has a positive answer for some oracles and a
negative answer for other oracles. We feel that this is further evidence of the difficulty
of the P =7"NP question.”

Baker, Gill, Solovay. [BGS75]

One basic goal in complexity theory is to separate interesting complexity classes. To separate
two complexity classes we need to exhibit a machine in one class that gives a different answer
on some input from every machine in the other class. This chapter describes diagonalization,
essentially the only general technique known for constructing such a machine. We have already seen
diagonalization in Section 1.4, where it was used to show the existence of uncomputable functions.
In this chapter, we first use diagonalization to prove hierarchy theorems, according to which giving
Turing machines more computational resources (such as time, space, and non-determinism) allows
them to solve a strictly larger number of problems. We will also use it to show that if P # NP
then there exist problems that are neither in P nor NP-complete.

Though diagonalization led to some of these early successes of complexity theory, researchers
realized in the 1970s that diagonalization alone may not resolve P versus NP and other interesting
questions; see Section 3.5. Interestingly, the limits of diagonalization are proved using diagonaliza-
tion.

This last result caused diagonalization to go out of favor for many years. But some recent
results (see Section 16.3 for an example) use diagonalization as a key component. Thus future
complexity theorists should master this simple idea before going on to anything fancier!

Machines as strings and the universal TM. The one common tool used in all diagonalization
proofs is the representation of TMs by strings, such that given a string x a universal TM can
simulate the machine M, represented by x with a small (i.e. at most logarithmic) overhead, see
Theorems 1.13, 7?7 and ?7. Recall that we assume that every string x represents some machine and
every machine is represented by infinitely many strings. For ¢« € N, we will also use the notation M;
for the machine represented by the string that is the binary expansion of the number 4 (ignoring
the leading 1).

p3.1 (65)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p3.2 (66) 3.1. TIME HIERARCHY THEOREM

3.1 Time Hierarchy Theorem

The Time Hierarchy Theorem shows that allowing Turing Machines more computation time strictly
increases the class of languages that they can decide. Recall that a function f:N — N is a time-
constructible function if there is a Turing machine that, given the input 17, writes down 1/ on its
tape in O(f(n)) time. Usual functions like nlogn or n? satisfy this property, and we will restrict
attention to running times that are time-constructible.

THEOREM 3.1
If f, g are time-constructible functions satisfying f(n)log f(n) = o(g(n)), then

DTIME(f(n)) C DTIME(g(n)) (1)

PRrROOF: To showcase the essential idea of the proof of Theorem 3.1, we prove the simpler statement
DTIME(n) ¢ DTIME(n!?).

Consider the following Turing Machine D: “On input =, run for |z|'* steps the Universal TM
U of Theorem 1.13 to simulate the execution of M, on x. If M, outputs an answer in this time,
namely, My(x) € {0,1} then output the opposite answer (i.e., output 1 — My(x)). Else output 0.”
Here M, is the machine represented by the string x.

By definition, D halts within n'# steps and hence the language L decided by D is in DTIME(n!-5).
We claim that L ¢ DTIME(n).

For contradiction’s sake assume that some TM M decides L but runs in time cn on inputs of
size n. Then every z € {0,1}", M(x) = D(x).

The time to simulate M by the universal Turing machine & on every input z is at most
dc|z|log |x| for some constant ¢’ (depending on the alphabet size and number of tapes and states of
M, but independent of |z|). There exists a number ng such that for every n > ng, n'* > c’cnlogn.
Let x be a string representing the machine M of length at least ny (there exists such a string
since M is represented by infinitely many strings). Then, D(x) will obtain the output M (x) within
|z|'* steps, but by definition of D, we have D(z) = 1 — M(x) # M(x). Thus we have derived a
contradiction. W

3.2 Space Hierarchy Theorem

The space hierarchy theorem is completely analogous to the time hierarchy theorem. One restricts
attention to space-constructible functions, which are functions f : N — N for which there is a
machine that, given any n-bit input, constructs f(n) in space O(f(n)). The proof of the next
theorem is completely analogous to that of Theorem 3.1. (The theorem does not have the log f(n)
factor because the universal machine for space-bounded computation incurs only a constant factor
overhead in space; see Theorem ?77.)

THEOREM 3.2
If f, g are space-constructible functions satisfying f(n) = o(g(n)), then

SPACE(f(n)) C SPACE((n)) (2)

3.3. NONDETERMINISTIC TIME HIERARCHY THEOREM p3.3 (67)

3.3 Nondeterministic Time Hierarchy Theorem

The following is the hierarchy theorem for non-deterministic Turing machines.

THEOREM 3.3
If f, g are time constructible functions satisfying f(n + 1) = o(g(n)), then

NTIME(f(n)) & NTIME(g(n)) 3)

PROOF: Again, we just showcase the main idea by proving NTIME(n) ¢ NTIME(n'®). The
technique from the previous section does not directly apply, since it has to determine the answer of
a TM in order to flip it. To determine the answer of a nondeterminisitic that runs in O(n) time, we
may need to examine as many as 2" possible strings of non-deterministic choices. So it is unclear
that how the “diagonalizer” machine can determine in O(n!%) (or even O(n!%)) time how to flip
this answer. Instead we introduce a technique called lazy diagonalization, which is only guaranteed
to flip the answer on some input in a fairly large range.

For every i € N we denote by M; the non-deterministic TM represented by ¢’s binary expansion
according to the universal NDTM NU (see Theorem ?7?). We define the function f : N — N as
follows: f(1) =2 and f(i + 1) = 2" Note that given n, we can can easily find in O(n!®) time
the number i such that n is sandwiched between f(i) and f(i 4+ 1). Our diagonalizing machine D
will try to flip the answer of M; on some input in the set {1": f(i) <n < f(i+ 1)}. It is defined
as follows:

“On input x, if x & 1%, reject. If x = 1", then compute i such that f(i) <n < f(i+1) and

1. If f(i) < n < f(i + 1) then simulate M; on input 1" ' using nondeterminism in n'! time
and output its answer. (If the simulation takes more than that then halt and accept.)

2. If n = f(i+ 1), accept 1™ iff M; rejects 17D+ in (f(i) + 1)1 time.”

Note that Part 2 requires going through all possible exp((f (i) + 1)*!) branches of M; on input
17O+ but that is fine since the input size f(i + 1) is 2/®"". We conclude that NDTM D runs in
O(n'?®) time. Let L be the language decided by D. We claim that L ¢ NTIME(n).

Indeed, suppose for the sake of contradiction that L is decided by an NDTM M running in cn
steps (for some constant c¢). Since each NDTM is represented by infinitely many strings, we can
find ¢ large enough such that M = M; and on inputs of length n > f(i), M; can be simulated in
less than n''! steps. Thus the two steps in the description of D ensure respectively that

If f(i) <n < f(i+1), then D(1") = M;(1"+1) (4)
D) 2 M1/ O+ (5)

see Figure 3.1.
By our assumption M; and D agree on all inputs 1" for n € (f(i), f(i + 1)]. Together with (4),
this implies that D (17041 = M;(17O+1) | contradicting(5). W

p3.4 (68) 3.4. LADNER’S THEOREM: EXISTENCE OF NP-INTERMEDIATE PROBLEMS.

D(1 f(i)+1) D(1 f(i)+2)

Figure 3.1: The values of D and M; on inputs 1" for n € (f(i), f(i + 1)]. Full lines denote equality by the design
of D, dashed lines denote equality by the assumption that D(z) = M;(x) for every x, and the dashed arrow denotes
inequality by the design of D. Note that together all these relations lead to contradiction.

3.4 Ladner’s Theorem: Existence of NP-intermediate problems.

One of the striking aspects of NP-completeness is the surprisingly large number of NP-problems
—including some that were studied for many decades— that turned out to be NP-complete. This
phenomenon suggests a bold conjecture: every problem in NP is either in P or NP complete. We
show that if P # NP then this is false —there is a language L € NP \ P that is not NP-complete.
(If P = NP then the conjecture is trivially true but uninteresting.) The rest of this section proves
this.

THEOREM 3.4 (LADNER'S THEOREM [?])
Suppose that P # NP. Then there exists a language L € NP \ P that is not NP-complete.

PRrROOF: If P # NP then we know at least one language in NP \ P: namely, the NP-complete lan-
guage SAT. Consider the language SAT g of length n satisfiable formulae that are padded with n(")
1’s for some polynomial-time computable function H : N — N (i.e., SATy = {wOI"H(") 21 € SAT and n =]1/1]})

Consider two possibilities:

(a) H(n) is at most some constant ¢ for every n. In this case SAT p is simply SAT with a polynomial
amount of “padding.” Thus, SAT j is also NP-complete and is not in P if P £ NP.

(b) H(n) tends to infinity with n, and thus the padding is of superpolynomial size. In this case,
we claim that SATy cannot be NP-complete. Indeed, if there is a O(n’)-time reduction
f from SAT to SATpy then such a reduction reduces the satisfiability of SAT instances of
length n to instances of SAT ; of length O(n?), which must have the form @bOl'w'HWD, where
] + |¢|H(|¢‘) = O(n), and hence || = o(n). In other words, we have a polynomial-time
reduction from SAT instances of length n to SAT instances of length o(n), which implies SAT
can be solved in polynomial time. (The algorithm consists of applying the reduction again
and again, reducing the size of the instances each time until the instance is of size O(1) and
can be solved in O(1) time by brute force) This is a contradiction to the assumption P # NP.

3.4. LADNER’S THEOREM: EXISTENCE OF NP-INTERMEDIATE PROBLEMS. p3.5 (69)

The proof of the Theorem uses a language SAT iy for a function H that in some senses combines
the two cases above. This function tends to infinity with n, so that SAT g is not NP-complete as
in Case (b), but grows slowly enough to assure SATy ¢ P as in Case (a). Function H is defined as
follows:

H (n) is the smallest number i < log log n such that for every z € {0,1}" with |z| < logn,
M; halts on x within z|az|z steps and M; outputs 1 iff z € SATy

where M; is the machine represented by the binary expansion of i according to the
representation scheme of the universal Turing machine U of Theorem 1.13. If there is
no such i then we let H(n) = loglogn.

Notice, this is implicitly a recursive definition since the definition of H depends on SAT g, but
a moment’s thought shows that H is well-defined since H(n) determines membership in SAT g of
strings whose length is greater than n, and the definition of H(n) only relies upon checking the
status of strings of length at most logn.

There is a trivial algorithm to compute H(n) in O(n?®) time. After all, we only need to (1)
compute H (k) for every k < logn, (2) simulate at most log log n machines for every input of length
at most logn for loglogn(logn)'el8™ = o(n) steps, and (3) compute SAT on all the inputs of
length at most logn.

Now we have the following two claims.

CLAIM 1: SATy is not in P. Suppose, for the sake of contradiction, that there is a machine M
solving SATy in at most cn® steps. Since M is represented by infinitely many strings, there is
a number i > ¢ such that M = M;. By the definition of H(n) this implies that for n > 2%,
H(n) < i. But this means that for all sufficiently large input lengths, SAT; is simply the language
SAT padded with a polynomial (i.e., n*) number of 1’s, and so cannot be in P unless P = NP.
CLAIM 2: SAT g is not NP-complete. As in Case (b), it suffices to show that H(n) tends to infinity
with n. We prove the equivalent statement that for every integer i, there are only finitely many
n’s such that H(n) = i: since SATy ¢ P, for each ¢ we know that there is an input x such that
given i|z|* time, M; gives the incorrect answer to whether or not z € SAT . Then the definition of
H ensures that for every n > 2%l H(z) # .
[

REMARK 3.5

We do not know of a natural decision problem that, assuming NP # P, is proven to be in NP\ P
but not NP-complete, and there are remarkably few candidates for such languages. However,
there are a few fascinating examples for languages not known to be either in P nor NP-complete.
Two such examples are the Factoring and Graph isomorphism languages (see Example 2.2). No
polynomial-time algorithm is currently known for these languages, and there is some evidence that
they are not NP complete (see Chapter 8).

p3.6 (70) 3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION?

3.5 Oracle machines and the limits of diagonalization?

Quantifying the limits of “diagonalization” is not easy. Certainly, the diagonalization in Sections 3.3
and 3.4 seems more clever than the one in Section 3.1 or the one that proves the undecidability of
the halting problem.

For concreteness, let us say that “diagonalization” is any technique that relies upon the following
properties of Turing machines:

I The existence of an effective representation of Turing machines by strings.
IT The ability of one TM to simulate any another without much overhead in running time or space.

Any argument that only uses these facts is treating machines as blackboxes: the machine’s
internal workings do not matter. We now show a general way to define a variant of Turing Machines
called oracle Turing Machines that still satisfy the above two properties. However, one way of
defining the variants results in TMs for which P = NP, whereas the other way results in TMs for
which P # NP. We conclude that to resolve P versus NP we need to use some other property
besides the above two.

Oracle machines will be used elsewhere in this book in other contexts. These are machines that
are given access to an “oracle” that can magically solve the decision problem for some language
O C {0,1}". The machine has a special oracle tape on which it can write a string ¢ € {0,1}" on a
and in one step gets an answer to a query of the form “Is ¢ in O7”. This can be repeated arbitrarily
often with different queries. If O is a difficult language that cannot be decided in polynomial time
then this oracle gives an added power to the TM.

DEFINITION 3.6 (ORACLE TURING MACHINES)

An oracle Turing machine is a TM M that has a special read /write tape we call M’s oracle tape and
three special states qquery, Gyes, gno- TO execute M, we specify in addition to the input a language
O C {0,1}" that is used as the oracle for M. Whenever during the execution M enters the state
query, the machine moves into the state gyes if ¢ € O and ¢y, if ¢ € O, where ¢ denotes the contents
of the special oracle tape. Note that, regardless of the choice of O, a membership query to O
counts only as a single computational step. If M is an oracle machine, O C {0,1}" a language, and
x € {0,1}*, then we denote the output of M on input = and with oracle O by MO (z).

Nondeterministic oracle TMs are defined similarly.

DEFINITION 3.7

For every O C {0,1}*, P? is the set of languages decided by a polynomial-time deterministic
TM with oracle access to O and NP? is the set of languages decided by a polynomial-time non-
deterministic TM with oracle access to O.

To illustrate these definitions we show a few simple claims.

Cramm 3.8
1. Let SAT denote the language of unsatisfiable formulae. Then SAT € P3AT,

2. Let O € P. Then P° = P.

3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION? p3.7 (71)
3. Let EXPCOM be the following language

{(M,z,1") : M outputs 1 on x within 2" steps} .
Then PEXPCOM — NpEXPCOM _ X P (Recall that EXP = U.DTIME(2").)

PROOF:

1. Given oracle access to SAT, to decide whether a formula ¢ is in SAT, the machine asks the
oracle if ¢ € SAT, and then gives the opposite answer as its output.

2. Allowing an oracle can only help compute more languages and so P C PO. If O € P then
it is redundant as an oracle, since we can transform any polynomial-time oracle TM using O
into a standard (no oracle) by simply replacing each oracle call with the computation of O.
Thus P C P.

3. Clearly, an oracle to EXPCOM allows one to perform an exponential-time computation at the
cost of one call, and so EXP C PEXPCOM Oy the other hand, if M is a non-deterministic
polynomial-time oracle TM, we can simulate its execution with a EXPCOM oracle in expo-
nential time: such time suffices both to enumerate all of M’s non-deterministic choices and
to answer the EXPCOM oracle queries. Thus, EXP C PEXPCOM C NPEXPCOM C EXP.

The key fact to note about oracle TMs is the following: Regardless of what oracle O is, the set
of all oracle TM’s with access to oracle O satisfy Properties I and II above. The reason is that we
can represent TMs with oracle O as strings, and we have a universal TM OU that, using access
to O, can simulate every such machine with logarithmic overhead, just as Theorem 1.13 shows for
non-oracle machines. Indeed, we can prove this in exactly the same way of Theorem 1.13, except
that whenever in the simulation M makes an oracle query, OU forwards the query to its own oracle.

Thus any result about TMs or complexity classes that uses only Properties I and II above also
holds for the set of all TMs with oracle O. Such results are called relativizing results.

All of the results on universal Turing machines and the diagonalizations results in this chapter
are of this type.

The next theorem implies that whichever of P = NP or P # NP is true, it cannot be a
relativizing result.

THEOREM 3.9 (BAKER, GILL, SoLOVAY [BGST75])
There exist oracles A, B such that PA = NP4 and PP + NP5,

PROOF: As seen in Claim 3.8, we can use A = EXPCOM. Now we construct B. For any language
B, let Up be the unary language

Up = {1" : some string of length n is in B}.

For every oracle B, the language Up is clearly in NP?, since a non-deterministic TM can make a
non-deterministic guess for the string € {0,1}" such that x € B. Below we construct an oracle
B such that Up ¢ P2, implying that PZ £ NP5,

p3.8 (72) 3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION?

Construction of B: For every ¢, we let M; be the oracle TM represented by the binary expansion
of i. We construct B in stages, where stage 7 ensures that MiB does not decide Up in 2"/10 time.
Initially we let B be empty, and gradually add strings to it. Each stage determines the status (i.e.,
whether or not they will ultimately be in B) of a finite number of strings.

Stage i: So far, we have declared for a finite number of strings whether or not they are in B.
Choose n large enough so that it exceeds the length of any such string, and run M; on input 1™
for 2™/10 steps. Whenever it queries the oracle about strings whose status has been determined,
we answer consistently. When it queries strings whose status is undetermined, we declare that the
string is not in B. Note that until this point, we have not declared that B has any string of length
n. Now we make sure that if M; halts within 2" /10 steps then its answer on 1" is incorrect. If M;
accepts, we declare that all strings of length n are not in B, thus ensuring 1" ¢ B,,. If M; rejects,
we pick a string of length n that it has not queried (such a string exists because M; made at most
2" /10 queries) and declare that it is in B, thus ensuring 1™ € B,,. In either case, the answer of M;
is incorrect. Our construction ensures that Ug is not in P? (and in fact not in DTIME?(f(n))
for every f(n) =0(2")). &

Let us now answer our original question: Can diagonalization or any simulation method resolve
P vs NP? Answer: Possibly, but it has to use some fact about TMs that does not hold in presence
of oracles. Such facts are termed nonrelativizing and we will later see examples of such facts.
However, a simple one was already encountered in Chapter ??: the Cook-Levin theorem! It is not
true for a general oracle A that every language L € NP4 is polynomial-time reducible to 3SAT
(see Exercise 6). Note however that nonrelativizing facts are necessary, not sufficient. It is an
open question how to use known nonrelativizing facts in resolving P vs NP (and many interesting
complexity theoretic conjectures).

Whenever we prove a complexity-theoretic fact, it is useful to check whether or not it can be
proved using relativizing techniques. The reader should check that Savitch’s theorem (Corollary 77)
and Theorem 4.18 do relativize.

Later in the book we see other attempts to separate complexity classes, and we will also try to
quantify —using complexity theory itselfl—why they do not work for the P versus NP question.

WHAT HAVE WE LEARNED?

e Diagonalization uses the representation of Turing machines as strings to sep-
arate complexity classes.

e We can use it to show that giving a TM more of the same type of resource
(time, non-determinism, space) allows it to solve more problems, and to show
that, assuming NP # P, NP has problems neither in P nor NP-complete.

e Results proven solely using diagonalization relativize in the sense that they
hold also for TM’s with oracle access to O, for every oracle O C {0,1}". We
can use this to show the limitations of such methods. In particular, relativizing
methods alone cannot resolve the P vs. NP question.

3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION? p3.9 (73)

Chapter notes and history

Georg Cantor invented diagonalization in the 19th century to show that the set of real numbers
is uncountable. Kurt Godel used a similar technique in his proof of the Incompleteness Theo-
rem. Computer science undergraduates often encounter diagonalization when they are taught the
undecidabilty of the Halting Problem.

The time hierarchy theorem is from Hartmanis and Stearns’ pioneering paper [HS65]. The
space hierarchy theorem is from Stearns, Hartmanis, and Lewis [SHL65]. The nondeterministic
time hierarchy theorem is from Cook [Coo73|, though the simple proof given here is essentially
from [Zak83]. A similar proof works for other complexity classes such as the (levels of the) poly-
nomial hierarchy discussed in the next chapter. Ladner’s theorem is from [?] but the proof here is
due to an unpublished manuscript by Impagliazzo. The notion of relativizations of the P versus
NP question is from Baker, Gill, and Solovay [BGS75], though the authors of that paper note
that other researchers independently discovered some of their ideas. The notion of relativization is
related to similar ideas in logic (such as independence results) and recursive function theory.

The notion of oracle Turing machines can be used to study interrelationships of complexity
classes. In fact, Cook [CooT71] defined NP-completeness using oracle machines. A subfield of
complexity theory called structural complexity has carried out a detailed study of oracle machines
and classes defined using them; see [].

Whether or not the Cook-Levin theorem is a nonrelativizing fact depends upon how you for-
malize the question. There is a way to allow the 3SAT instance to “query” the oracle, and then the
Cook-Levin theorem does relativize. However, it seems safe to say that any result that uses the
locality of computation is looking at the internal workings of the machine and hence is potentially
nonrelativizing.

The term superiority introduced in the exercises does not appear in the literature but the
concept does. In particular, 7?77 have shown the limitations of relativizing techniques in resolving
certain similar open questions.

Exercises
§1 Show that the following language is undecidable:

{ M, : M is a machine that runs in 100n2 + 200 time} .

§2 Show that SPACE(n) # NP. (Note that we do not know if either class is contained in the
other.)

§3 Show that there is a language B € EXP such that NP? £ P5,

§4 Say that a class C is superior to a class Cy if there is a machine M in class C; such that for
every machine Ms in class Cs and every large enough n, there is an input of size between n
and n? on which M; and M answer differently.

(a) Is DTIME(n!-!) superior to DTIME(n)?

p3.10 (74) 3.5. ORACLE MACHINES AND THE LIMITS OF DIAGONALIZATION?
(b) Is NTIME(n!'!) superior to NTIME(n)?

85 Show that there exists a function that is not time-constructible.

§6 Show that there is an oracle A and a language L € NP such that L is not polynomial-time
reducible to 3SAT even when the machine computing the reduction is allowed access to A.

7 Suppose we pick a random language B, by deciding for each string independently and with
y g g y
probability 1/2 whether or not it is in B. Show that with high probability PZ # NPP. (To
give an answer that is formally correct you may need to know elementary measure theory.)

Chapter 4

Space complexity

“(our) construction... also suggests that what makes “games” harder than “puzzles”
(e.g. NP-complete problems) is the fact that the initiative (“the move”) can shift
back and forth between the players.”

Shimon Even and Robert Tarjan, 1976

In this chapter we will study the memory requirements of computational tasks. To do this we
define space-bounded computation, which has to be performed by the TM using a restricted number
of tape cells, the number being a function of the input size. We also study nondeterministic space-
bounded TMs. As in the chapter on NP, our goal in introducing a complexity class is to “capture”
interesting computational phenomena— in other words, identify an interesting set of computational
problems that lie in the complexity class and are complete for it. One phenomenon we will “capture”
this way (see Section 4.3.2) concerns computation of winning strategies in 2-person games, which
seems inherently different from (and possibly more difficult than) solving NP problems such as
SAT, as alluded to in the above quote. The formal definition of deterministic and non-deterministic
space bounded computation is as follows (see also Figure 4.1):

read only head

Input i
we [[[TTTTTTTILRITTITIC

read/write head | __

I
' I
o TTTIIC
read/vi'ite_ head : i
. 1

: | |
e TIITIC | |
e

Register i____:

Figure 4.1: Space bounded computation. Only cells used in the read/write tapes count toward the space bound.

p4.1 (75)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pd.2 (76) 4.1. CONFIGURATION GRAPHS.

DEFINITION 4.1 (SPACE-BOUNDED COMPUTATION.)

Let S : N - Nand L C {0,1}". We say that L € SPACE(s(n)) (resp. L €
NSPACE(s(n))) if there is a constant ¢ and TM (resp. NDTM) M deciding L
such that on every input x € {0,1}", the total number of locations that are at some
point non-blank during M’s execution on x is at most ¢-s(|z|). (Non-blank locations
in the read-only input tape do not count.)

As in our definitions of all nondeterministic complexity classes, we require all branches of
nondeterministic machines to always halt.

REMARK 4.2

Analogously to time complexity, we will restrict our attention to space bounds S : N — N that are
space-constructible functions, by which we mean that there is a TM that computes S(n) in O(S(n))
space when given 1" as input. (Intuitively, if S is space-constructible, then the machine “knows”
the space bound it is operating under.) This is a very mild restriction since functions of interest,
including log n,n and 2", are space-constructible.

Also, realize that since the work tape is separated from the input tape, it makes sense to consider
space-bounded machines that use space less than the input length, namely, S(n) < n. (This is in
contrast to time-bounded computation, where DTIME(T'(n)) for T'(n) < n does not make much
sense since the TM does not have enough time to read the entire input.) We will assume however
that S(n) > logn since the work tape has length n, and we would like the machine to at least be
able to “remember” the index of the cell of the input tape that it is currently reading. (One of the
exercises explores classes that result when S(n) < logn.)

Note that DTIME(S(n)) € SPACE(S(n)) since a TM can access only one tape cell per step.
Also, notice that space can be reused: a cell on the work tape can be overwritten an arbitrary
number of times. A space S(n) machine can easily run for as much as 20U5() gteps — think
for example of the machine that uses its work tape of size S(n) to maintain a counter which it
increments from 1 to 2°(~1. The next easy theorem (whose proof appears a little later) shows
that this is tight in the sense that any languages in SPACE(S(n)) (and even NSPACE(S(n)))
is in DTIME(2°3(")). Surprisingly enough, up to logarithmic terms, this theorem contains the
only relationships we know between the power of space-bounded and time-bounded computation.
Improving this would be a major result.

THEOREM 4.3
For every space constructible S : N — N,

DTIME(S(n)) C SPACE(S(n)) C NSPACE(S(n)) C DTIME(2°(5())

4.1 Configuration graphs.

To prove Theorem 4.3 we use the notion of a configuration graph of a Turing machine. This notion
will also be quite useful for us later in this chapter and the book. Let M be a (deterministic or

4.1. CONFIGURATION GRAPHS. pd.3 (77)

aqgp C

accept

Figure 4.2: The configuration graph Gy, is the graph of all configurations of M’s execution on x where there is
an edge from a configuration C' to a configuration C’ if C’ can be obtained from C' in one step. It has out-degree one
if M is deterministic and out-degree at most two if M is non-deterministic.

non-deterministic) TM. A configuration of a TM M consists of the contents of all non-blank entries
of M’s tapes, along with its state and head position, at a particular point in its execution. For
every TM M and input = € {0,1}", the configuration graph of M on input x, denoted Gy, is
a directed graph whose nodes correspond to possible configurations that M can reach from the
starting configuration C%,. (where the input tape is initialized to contain x). The graph has a
directed edge from a configuration C' to a configuration C’ if C’ can be reached from C in one
step according to M’s transition function (see Figure 4.2). Note that if M is deterministic then
the graph has out-degree one, and if M is non-deterministic then it has an out-degree at most two.
Also note that we can assume that M’s computation on x does not repeat the same configuration
twice (as otherwise it will enter into an infinite loop) and hence that the graph is a directed acyclic
graph (DAG). By modifying M to erase all its work tapes before halting, we can assume that there
is only a single configuration Cjccept 0n which M halts and outputs 1. This means that M accepts
the input z iff there exists a (directed) path in G sz from Cstart t0 Caccept- We will use the following
simple claim about configuration graphs:

CrAamm 4.4
Let Gpry be the configuration graph of a space-S(n) machine M on some input x of length n.
Then,

1. Every vertex in Gyr, can be described using ¢S(n) bits for some constant ¢ (depending on
M’s alphabet size and number of tapes) and in particular, G, has at most 2¢5(n) nodes.

2. There is an O(S(n))-size CNF formula o , such that for every two strings C, C', o1 (C,C") =
1 if and only if C,C" encode two neighboring configuration in Gy .

PRrROOF SkKETCH: Part 1 follows from observing that a configuration is completely described by
giving the contents of all work tapes, the position of the head, and the state that the TM is in
(see Section 1.2.1). We can encode a configuration by first encoding the snapshot (i.e., state and
current symbol read by all tapes) and then encoding in sequence the non-blank contents of all the
work-tape, inserting a special “marker” symbol, to denote the locations of the heads.

p4d.4 (78) 4.2. SOME SPACE COMPLEXITY CLASSES.

Part 2 follows using similar ideas as in the proof of the Cook-Levin theorem (Theorem 2.10).
There we showed that deciding whether two configurations are neighboring can be expressed as the
AND of many checks, each depending on only a constant number of bits, where such checks can be
expressed by constant-sized CNF formulae by Claim 2.14. B

Now we can prove Theorem 4.3.
PrROOF OF THEOREM 4.3: Clearly SPACE(S(n)) C NSPACE(S(n)) and so we just need to
show NSPACE(S(n)) C DTIME(2°(5()). By enumerating over all possible configurations we
can construct the graph Gy, in 20(5(m)_time and check whether Csare is connected to Caccept
in Gpre using the standard (linear in the size of the graph) breadth-first search algorithm for
connectivity (e.g., see [?7]). B

We also note that there exists a universal TM for space bounded computation analogously
to Theorems 1.13 and 77 for deterministic and non-deterministic time bounded computation, see
Section 77 below.

4.2 Some space complexity classes.

Now we define some complexity classes, where PSPACE, NPSPACE are analogs of P and NP
respectively.

DEFINITION 4.5

PSPACE = U.-oSPACE(n°)
NPSPACE = U, (NSPACE(n¢)
L = SPACE(logn)

NL = NSPACE(logn)

EXAMPLE 4.6

We show how 3SAT € PSPACE by describing a TM that decides 3SAT in linear space (that is,
O(n) space, where n is the size of the 3SAT instance). The machine just uses the linear space to
cycle through all 2% assignments in order, where k is the number of variables. Note that once an
assignment has been checked it can be erased from the worktape, and the worktape then reused
to check the next assignment. A similar idea of cycling through all potential certificates applies to
any NP language, so in fact NP C PSPACE.

EXAMPLE 4.7
The reader should check (using the gradeschool method for arithmetic) that the following languages
are in L:

EVEN = {z : z has an even number of 1s}.

MULT = {(.»n,, m,, ;nm,) :n € N}.

4.3. PSPACE COMPLETENESS pd.5 (79)

Its seems difficult to conceive of any complicated computations apart from arithmetic that use
only O(logn) space. Nevertheless, we cannot currently even rule out that 3SAT € L (in other
words —see the exercises— it is open whether NP # L). Space-bounded computations with space
S(n) < n seem relevant to computational problems such as web crawling. The world-wide-web
may be viewed crudely as a directed graph, whose nodes are webpages and edges are hyperlinks.
Webcrawlers seek to explore this graph for all kinds of information. The following problem PATH
is natural in this context:

PATH = {(G, s,t) : G is a directed graph in which there is a path from s to ¢} (1)

We claim that PATH € NL. The reason is that a nondeterministic machine can take a “non-
deterministic walk” starting at s, always maintaining the index of the vertex it is at, and using
nondeterminism to select a neighbor of this vertex to go to next. The machine accepts iff the walk
ends at ¢ in at most n steps, where n is the number of nodes. If the nondeterministic walk has
run for n steps already and ¢ has not been encountered, the machine rejects. The work tape only
needs to hold O(logn) bits of information at any step, namely, the number of steps that the walk
has run for, and the identity of the current vertex.

Is PATH in L as well? This is an open problem, which, as we will shortly see, is equivalent to
whether or not L = NL. That is, PATH captures the “essence” of NL just as 3SAT captures the
“essence” of NP. (Formally, we will show that PATH is NL-complete.) A recent surprising result
shows that the restriction of PATH to undirected graphs is in L; see Chapters 7 and 16.

4.3 PSPACE completeness

As already indicated, we do not know if P # PSPACE, though we strongly believe that the answer
is YES. Notice, P = PSPACE implies P = NP. Since complete problems can help capture the
essence of a complexity class, we now present some complete problems for PSPACE.

DEFINITION 4.8
A language A is PSPACE-hard if for every L € PSPACE, L <, A. If in addition A €¢ PSPACE
then A is PSPACE-complete.

Using our observations about polynomial-time reductions from Chapter 7?7 we see that if any
PSPACE-complete language is in P then so is every other language in PSPACE. Viewed con-
trapostively, if PSPACE # P then a PSPACE-complete language is not in P. Intuitively, a
PSPACE-complete language is the “most difficult” problem of PSPACE. Just as NP trivially
contains NP-complete problems, so does PSPACE. The following is one (Exercise 3):

SPACETM = {(M,w,1™) : DTM M accepts w in space n} . (2)

Now we see some more interesting PSPACE-complete problems. We use the notion of a
quantified boolean formula, which is a boolean formula in which variables are quantified using 3

p4.6 (80) 4.3. PSPACE COMPLETENESS

and V which have the usual meaning “there exists” and “for all” respectively. It is customary
to also specify the universe over which these signs should be interpreted, but in our case the
universe will always be the truth values {0,1}. Thus a quantified boolean formula has the form
Q111Q222 - - - Qnrpp(z1, T2, . . ., Ty) where each Q; is one of the two quantifiers V or 3 and ¢ is an
(unquantified) boolean formula!.

If all variables in the formula are quantified (in other words, there are no free variables) then a
moment’s thought shows that such a formula is either true or false —there is no “middle ground”.
We illustrate the notion of truth by an example.

ExXAMPLE 4.9
Consider the formula Vz3y (x Ay) V (Z Ay) where V and 3 quantify over the universe {0,1}. Some
reflection shows that this is saying “for every = € {0,1} there is a y € {0,1} that is different from
it”, which we can also informally represent as Va3y(x # y). This formula is true. (Note: the
symbols = and # are not logical symbols per se, but are used as informal shorthand to make the
formula more readable.)

However, switching the second quantifier to V gives VaVy (x A y) V (Z A7), which is false.

ExXAMPLE 4.10
Recall that the SAT problem is to decide, given a Boolean formula ¢ that has n free variables

x1,...,%,, whether or not ¢ has a satisfying assignment 1, ..., z, € {0,1}" such that ¢(z1,...,z,)
is true. An equivalent way to phrase this problem is to ask whether the quantified Boolean formula
Y =3x1,...,ep0(x1,...,2y,) is true.
The reader should also verify that the negation of the formula
Q111Q272 - - - Qnrpp(z1, T2, . . ., xy) is the same as
Qlll'lQél? T Q;IZL‘H—\QO(J‘l, L2y .- 7'1:”)7

where @} is 3 if Q; was V and vice versa. The switch of 3 to V in case of SAT gives instances of
TAUTOLOGY, the coNP-complete language encountered in Chapter 77.

We define the language TQBF to be the set of quantified boolean formulae that are true.

! We are restricting attention to quantified boolean formulae which are in prenez normal form, i.e., all quantifiers
appear to the left. However, this is without loss of generality since we can transform a general formula into an
equivalent formula in prenex form in polynomial time using identities such as pV3zp(z) = JzpV p(z) and —Vao(z) =
Jz—¢(z). Also note that unlike in the case of the SAT and 3SAT problems, we do not require that the inner
unquantified formula ¢ is in CNF or 3CNF form. However this choice is also not important, since using auxiliary
variables in a similar way to the proof of the Cook-Levin theorem, we can in polynomial-time transform a general
quantified Boolean formula to an equivalent formula where the inner unquantified formula is in 3CNF form.

4.3. PSPACE COMPLETENESS pA.7 (81)

THEOREM 4.11
TQBF is PSPACE-complete.

PROOF: First we show that TQBF € PSPACE. Let

¥ = Q1z1Q272 . .. QuTpp(T1, 22, . . ., Tp) (3)

be a quantified Boolean formula with n variables, where we denote the size of ¢ by m. We show a
simple recursive algorithm A that can decide the truth of ¢ in O(n 4+ m) space. We will solve the
slightly more general case where, in addition to variables and their negations, ¢ may also include
the constants 0 (i.e., “false”) and 1 (i.e., “true”). If n = 0 (there are no variables) then the formula
contains only constants and can be evaluated in O(m) time and space. Let n > 0 and let ¢ be
as in (3). For b € {0,1}, denote by 1, =, the modification of ¥ where the first quantifier @y
is dropped and all occurrences of z; are replaced with the constant b. Algorithm A will work as
follows: if @1 = 3 then output 1 iff at least one of A(¢4,=0) and A(¢5,=1) returns 1. If Q; =V
then output 1 iff both A(4,—0) and A(¢|4,=1). By the definition of 3 and V, it is clear that A
does indeed return the correct answer on any formula .

Let sy, denote the space A uses on formulas with n variables and description size m. The crucial
point is —and here we use the fact that space can be reused—that both recursive computations
A(Y12,=0) and A(2)4,=1) can run in the same space. Specifically, after computing A(|4,—0), the
algorithm A needs to retain only the single bit of output from that computation, and can reuse
the rest of the space for the computation of A(1),,=1). Thus, assuming that A uses O(m) space to
write ¢ | x1 = b for its recursive calls, we’ll get that s, ., = Sp—1,m +O(m) yielding s, ,,, = O(n-m).
2

We now show that L <, TQBF for every L € PSPACE. Let M be a machine that decides
L in S(n) space and let z € {0,1}". We show how to construct a quantified Boolean formula
Y of size O(S(n)?) that is true iff M accepts z. Recall that by Claim 4.4, there is a Boolean
formula s, such that for every two strings C,C’ € {0,1}" (where m = O(S(n)) is the number
of bits require to encode a configuration of M), oy (C,C") =1 iff C' and C’ are valid encodings of
two adjacent configurations in the configuration graph Gyr,. We will use ¢y, to come up with
a polynomial-sized quantified Boolean formula 7’ that has polynomially many Boolean variables
bound by quantifiers and additional 2m unquantified Boolean variables C1, ..., Cy,,C1, ..., C}, (or,
equivalently, two variables C,C” over {0,1}") such that for every C,C" € {0,1}"™, ¥(C,C") is true
iff C has a directed path to C’ in G ,z- By plugging in the values Csiary and Chceept to ' we get a
quantified Boolean formula v that is true iff M accepts x.

We define the formula ¢’ inductively. We let ¢;(C, C") be true if and only if there is a path of
length at most 2¢ from C to C’ in Gpr . Note that ¢' = 9., and 19 = @ar.. The crucial observation
is that there is a path of length at most 2¢ from C to C' if and only if there is a configuration C”

2The above analysis already suffices to show that TQBF is in PSPACE. However, we can actually show that the
algorithm runs in linear space, specifically, O(m+n) space. Note that algorithm always works with restrictions of the
same formula). So it can keep a global partial assignment array that for each variable x; will contain either 0,1 or
’q’ (if it’s quantified and not assigned any value). Algorithm A will use this global space for its operation, where in
each call it will find the first quantified variable, set it to 0 and make the recursive call, then set it to 1 and make the
recursive call, and then set it back to ’q’. We see that A’s space usage is given by the equation s,,m = Sn—1,m +O(1)
and hence it uses O(n + m) space.

pA.8 (82) 4.3. PSPACE COMPLETENESS

with such that there are paths of length at most 2'~! path from C to C” and from C” to C’. Thus
the following formula suggests itself: ;(C,C") = 3C" 1;—1(C,C") N1 (C", C).

However, this formula is no good. It implies that ;’s is twice the size of 1;_1, and a simple
induction shows that 1,, has size about 2", which is too large. Instead, we use additional quantified
variables to save on description size, using the following more succinct definition for v;(C, C"):

IC"YDD* (D' =CAD?*=C") v (D' =C' AD*=C")) = ;1 (D', D?)

(Here, as in Example 4.9, = and = are convenient shorthands, and can be replaced by appropriate
combinations of the standard Boolean operations A and —.) Note that size(¢;) < size(¢;—1)+O(m)
and hence size(,) < O(m?). We leave it to the reader to verify that the two definitions of 1;
are indeed logically equivalent. As noted above we can convert the final formula to prenex form in
polynomial time.

4.3.1 Savitch’s theorem.

The astute reader may notice that because the above proof uses the notion of a configuration graph
and does not require this graph to have out-degree one, it actually yields a stronger statement: that
TQBF is not just hard for PSPACE but in fact even for NPSPACE!. Since TQBF € PSPACE
this implies that PSPACE = NSPACE, which is quite surprising since our intuition is that the
corresponding classes for time (P and NP) are different. In fact, using the ideas of the above proof,
one can obtain the following theorem:

THEOREM 4.12 (SAVITCH [SAVT70])
For any space-constructible S : N — N with S(n) > logn, NSPACE(S(n)) C SPACE(S(n)?)

We remark that the running time of the algorithm obtained from this theorem can be as high
as 29s(n)?)
PROOF: The proof closely follows the proof that TQBF is PSPACE-complete. Let L € NSPACE(S(n))
be a language decided by a TM M such that for every z € {0,1}", the configuration graph
G = Gu; has at most M = 20(5(n)) vertices. We describe a recursive procedure REACH? (u, v, 1)
that returns “YES” if there is a path from u to v of length at most 2! and “NO” otherwise. Note
that REACH?(s,t,[log M]) is “YES” iff ¢ is reachable from s. Again, the main observation is
that there is a path from u to v of length at most 2°¢ iff there’s a vertex z with paths from u
to z and from z to v of lengths at most 2~!'. Thus, on input u,v,i, REACH? will enumerate
over all vertices z (at a cost of O(log M) space) and output “YES” if it finds one z such that
REACH?(u, 2,1 — 1)=“YES” and REACH?(z,v,i — 1)=“YES”. Once again, the crucial observation is
that although the algorithm makes n recursive invocations, it can reuse the space in each of these
invocations. Thus, if we let sps; be the space complexity of REACH? (u,v,4) on an M-vertex graph
we get that spr; = sari—1 + O(log M) and thus spsj0g = O(log? M) = O(S(n)?). W

4.3.2 The essence of PSPACE: optimum strategies for game-playing.

Recall that the central feature of NP-complete problems is that a yes answer has a short certificate.
The analogous unifying concept for PSPACE-complete problems seems to be that of a winning

4.3. PSPACE COMPLETENESS pd.9 (83)

strategy for a 2-player game with perfect information. A good example of such a game is Chess: two
players alternately make moves, and the moves are made on a board visible to both. Thus moves
have no hidden side effects; hence the term “perfect information.” What does it mean for a player
to have a “winning strategy?” The first player has a winning strategy iff there is a 1st move for
player 1 such that for every possible 1st move of player 2 there is a 2nd move of player 1 such that....
(and so on) such that at the end player 1 wins. Thus deciding whether or not the first player has
a winning strategy seems to require searching the tree of all possible moves. This is reminiscent of
NP, for which we also seem to require exponential search. But the crucial difference is the lack of
a short “certificate” for the statement “Player 1 has a winning strategy,” since the only certificate
we can think of is the winning strategy itself, which as noticed, requires exponentially many bits
to even describe. Thus we seem to be dealing with a fundamentally different phenomenon than the
one captured by NP.

The interplay of existential and universal quantifiers in the description of the the winning
strategy motivates us to invent the following game.

ExaMPLE 4.13 (THE QBF GAME)
The “board” for the QBF game is a Boolean formula ¢ whose free variables are x1,xa,...,xo,.
The two players alternately make moves, which involve picking values for x1, x2, ..., in order. Thus
player 1 will pick values for the odd-numbered variables x1, x3, x5, ... (in that order) and player 2
will pick values for the even-numbered variables xo, x4, zg, . ..,. We say player 1 wins iff at the end
 becomes true.

Clearly, player 1 has a winning strategy iff

Ax1VaeTwsVay - - - Veopp(x1, x2, . .., Tan),

namely, iff this quantified boolean formula is true.
Thus deciding whether player 1 has a winning strategy for a given board in the QBF game is
PSPACE-complete.

At this point, the reader is probably thinking of familiar games such as Chess, Go, Checkers
etc. and wondering whether complexity theory may help differentiate between them—for example,
to justify the common intuition that Go is more difficult than Chess. Unfortunately, formalizing
these issues in terms of asymptotic complexity is tricky because these are finite games, and as far as
the existence of a winning strategy is concerned, there are at most three choices: Player 1 has has a
winning strategy, Player 2 does, or neither does (they can play to a draw). However, one can study
generalizations of these games to an n X n board where n is arbitrarily large —this may involve
stretching the rules of the game since the definition of chess seems tailored to an 8 x 8 board—
and then complexity theory can indeed by applied. For most common games, including chess,
determining which player has a winning strategy in the n x n version is PSPACE-complete (see
[?]or [?]). Note that if NP # PSPACE then in general there is no short certificate for exhibiting
that either player in the TQBF game has a winning strategy, which is alluded to in Evens and
Tarjan’s quote at the start of the chapter.

p4.10 (84) 4.4. NL COMPLETENESS

Proving PSPACE-completeness of games may seem like a frivolous pursuit, but similar ideas
lead to PSPACE-completeness of some practical problems. Usually, these involve repeated moves
that are in turn counteracted by an adversary. For instance, many computational problems of
robotics are PSPACE-complete: the “player” is the robot and the “adversary” is the environment.
(Treating the environment as an adversary may appear unduly pessimistic; but unfortunately even
assuming a benign or “indifferent” environment still leaves us with a PSPA CE-complete problem;
see the Chapter notes.)

4.4 NL completeness

Now we consider problems that form the “essence” of non-deterministic logarithmic space com-
putation, in other words, problems that are complete for NL. What kind of reduction should we
use? We cannot use the polynomial-time reduction since NL C P. Thus every language in NL is
polynomial-time reducible to the trivial language {1} (reduction: “decide using polynomial time
whether or not the input is in the NL language, and then map to 1 or 0 accordingly”). Intuitively,
such trivial languages should not be the “hardest” languages of NL.

When choosing the type of reduction to define completeness for a complexity class, we must keep
in mind the complexity phenomenon we seek to understand. In this case, the complexity question is
whether or not NL = L. The reduction should not be more powerful than the weaker class, which is
L. For this reason we use logspace reductions —for further, justification, see part (b) of Lemma 4.15
below). To define such reductions we must tackle the tricky issue that a reduction typically maps
instances of size n to instances of size at least n, and so a logspace machine computing such a
reduction does not have even the memory to write down its output. The way out is to require that
the reduction should be able to compute any desired bit of the output in logarithmic space. In
other words, if the reduction were given a separate output tape, it could in principle write out the
entire new instance by first computing the first bit, then the second bit, and so on. (Many texts
define such reductions using a “write-once” output tape.) The formal definition is as follows.

DEFINITION 4.14 (LOGSPACE REDUCTION)
Let f:{0,1}* — {0,1}" be a polynomially-bounded function (i.e., there’s a constant ¢ > 0 such
that f(z) < |z|¢ for every z € {0,1}"). We say that f is implicitly logspace computable, if the
languages Ly = {(x,) | f(z); =1} and L', = {(z,i) | i < |f(x)|} are in L.

Informally, we can think of a single O(log|z|)-space machine that given input (z,7) outputs
f(x)|; provided i < |f(x)|.

Language A is logspace reducible to language B, denoted A <; B, if there is a function f :
{0,1}* — {0, 1}" that is implicitly logspace computable and z € A iff f(z) € B for every x € {0,1}".

Logspace reducibility satisfies usual properties one expects.

LEMMA 4.15
(a) If A<; B and B <;C then A<;C. (b)If A<; B and B € L. then A € L.

PRrROOF: We prove that if f,g are two functions that are logspace implicitly computable, then so
is the function h where h(z) = g(f(x)). Then part (a) of the Lemma follows by letting f be the

4.4. NL COMPLETENESS p4.11 (85)

reduction from A to B and g be the reduction from B to C. Part (b) follows by letting f be the
reduction from A to B and g be the characteristic function of B (i.e. g(y) =1 iff y € B).

So let My, M, be the logspace machines that compute the mappings x,i — f(z); and y,j —
g(y); respectively. We construct a machine Mj, that computes the mapping z,j — g¢(f(z));, in
other words, given input z,j outputs g(f(x)); provided j < |g(f(z))|. Machine M), will pretend
that it has an additional (fictitious) input tape on which f(z) is written, and it is merely simulating
M, on this input (see Figure 4.3). Of course, the true input tape has x, j written on it. To maintain
its fiction, M), always maintains on its worktape the index, say i, of the cell on the fictitious tape
that M, is currently reading; this requires only log | f(z)| space. To compute for one step, M, needs
to know the contents of this cell, in other words, f(z)|;. At this point M}, temporarily suspends its
simulation of M, (copying the contents of M,’s worktape to a safe place on its own worktape) and
invokes My on inputs x,7 to get f(x)|;. Then it resumes its simulation of M, using this bit. The
total space My uses is O(log|g(f(z))| + s(|z[) + s'(|f(x)[)) = O(log|=[). W

Virtual
input
tape

Work

[
Output |
tape 1

2. ITIIIAIE
et M

Figure 4.3: Composition of two implicitly logspace computable functions f,g. The machine M, uses calls to f to
implement a “virtual input tape”. The overall space used is the space of My + the space of My + O(log|f(z)]) =
O(logla)).

We say that A is NL-complete if it is in NL and for every B € NL, A <; B. Note that an
NL-complete language is in L iff NL =L.

THEOREM 4.16
PATH is NL-complete.

ProOF: We have already seen that PATH is in NL. Let L be any language in NL and M be a
machine that decides it in space O(logn). We describe a logspace implicitly computable function
f that reduces L to PATH. For any input x of size n, f(z) will be the configuration graph G/
whose nodes are all possible 200987 configurations of the machine on input z, along with the start
configuration Cgtart and the accepting configuration Cyee. In this graph there is a path from Cggart
to Chce iff M accepts x. The graph is represented as usual by an adjacency matriz that contain
1 in the (C,C")*" position (i.e., in the C** row and C"™* column if we identify the configurations
with numbers between 0 and 20(1°g”)) iff there’s an edge C' from C’ in Gps,. To finish the proof
we need to show that this adjacency matrix can be computed by a logspace reduction. This is easy

p4.12 (86) 4.4. NL COMPLETENESS

since given a (C,C") a deterministic machine can in space O(|C|+|C’|) = O(log |z|) examine C,C’
and check whether C” is one of the (at most two) configurations that can follow C according to the
transition function of M. W

4.4.1 Certificate definition of NL: read-once certificates

In Chapter 2 we gave two equivalent definitions of NP— one using non-deterministic TM’s and
another using the notion of a certificate. The idea was that the nondeterministic choices of the
NDTM that lead it to accept can be viewed as a “certificate” that the input is in the language,
and vice versa. We can give a certificate-based definition also for NL, but only after addressing
one tricky issue: a certificate may be polynomially long, and a logspace machine does not have the
space to store it. Thus, the certificate-based definition of NL assumes that the logspace machine
on a separate read-only tape. Furthermore, on each step of the machine the machine’s head on
that tape can either stay in place or move to the right. In particular, it cannot reread any bit to
the left of where the head currently is. (For this reason the this kind of tape is called “read once”.)
It is easily seen that the following is an alternative definition of NL (see also Figure 4.4):

» read once head

e LTI TTTTATTTTTTIC

et [TTTTTITITT

e [T

L ITTTTIC

Figure 4.4: Certificate view of NL. The certificate for input x is placed on a special “read-once” tape on which
the machine’s head can never move to the left.

DEFINITION 4.17 (NL- ALTERNATIVE DEFINITION.)
A language L is in NL if there exists a deterministic TM M and a with an additional special
read-once input tape polynomial p : N — N such that for every z € {0,1}",

el e Jue {0,171 st M(z,u) =1
where by M (z,u) we denote the output of M where x is placed on its input tape and u is placed

on its special read-once tape, and M uses at most O(log|z|) space on its read/write tapes for every
input z.

4.4. NL COMPLETENESS pd.13 (87)
4.4.2 NL = coNL

Consider the problem PATH, i.e., the complement of PATH. A decision procedure for this language
must accept when there is no path from s to ¢ in the graph. Unlike in the case of PATH, there
is no natural certificate for the non-eristence of a path from s to ¢ and thus it seemed “obvious”
to researchers that PATH ¢ NL, until the discovery of the following theorem in the 1980s proved
them wrong.

THEOREM 4.18 (IMMERMAN-SZLEPCSENYI)
PATH € NL.

PROOF: As we saw in Section 4.4.1, we need to show an O(logn)-space algorithm A such that
for every n-vertex graph GG and vertices s and ¢, there exists a polynomial certificate u such that
A((G, s, t),u) =1 if and only if ¢ is not reachable from u in G, where A has only read-once access
to u.

What can we certify to an O(logn)-space algorithm? Let C; be the set of vertices that are
reachable from s in G within at most ¢ steps. For every i € [n] and vertex v, we can easily certify
that v is in C;. The certificate simply contains the labels vg, vy, ..., v, of the vertices along the
path from s to v (we can assume without loss of generality that vertices are labeled by the numbers
1 to n and hence the labels can be described by logn bit strings). The algorithm can check the
certificate using read-once access by verifying that (1) vg = s, (2) for j > 0, there is an edge from
vj—1 to vj, (3) vy = v and (using a counter) that (4) the path ends within at most i steps. Note
that the certificate is indeed of size at most polynomial in n.

Our algorithm uses the following two procedures:

1. Procedure to certify that a vertex v is not in C; given the size of C;.

2. Procedure to certify that |C;| = ¢ for some number ¢, given the size of C;_;.

Since Cyp = {s} and C,, contains all the vertices reachable from s, we can apply the second
procedure iteratively to learn the sizes of the sets C1,...,C,, and then use the first procedure to
certify that t € C,,.

Certifying that v is not in Cj, given |C;|. The certificate is simply the list of certificates
that u is in C; for every u € C; sorted in ascending order of labels (recall that we identify labels
with numbers in [n]). The algorithm checks that (1) each certificate is valid, (2) the label of a
vertex u for which a certificate is given is indeed larger than the label of the previous vertex, (3)
no certificate is provided for v, and (4) the total number of certificates provided is exactly |C;|. If
v & C; then the algorithm will accept the above certificate, but if v € C; there will not exist |C;]
certificates that vertices uy < ug < ... <wg, are in C; where u; # v for every j.

Certifying that v is not in Cj, given |C;_;1|. Before showing how we certify that |C;| = ¢
given |Cj_1|, we show how to certify that v ¢ C; with this information. This is very similar to the
above procedure: the certificate is the list of |C;_1] certificates that u € C;_; for every u € C;_1 in
ascending order. The algorithm checks everything as before except that in step (3) it verifies that
no certificate is given for v or for a neighbor of v. Since v € C; if and only if there exists u € C;_1
such that v = v or w is a neighbor of v in G, the procedure will not accept a false certificate by the
same reasons as above.

p4.14 (88) 4.4. NL COMPLETENESS

Certifying that |C;| = ¢ given |C;_1|. For every vertex v, if v € C; then there is a certificate for
this fact, and by the above procedure, given |C;_1|, if v & C; then there is a certificate for this fact
as well. The certificate that |C;| = ¢ will consist of n certificates for each of the vertices 1 to n in
ascending order. For every vertex u, there will be an appropriate certificate depending on whether
u € C; or not. The algorithm will verify all the certificate and count the number of certificate that
a vertex is in C;. It accepts if this count is equal to c. B

Using the notion of the configuration graph we can modify the proof of Theorem 4.18 to prove
the following:

COROLLARY 4.19
For every space constructible S(n) > logn, NSPACE(S(n)) = coNSPACE(S(n)).

Our understanding of space-bounded complexity.
The following is our understanding of space-bounded complexity.

DTIME(s(n))CSPACE(s(n))CNSPACE(s(n))=coNSPACE(s(n))CDTIME(20¢()),

None of the inclusions are known to be strict though we believe they all are.

Chapter notes and history

The concept of space complexity had already been explored in the 1960s; in particular, Savitch’s the-
orem predates the Cook-Levin theorem. Stockmeyer and Meyer proved the PSPACE-completeness
of TQBF soon after Cook’s paper appeared. A few years later Even and Tarjan pointed out the
connection to game-playing and proved the PSPACE-completeness of a game called General-
ized Hex. Papadimitriou’s book gives a detailed account of PSPACE-completeness. He also shows
PSPACE-completeness of several Games against nature first defined in [Pap85]. Unlike the TQBF
game, where one player is Fxistential and the other Universal, here the second player chooses moves
randomly. The intention is to model games played against nature—where “nature” could mean not
just weather for example, but also large systems such as the stock market that are presumably “in-
different” to the fate of individuals. Papadimitriou gives an alternative characterization PSPACE
using such games. A stronger result, namely, a characterization of PSPACE using interactive
proofs, is described in Chapter 8.

Exercises

§1 Show that SPACE(S(n)) = SPACE(0) when S(n) = loglogn.

§2 Prove the existence of a universal TM for space bounded computation (analogously to the
deterministic universal TM of Theorem 1.13). That is, prove that there exists a a TM SU
such that for every string «, and input z, if the TM M, represented by « halts on x before
using ¢ cells of its work tapes then SU(a,t,z) = M,(z), and moreover, SU uses at most
C't cells of its work tapes, where C is a constant depending only on M,. (Despite the fact

4.4.

NL COMPLETENESS pd.15 (89)

§3
§4

§5
§6

§7
§8

§9

that the bound here is better than the bound of Theorem 1.13, the proof of this statement is
actually easier than the proof of Theorem 1.13.)

Prove that the language SPACETM of (2) is PSPACE-complete.

Show that the following language is NL-complete:

{ .G, : G is a strongly connected digraph} .

Show that 2SAT is in NL.

Suppose we define NP-completeness using logspace reductions instead of polynomial-time
reductions. Show (using the proof of the Cook-Levin Theorem) that SAT and 3SAT continue
to be NP-complete under this new definition. Conclude that SAT € L iff NP = L.

Show that TQBF is complete for PSPACE also under logspace reductions.

Show that in every finite 2-person game with perfect information (by finite we mean that
there is an a priori upperbound n on the number of moves after which the game is over and
one of the two players is declared the victor —there are no draws) one of the two players has
a winning strategy.

Define polyL to be U.»oSPACE(log®n). Steve’s Class SC (named in honor of Steve Cook)
is defined to be the set of languages that can be decided by deterministic machines that run
in polynomial time and log®n space for some ¢ > 0.

It is an open problem whether PATH € SC. Why does Savitch’s Theorem not resolve this
question?

Is SC the same as polyL N P?

p4.16 (90) 4.4. NL COMPLETENESS

Chapter 5

The Polynomial Hierarchy and
Alternations

“..synthesizing circuits is exceedingly difficulty. It is even more difficult to show that
a circuit found in this way is the most economical one to realize a function. The
difficulty springs from the large number of essentially different networks available.”
Claude Shannon 1949

This chapter discusses the polynomial hierarchy, a generalization of P, NP and coNP that
tends to crop up in many complexity theoretic investigations (including several chapters of this
book). We will provide three equivalent definitions for the polynomial hierarchy, using quantified
predicates, alternating Turing machines, and oracle TMs (a fourth definition, using uniform families
of circuits, will be given in Chapter 6). We also use the hierarchy to show that solving the SAT
problem requires either linear space or super-linear time.

5.1 The classes X} and II}

To understand the need for going beyond nondeterminism, let’s recall an NP problem, INDSET,
for which we do have a short certificate of membership:

INDSET = {(G, k) : graph G has an independent set of size > k} .

Consider a slight modification to the above problem, namely, determining the largest indepen-
dent set in a graph (phrased as a decision problem):

EXACT INDSET = {(G, k) : the largest independent set in G has size exactly k} .

Now there seems to be no short certificate for membership: (G, k) € EXACT INDSET iff there
erists an independent set of size k in G and every other independent set has size at most k.

Similarly, consider the language MIN-DNF, the decision version of a problem in circuit mini-
mization, a topic of interest in electrical engineering (and referred to in Shannon’s paper). We say

p5.1 (91)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p5.2 (92) 5.1. THE CLASSES X! AND 1I¥

that two boolean formulae are equivalent if they have the same set of satisfying assignments.

MIN — DNF = { .¢, : ¢ is a DNF formula not equivalent to any smaller DNF formula} .
={ p : Vi, Y| <|p|,3 assignment s such that ¢(s) # ¥(s)}.

Again, there is no obvious notion of a certificate of membership. Note that both the above
problems are in PSPACE, but neither is believed to be PSPACE-complete.

It seems that the way to capture such languages is to allow not only an “exists“ quantifier (as in
Definition 2.1 of NP) or only a “for all” quantifier (as Definition 2.22 of coNP) but a combination
of both quantifiers. This motivates the following definition:

DEFINITION 5.1
The class X5 is defined to be the set of all languages L for which there exists a polynomial-time
TM M and a polynomial ¢ such that

ze L < Fue {0,119 vy e {0, 13900 A2, u,0) =1
for every z € {0,1}".

Note that 2’2) contains both the classes NP and coNP.

EXAMPLE 5.2
The language EXACT INDSET above is in X5, since as we noted above, a pair (G, k) is in EXACT INDSET
iff

35 VS set S is an independent set of size k in G and
S’ is not a independent set of size > k + 1.

We define the class IT} to be the set {f : L € sigh } It is easy to see that an equivalent definition
is that L € II} if there is a polynomial-time TM M and a polynomial q such that

z €L vue {0,110 3 € {0, 1190 A1z, u,0) = 1

for every z € {0,1}".

EXAMPLE 5.3
The language EXACT INDSET is also in IT) since a pair (G, k) is in EXACT INDSET if for every S,
if S’ has size at least k + 1 then it is not an independent set, but there erists an independent set
S of size k in G. (Exercise 8 shows a finer placement of EXACT INDSET.)

The reader can similarly check that MIN — DNF is in IT5. It is conjectured to be complete for
..

5.2. THE POLYNOMIAL HIERARCHY. p5.3 (93)

5.2 The polynomial hierarchy.

The polynomial hierarchy generalizes the definitions of NP, coNP, X8 TI to consists all the lan-
guages that can be defined via a combination of a polynomial-time computable predicate and a
constant number of V/3 quantifiers:

DEFINITION 5.4 (POLYNOMIAL HIERARCHY)
For every ¢ > 1, a language L is in X if there exists a polynomial-time TM M and
a polynomial ¢ such that

v € Lo Ju e {0,119 vy, e {0, 139050 . Quus € {0,1390°D) M (2w, ... wi) = 1,
where @; denotes V or 3 depending on whether ¢ is even or odd respectively.

We say that L is in IT? if there exists a polynomial-time TM M and a polynomial
q such that

z € L&V € {0,1390%0 3y, € {0, 13900 . Quu; € {0, 13900 M (2w, ...) = 1,
where @Q; denotes 3 or V depending on whether 7 is even or odd respectively.

The polynomial hierarchy is the set PH = U; 3P,

REMARK 5.5
Note that 3] = NP and IT) = coNP. More generally, for evert i > 1, ITY = coX? = {f : L e Zf}.
Note also that that X7 C I1? 11, and so we can also define the polynomial hierarchy as UisoITP.

5.2.1 Properties of the polynomial hierarchy.

We believe that P £ NP and NP # coNP. An appealing generalization of these conjectures is
that for every 1, 2’; is strictly contained in Ef 41- This is called the conjecture that the polynomial
hierarchy does not collapse, and is used often in complexity theory. If the polynomial hierarchy
does collapse this means that there is some 7 such that ¥ = U; 2? = PH. In this case we say that
the polynomial hierarchy has collapsed to the i level. The smaller i is, the weaker, and hence
more plausible, is the conjecture that PH does not collapse to the it level.

THEOREM 5.6
1. For every i > 1, if ¥ = TIY then PH = X¥ (i.e., the hierarchy collapses to the i'" level).

2. If P = NP then PH = P (i.e., the hierarchy collapses to P).

PRrROOF: We do the second part; the first part is similar and also easy.
Assuming P = NP we prove by induction on i that X¥ II? C P. Clearly this is true for i =1
since under our assumption P = NP = coNP. We assume it is true for i — 1 and prove it for 7. Let

p5.4 (94) 5.2. THE POLYNOMIAL HIERARCHY.

L € 3%, we will show that L € P. By definition, there is a polynomial-time M and a polynomial ¢
such that

z €L e u e {0,130 vy e {0, 139020 . Quu; € {0, 13900 M (2w, . ug) =1,
where @Q; is 3/V as in Definition 5.4. Define the language L’ as follows:
we L' & Muy € {0,1190D o Quuy € {0, 1390 M (uy, ug, .. uy) = 1.

Clearly, L’ € II? | and so under our assumption is in P. This implies that there is a TM M’ such
that
zeL e Fu e {0,190 M (2 uy) =1,

But this means L € NP and hence under our assumption L € P. The same idea shows that if
Lell’then LeP. A

5.2.2 Complete problems for levels of PH

For every 4, we say that a language L is 3-complete if L € 3? and for every L' € 3%, L' <, L.
We define Hf -completeness and PH-completeness in the same way. In this section we show that
for every i € N, both X and IT! have complete problems. In contrast the polynomial hierarchy
itself is believed not to have a complete problem, as is shown by the following simple claim:

CLAM 5.7
Suppose that there exists a language L that is PH-complete, then there exists an i such that
PH = X? (and hence the hierarchy collapses to its ith level.)

PROOF SKETCH: Since L € PH = U;X?, there exists ¢ such that L € 3. Since L is PH-complete,
we can reduce every language of PH to X¥ to L, and thus PHC 7. B

REMARK 5.8
It is not hard to see that PH C PSPACE. A simple corollary of Claim 5.7 is that unless the
polynomial hierarchy collapses, PH # PSPACE. Indeed, otherwise the problem TQBF would be
PH-complete.

EXAMPLE 5.9
The following are some examples for complete problems for individual levels of the hierarchy:

For every i > 1, the class X has the following complete problem involving quantified boolean
expression with limited number of alternations:

YiSAT = JuVue3 - - - Qiu; p(ur, ug, ..., u;) =1, (1)

where ¢ is a Boolean formula (not necessarily in CNF form, although this does not make much
difference), each u; is a vector of boolean variables, and Q; is V or3 depending on whether i is odd
or even. Notice that this is a special case of the TQBF problem defined in Chapter 4. Exercise 1

5.3. ALTERNATING TURING MACHINES p5.5 (95)

asks you to prove that X;SAT is indeed X-complete. One can similarly define a problem ITI;SAT
that is IIY-complete.

In the SUCCINCT SET COVER problem we are given a collection S = {p1,¢2,...,om} of 3-
DNF formulae on n variables, and an integer k. We need to determine whether there is a subset
S" C{1,2,...,m} of size at most K for which V;cg/¢; is a tautology (i.e., evaluates to 1 for every
assignment to the variables). Umans showed that SUCCINCT SET COVER is X5-complete [Uma01].

5.3 Alternating Turing machines

Alternating Turing Machines (ATM), are generalizations of nondeterministic Turing machines.
Recall that even though NDTMs are not a realistic computational model, studying them helps us
to focus on a natural computational phenomenon, namely, the apparent difference between guessing
an answer and verifying it. ATMs plays a similar role for certain languages for which there is no
obvious short certificate for membership and hence cannot be characterized using nondeterminism
alone.

Alternating TMs are similar to NDTMs in the sense that they have two transition functions
between which they can choose in each step, but they also have the additional feature that every
internal state except gaccept and gnait is labeled with either 3 or V. Similar to the NDTM, an ATM
can evolve at every step in two possible ways. Recall that a non-deterministic TM accepts its input
if there exists some sequence of choices that leads it to the state gaccept- In an ATM, the ewists
quantifier over each choice is replaced with the appropriate quantifier according to the labels.

DEFINITION 5.10

Let M be an alternating TM. For a function 7' : N — N, we say that M is an T'(n)-time ATM if
for every input x € {0,1}* and for every possible sequence of transition function choices, M will
halt after at most T'(|z|) steps.

For every z € {0,1}", we let Gjr, be the configuration graph of z, whose vertices are the
configurations of M on input x and there is an edge from configuration C' to C’ if there C’ can
be obtained from C' in one step using one of the two transition functions (see Section 4.1). Recall
that this is a directed acyclic graph. We label some of the nodes in the graph by “ACCEPT” by
repeatedly applying the following rules until they cannot be applied anymore:

e The configuration Cyecept Where the machine is in gaccept is labeled “ACCEPT”.

e If a configuration C' is in a state labeled 3 and one of the configurations C’ reachable from it
in one step is labeled “ACCEPT” then we label C' “ACCEPT”.

e If a configuration C is in a state labeled V and both the configurations C’, C” reachable from
it one step is labeled “ACCEPT” then we label C' “ACCEPT”.

We say that M accepts x if at the end of this process the starting configuration Cgiart is labeled
“ACCEPT”. The language accepted by M is the set of all x’s such that M accepts x. We denote
by ATIME(T'(n)) the set of all languages accepted by some T'(n)-time ATM.

p5.6 (96) 5.4. TIME VERSUS ALTERNATIONS: TIME-SPACE TRADEOFFS FOR SAT.

For every i € N, we define ¥, TIME(T (n)) (resp. IL TIME(T(n)) to be the set of languages
accepted by a T'(n)-time ATM M whose initial state is labeled “3” (resp. “V”) and on which every
input and sequence of choices leads M to change at most ¢ — 1 times from states with one label to
states with the other label.

The following claim is left as an easy exercise (see Exercise 2):

Cramm 5.11
For every i € N,

P = U3, TIME(n®)
I1” = U I, TIME(n®)

5.3.1 Unlimited number of alternations?

What if we consider polynomial-time alternating Turing machines with no a priori bound on the
number of quantifiers? We define the class AP to be U, ATIME(n®). We have the following
theorem:

THEOREM 5.12

AP = PSPACE.

Proor: PSPACE C AP follows since TQBF is trivially in AP (just “guess” values for each
existentially quantified variable using an 3 state and for universally quantified variables using a V
state) and every PSPACE language reduces to TQBF.

AP C PSPACE follows using a recursive procedure similar to the one used to show that
TQBF € PSPACE. &

Similarly, one can consider alternating Turing machines that run in polynomial space. The class
of languages accepted by such machines is called APSPACE, and Exercise 6 asks you to prove
that APSPACE = EXP. One can similarly consider alternating logspace machines; the set of
languages accepted by them is exactly P.

5.4 Time versus alternations: time-space tradeoffs for SAT.

Despite the fact that SAT is widely believed to require exponential (or at least super-polynomial)
time to solve, and to require linear (or at least super-logarithmic) space, we currently have no way
to prove these conjectures. In fact, as far as we know, SAT may have both a linear time algorithm
and a logarithmic space one. Nevertheless, we can prove that SAT does not have an algorithm
that runs simultaneously in linear time and logarithmic space. In fact, we can prove the following
stronger theorem:

THEOREM 5.13 (77)

For every two functions S, T : N — N, define TISP(T'(n), S(n)) to be the set of languages decided
by a TM M that on every input x takes at most O(T'(|x|)) steps and uses at most O(S(|z])) cells
of its read/write tapes. Then, SAT & TISP(n'-t,n01).

5.4. TIME VERSUS ALTERNATIONS: TIME-SPACE TRADEOFFS FOR SAT. p5.7 (97)

REMARK 5.14

The class TISP(T'(n), S(n)) is typically defined with respect to TM’s with RAM memory (i.e.,
TM’s that have random access to their tapes; such machines can be defined in a similar way to the
definition of oracle TM’s in Section 3.5). Theorem 5.13 and its proof carries over for that model
as well. We also note that a stronger result is known for both models: for every ¢ < (v/5 +1)/2,
there exists d > 0 such that SAT ¢ TISP(n¢,n%) and furthermore, d approaches 1 from below as
¢ approaches 1 from above.

ProoF: We will show that
NTIME(n) ¢ TISP(n'? n°?). (2)

This implies the result for SAT by following the ideas of the proof of the Cook-Levin Theorem
(Theorem 2.10). A careful analysis of that proof yields a reduction from the task of deciding mem-
bership in an NTIME(T'(n))-language to the task deciding whether an O(T'(n)log T (n))-sized
formula is satisfiable, such that every output bit of this reduction can be computed in polyloga-
rithmic time and space. (See also the proof of Theorem 6.7 for a similar analysis.) Hence, if
SAT € TISP(n!!, n%!) then NTIME(n) C TISP(n!'polylog(n), n’1polylog(n)). Our main step
in proving (2) is the following claim, showing how to replace time with alternations:

CLAIM 5.14.1
TISP(n'2,n?) C T,TIME(n®).

PRrROOF: The proof is similar to the proofs of Savitch’s Theorem and the PSPACE-completeness
of TQBF (Theorems 4.12 and 4.11). Suppose that L is decided by a machine M using n'? time
and n? space. For every z € {0,1}", consider the configuration graph G M,z of M on input z. Each
configuration in this graph can be described by a string of length O(n?) and z is in L if and only
if there is a path of length n'? in this graph from the starting configuration Csrt to an accepting
configuration. There is such a path if and only if there exist n% configurations C1, ..., C,s (requiring
O(n®) to specify) such that if we let Cy = Cstare then C,6 is accepting and for every i € [n°] the
configuration C; is computed from C;_; within n® steps. Because this condition can be verified in
n® time, we can we get an O(n®)-time 09-TM for deciding membership in L. B

Our next step will show that, under the assumption that (2) does not hold (and hence NTIME(n) C
TISP(n'2,n%?)), we can replace alternations with time:

CrLAamM 5.14.2
Suppose that NTIME(n) C DTIME(n!?). Then £;TIME(n8) C NTIME (n%9).

ProOF: Using the characterization of the polynomial hierarchy by alternating machines, L is in
3, TIME(n®) if and only if there is an O(n®)-time TM M such that

v e Lo Jue {0,130 vy e {0, 114 M(z,u,v) =1.

for some constants ¢, d. Yet if NTIME(n) C DTIME(n'2) then by a simple padding argument (a
la the proof of Theorem 2.25) we have a deterministic algorithm D that on inputs x,u with |x| =n

p5.8 (98) 5.5. DEFINING THE HIERARCHY VIA ORACLE MACHINES.

and |u| = en® runs in time O((n®)*?) = O(n?%)-time and returns 1 if and only if there exists some
v € {0, 1}d"8 such that M (z,u,v) = 0. Thus,

xz € L < Ju e {0, 1}C|9[”‘8 D(z,u) =0.

implying that L € NTIME(n%%). &

Claims 5.14.1 and 5.14.2 show that the assumption that NTIME(n) C TISP(n!?2,n%?) leads
to contradiction: by simple padding it implies that NTIME(n!'?) C TISP(n'%,n?) which by
Claim 5.14.1 implies that NTIME(n!'%) C S;TIME(n®). But together with Claim 5.14.2 this
implies that NTIME(n!?) € NTIME(n"°), contradicting the non-deterministic time hierarchy
theorem (Theorem 3.3). W

5.5 Defining the hierarchy via oracle machines.

Recall the definition of oracle machines from Section 3.5. These are machines that are executed
with access to a special tape they can use to make queries of the form “is ¢ € O” for some language
O. For every O C {0,1}*, oracle TM M and input z, we denote by M©(z) the output of M on x
with access to O as an oracle. We have the following characterization of the polynomial hierarchy:

THEOREM 5.15
For every i > 2, 3! = NPZ-15AT where the latter class denotes the set of languages decided by
polynomial-time NDTMs with access to the oracle 3;_1SAT.

PROOF: We showcase the idea by proving that X8 = NP3AT. Suppose that L € 3P, Then, there
is a polynomial-time TM M and a polynomial ¢ such that

z €L < Ju e {0,130 vy e {0, 139050 b2, uy, up) = 1

yet for every fixed u; and z, the statement “for every wug, M (x,u;,us) = 1”7 is the negation of an
NP-statement and hence its truth can be determined using an oracle for SAT. We get that there is
a simple NDTM N that given oracle access for SAT can decide L: on input x, non-deterministically
guess up and use the oracle to decide if Vus M (x,u1,u2) = 1. We see that z € L iff there exists a
choice uq that makes N accept.

On the other hand, suppose that L is decidable by a polynomial-time NDTM N with oracle
access to SAT. Then, is in L if and only if there exists a sequence of non-deterministic choices and
correct oracle answers that makes N accept x. That is, there is a sequence of choices ¢q,...,¢n €
{0,1} and answers to oracle queries ay,...,ar € {0,1} such that on input z, if the machine N
uses the choices cq,...,¢y, in its execution and receives a; as the answer to its ith query, then
(1) M reaches the accepting state gaccept and (2) all the answers are correct. Let ¢; denote the
ith query that M makes to its oracle when executing on x using choices ¢i, ..., 2, and receiving
answers ai, ...,ag. Then, the condition (2) can be phrased as follows: if a; = 1 then there exists
an assignment u; such that ¢;(u;) = 1 and if a; = 0 then for every assignment v;, ¢;(v;) = 0. Thus,

5.5. DEFINING THE HIERARCHY VIA ORACLE MACHINES. p5.9 (99)

we have that

r €L sde,...,cm,a1,...,05,U1,...,UusVV1,...,v, such that
N accepts x using choices ci, ..., ¢y, and answers aq, . ..,a;r AND
Vi € [k] if a; = 1 then ¢;(u;) =1 AND
Vi € [k] if a; = 0 then p;(v;) =0

implying that L € 5. B

REMARK 5.16
Because having oracle access to a complete language for a class allows to solve every language in
that class, some texts use the class name instead of the complete language in the notation for the

oracle. Thus, some texts denote the class X8 = NP3AT by NPNP | the class 3% by NPNP™ and
etc.

WHAT HAVE WE LEARNED?

e The polynomial hierarchy is the set of languages that can be defined via a
constant number of alternating quantifiers. It also has equivalent definitions
via alternating TMs and oracle TMs. It contains several natural problems
that are not known (or believed) to be in NP.

e We conjecture that the hierarchy does not collapse in the sense that each of
its levels is distinct from the previous ones.

e We can use the concept of alternations to prove that SAT cannot be solved
simultaneously in linear time and sublinear space.

Chapter notes and history

The polynomial hierarchy was formally defined by Stockmeyer [Sto77], though the concept appears
in the literature even earlier. For instance, Karp [Kar72| notes that “a polynomial-bounded version
of Kleene’s Arithmetic Hierarchy (Rogers 1967) becomes trivial if P = NP.”

The class DP was defined by Papadimitriou and Yannakakis [PY82], who used it to characterize
the complexity of identifying the facets of a polytope.

The class of complete problems for various levels of PH is not as rich as it is for NP, but it
does contain several interesting ones. See Schaeffer and Umans [SU02a, SU02b] for a recent list.
The SUCCINCT SET-COVER problem is from Umans [Uma01l], where it is also shown that the
following optimization version of MIN-DNF is ¥f-complete:

{(g@, k) : 3 DNF¢' of size at most k, that is equivalent to DNF go} .

p5.10 (100) 5.5. DEFINING THE HIERARCHY VIA ORACLE MACHINES.

Exercises

§1

§2
§3
§4
§5
§6

§7

§8

§9

§10
§11

Show that the language 3;SAT of (1) is complete for 3 under polynomial time reductions.

" 1VS Jo ssouajerdumod-g N oY) 95 :JUIE]
Prove Claim 5.11.

Show that if 3SAT is polynomial-time reducible to 3SAT then PH = NP.
Show that PH has a complete language iff it collapses to some finite level 3.
Show that the definition of PH using ATMs coincides with our other definitions.

Show that APSPACE = EXP.
"€1°G WIoaY T, Jo Jooid) UT 9SOy} 07 IR[IUIIS
SeOpI SoSL HOVASAYV D dXH UOHIOIP [BIALIJUOU oY, :JUTH

Show that ¥4 = NPSAT. Generalize your proof to give a characterization of PH in terms of
oracle Turing machines.

The class DP is defined as the set of languages L for which there are two languages L; €
NP, Ly € coNP such that L = L1 N Ly. (Do not confuse DP with NP N coNP, which may
seem superficially similar.) Show that

(a) EXACTINDSET € DP.

(b) Every language in DP is polynomial-time reducible to EXACT INDSET.

Suppose A is some language such that P4 = NP4, Then show that PHA C P4 (in other
words, the proof of Theorem ?? relativizes).

Show that SUCCINCT SET-COVER € X5.

(Suggested by C. Umans) This problem studies VC-dimension, a concept important in ma-
chine learning theory. If § = {51, 52,...,S,} is a collection of subsets of a finite set U, the
VC dimension of S, denoted VC(S), is the size of the largest set X C U such that for every
X' C X, there is an ¢ for which S; N X = X'. (We say that X is shattered by S.)

A boolean circuit C succinctly represents collection S if \S; consists of exactly those elements
x € U for which C(i,z) = 1. Finally,
VC-DIMENSION = {(C, k) : C represents a collection S s.t. VC(S) > k}.

(2) Show that VC-DIMENSION e 2.
(b) Show that VC-DIMENSION is X4-complete.

‘sotuty S[dI}[NUI 198 SUILS A} S9SN WL UOTPINPAI INOA
£q peonpoid ¢ U0I28[[0d YY) ‘0S[Y 1YSE-X WO 20npay :JUlE

Chapter 6
Circuits

“One might imagine that P # NP, but SAT is tractable in the following sense: for
every £ there is a very short program that runs in time (% and correctly treats all

instances of size £. 7
Karp and Lipton, 1982

This chapter investigates a model of computation called a Boolean circuit, which is a general-
ization of Boolean formulae and a rough formalization of the familiar ”silicon chip.” Here are some
motivations for studying it.

First, it is a natural model for nonuniform computation, by which we mean that a different
7algorithm” is allowed for each input size. By contrast, our standard model thus far was uniform
computation: the same Turing Machine (or algorithm) solves the problem for inputs of all (infinitely
many) sizes. Nonuniform computation crops up often in complexity theory, and also in the rest of
this book.

Second, in principle one can separate complexity classes such as P and NP by proving lower-
bounds on circuit size. This chapter outlines why such lowerbounds ought to exist. In the 1980s,
researchers felt boolean circuits are mathematically simpler than the Turing Machine, and thus
proving circuit lowerbounds may be the right approach to separating complexity classes. Chap-
ter 13 describes the partial successes of this effort and Chapter 22 describes where it is stuck.

This chapter defines the class P/poly of languages computable by polynomial-sized boolean
circuits and explores its relation to NP. We also encounter some interesting subclasses of P /poly,
including NC, which tries to capture computations that can be efficiently performed on highly
parallel computers. Finally, we show a (yet another) characterization of the polynomial hierarchy,
this time using exponential-sized circuits of constant depth.

6.1 Boolean circuits

A Boolean circuit is a just a diagram showing how to derive an output from an input by a combi-
nation of the basic Boolean operations of OR (V), AND (A) and NOT (—). For example, Figure 6.1
shows a circuit computing the XOR function. Here is the formal definition.

p6.1 (101)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p6.2 (102) 6.1. BOOLEAN CIRCUITS

Figure 6.1: A circuit C computing the XOR function (i.e., C(z1,22) = 1 iff 21 # x2).

DEFINITION 6.1 (BOOLEAN CIRCUITS)

For every n,m € N a Boolean circuit C with n inputs and m outputs'is a directed
acyclic graph. It contains n nodes with no incoming edges; called the input nodes
and m nodes with no outgoing edges, called the output nodes. All other nodes
are called gates and are labeled with one of V, A or = (in other words, the logical
operations OR, AND, and NOT). The vV and A nodes have fanin (i.e., number of
incoming edges) of 2 and the — nodes have fanin 1. The size of C, denoted by |C|,
is the number of nodes in it.

The circuit is called a Boolean formula if each node has at most one outgoing edge.

The boolean circuit in the above definition implements a function from {0,1}" to {0,1}"™. This
may be clear intuitively to most readers (especially those who have seen circuits in any setting)
but here is the proof. Assume that the n input nodes and m output nodes are numbered in some
canonical way. Thus each n-bit input can be used to assigned a value in {0, 1} to each input node.
Next, since the graph is acyclic, we can associate an integral depth to each node (using breadth-first
search, or the so-called topological sorting of the graph) such that each node has incoming edges
only from nodes of higher depth. Now each node can be assigned a value from {0,1} in a unique
way as follows. Process the nodes in decreasing order of depth. For each node, examine its incoming
edges and the values assigned to the nodes at the other end, and then apply the boolean operation
(V, A, or =) that this node is labeled with on those values. This gives a value to each node; the
values assigned to the m output nodes by this process constitute an m-bit output of the circuit.

For every string u € {0,1}", we denote by C(u) the output of the circuit C' on input w.

We recall that the Boolean operations OR, AND, and NOT form a universal basis, by which
we mean that every function from {0,1}" to {0,1}"™ can be implemented by a boolean circuit (in
fact, a boolean formula). See Claim 2.14. Furthermore, the “silicon chip” that we all know about
is nothing but? an implementation of a boolean circuit using a technology called VLSI. Thus if we
have a small circuit for a computational task, we can implement it very efficiently as a silicon chip.
Of course, the circuit can only solve problems on inputs of a certain size. Nevertheless, this may
not be a big restriction in our finite world. For instance, what if a small circuit ezists that solves

2 Actually, the circuits in silicon chips are not acyclic; in fact the cycles in the circuit are crucial for implementing
”"memory.” However any computation that runs on a silicon chip of size C' and finishes in time 7" can be performed
by a boolean circuit of size O(C - T).

6.1. BOOLEAN CIRCUITS p6.3 (103)

3SAT instances of up to say 100,000 variables? If so, one could imagine a government-financed
project akin to the Manhattan project that would try to discover such a small circuit, and then
implement it as a silicon chip. This could be used in all kinds of commercial products (recall our
earlier depiction of a world in which P = NP) and in particular would jeopardize every encryption
scheme that does not use a huge key. This scenario is hinted at in the quote from Karp and Lipton
at the start of the chapter.

As usual, we resort to asymptotic analysis to study the complexity of deciding a language by
circuits.

DEFINITION 6.2 (CIRCUIT FAMILIES AND LANGUAGE RECOGNITION)
Let T : N — N be a function. A T'(n)-sized circuit family is a sequence {C}, } nen of Boolean circuits,
where C), has n inputs and a single output, such that |C,,| < T'(n) for every n.

We say that a language L is in SIZE(T'(n)) if there exists a T'(n)-size circuit family {C, }nen
such that for every z € {0,1}", x € L & C(z) = 1.

As noted in Claim 2.14, every language is decidable by a circuit family of size O(n2™), since
the circuit for input length n could contain 2™ “hardwired” bits indicating which inputs are in the
language. Given an input, the circuit looks up the answer from this table. (The reader may wish
to work out an implementation of this circuit.) The following definition formalizes what we can
think of as “small” circuits.

DEFINITION 6.3

P /poly is the class of languages that are decidable by polynomial-sized circuit families, in other
words, U.SIZE(n¢).

Of course, one can make the same kind of objections to the practicality of P /poly as for P:
viz., in what sense is a circuit family of size n'%° practical, even though it has polynomial size. This
was answered to some extent in Section 1.5.1. Another answer is that as complexity theorists we
hope (eventually) to show that languages such as SAT are not in P /poly. Thus the result will only
be stronger if we allow even such large circuits in the definition of P /poly.

The class P /poly contains P. This is a corollary of Theorem 6.7 that we show below. Can we
give a reasonable upperbound on the computational power of P /poly? Unfortunately not, since it
contains even undecidable languages.

EXAMPLE 6.4

Recall that we say that a language L is unary if it is a subset of {1™ : n € N}. Every unary language
has linear size circuits since the circuit for an input size n only needs to have a single “hardwired”
bit indicating whether or not 1" is in the language. Hence the following unary language has linear
size circuits, even though it is undecidable:

{1" : M), outputs 1 on input 1"} . (1)

where M,, is the machine represented by (the binary expansion of) the number n.

p6.4 (104) 6.1. BOOLEAN CIRCUITS

This example suggests that it may be fruitful to consider the restriction to circuits that can
actually be built, say using a fairly efficient Turing machine. It will be most useful to formalize
this using logspace computations.

Recall that a function f : {0,1}* — {0,1}" is implicitly logspace computable if the mapping
x,1 — f(x); can be computed in logarithmic space (see Definition 4.14).

DEFINITION 6.5 (LOGSPACE-UNIFORM CIRCUIT FAMILIES)
A circuit family {C),} is logspace uniform if there is an implicitly logspace computable function
mapping 1" to the description of the circuit C,,.

Actually, to make this concrete we need to fix some representation of the circuits as strings. We
will assume that the circuit of size N is represented by its N x N adjacency matrix and in addition
an array of size N that gives the labels (gate type and input/output) of each node. This means
that {C),} is logspace uniform if and only if the following functions are computable in O(logn)
space:

e SIZE(n) returns the size m (in binary representation) of the circuit C,,.

e TYPE(n,4), where i € [m], returns the label and type of the i'* node of C,,. That is it returns
one of {V,A\,~, NONE} and in addition (QUTPUT,j) or (INPUT,j) if i is the j** input
or output node of C,.

e EDGE(n, i, j) returns 1 if there is a directed edge in C,, between the i node and the j** node.

Note that both the inputs and the outputs of these functions can be encoded using a logarithmic
(in |Cp|) number of bits. The requirement that they run in O(logn) space means that we require
that log |Cy,| = O(logn) or in other words that C,, is of size at most polynomial in n.

REMARK 6.6
Exercise 7 asks you to prove that the class of languages decided by such circuits does not change if we
use the adjacency list (as opposed to matrix) representation. We will use the matrix representation
from now on.

Polynomial circuits that are logspace-uniform correspond to a familiar complexity class:

THEOREM 6.7
A language has logspace-uniform circuits of polynomial size iff it is in P.

REMARK 6.8
Note that this implies that P C P /poly.

PROOF SKETCH: The only if part is trivial. The if part follows the proof of the Cook-Levin
Theorem (Theorem 2.10). Recall that we can simulate every time O(7'(n)) TM M by an oblivious
TM M (whose head movement is independent of its input) running in time O(T'(n)?) (or even
O(T'(n)log T (n)) if we are more careful). In fact, we can ensure that the movement of the oblivious
TM M do not even depend on the contents of its work tape, and so, by simulating Mwhile ignoring

6.1. BOOLEAN CIRCUITS p6.5 (105)

its read /write instructions, we can compute in O(logT'(n)) space for every i the position its heads
will be at the i*" step.?

Given this insight, it is fairly straightforward to translate the proof of Theorem 2.10 to prove
that every language in P has a logspace-uniform circuit family. The idea is that if L € P then it is
decided by an oblivious TM M of the form above. We will use that to construct a logspace uniform
circuit family {C,}, i such that for every x € {0,1}", C,(z) = M ().

Recall that, as we saw in that proof, the transcript of M’s execution on input x is the sequence

21,..., 27 of snapshots (machine’s state and symbols read by all heads) of the execution at each
step in time. Assume that each such z; is encoded by a string (that needs only to be of constant
size). We can compute the string z; based the previous snapshots z;_; and z;,, ..., z;, where Zi

denote the last step that M’s 7" head was in the same position as it is in the it" step. Because these
are only a constant number of strings of constant length, we can compute z; from these previous
snapshot using a constant-sized circuit. Also note that, under our assumption above, given the
indices 7 and i’ < i we can easily check whether z; depends on z;.

The composition of all these constant-sized circuits gives rise to a circuit that computes from
the input z, the snapshot zp of the last step of M’s execution on z. There is a simple constant-sized
circuit that, given zp outputs 1 if and only if zp is an accepting snapshot (in which M outputs 1
and halts). Thus, we get a circuit C' such that C(z) = M(x) for every z € {0,1}".

Because our circuit C' is composed of many small (constant-sized) circuits, and determining
which small circuit is applied to which nodes can be done in logarithmic space, it is not hard to see
that we can find out every individual bit of C’s representation in logarithmic space. (In fact, one
can show that the functions SIZE, TYPE and EDGE above can be computed using only logarithmic
space and polylogarithmic time.) W

6.1.1 Turing machines that take advice
There is a way to define P /poly using Turing machines that ”take advice.”

DEFINITION 6.9
Let T,a : N — N be functions. The class of languages decidable by time-T'(n) TM’s with a(n)
advice, denoted DTIME(T (1)) /4(n), contains every L such that there exists a sequence {an}, ey

of strings with a,, € {0,1}*™ and a TM M satisfying
M(z,an)=1<xz€L

for every z € {0,1}", where on input (x,a;) the machine M runs for at most O(T'(n)) steps.

EXAMPLE 6.10

Every unary language can be be decided by a polynomial time Turing machine with 1 bit of advice.
The advice string for inputs of length n is the single bit indicating whether or not 1" is in the
language. In particular this is true of the language of Example 6.4.

3In fact, typically the movement pattern is simple enough (for example a sequence of T'(n) left to right and back
sweeps of the tape) that for every ¢ we can compute this information using only O(logT'(n)) space and polylogT'(n)
time.

p6.6 (106) 6.2. KARP-LIPTON THEOREM

This is an example of a more general phenomenon described in the next theorem.

THEOREM 6.11
P /poly = U. DTIME(n¢) /n?

Proor: If L € P/poly, we can provide the polynomial-sized description of its circuit family as
advice to a Turing machine. When faced with an input of size n, the machine just simulates the
circuit for this circuit provided to it.

Conversely, if L is decidable by a polynomial-time Turing machine M with access to an advice
family {a, },,c of size a(n) for some polynomial a, then we can use the construction of Theorem 6.7
to construct for every n, a polynomial-sized circuit D,, such that on every z € {0,1}", a € {0, 1}a("),
Dy (z,a) = M(xz,a). We let the circuit C,, be the polynomial circuit that maps x to D, (z, ay).
That is, C, is equal to the circuit D,, with the string «,, “hardwired” as its second input.

REMARK 6.12

By “hardwiring” an input into a circuit we mean taking a circuit C with two inputs z € {0,1}" ,y €
{0,1}™ and transforming it into the circuit Cy that for every = returns C(z,y). It is easy to do so
while ensuring that the size of Cy is not greater than the size of C'. This simple idea is often used
in complexity theory.

6.2 Karp-Lipton Theorem

Karp and Lipton formalized the question of whether or not SAT has small circuits as: Is SAT in
P /poly? They showed that the answer is “NO” if the polynomial hierarchy does not collapse.

THEOREM 6.13 (KARP-LIPTON, WITH IMPROVEMENTS BY SIPSER)
If NP C P /poly then PH = XF.

PROOF: To show that PH = X% it is enough to show that II, C X% and in particular it suffices
to show that X% contains the IT5-complete language II;SAT consisting of all true formulae of the
form

Vu € {0,1}" Jv € {0,1}" p(u,v) =1. (2)

where ¢ is an unquantified Boolean formula.

If NP C P/poly then there is a polynomial p and a p(n)-sized circuit family {C}, },en such that
for every Boolean formula ¢ and u € {0,1}", C,(p,u) = 1 if and only if there exists v € {0,1}"
such that ¢(u,v) = 1. Yet, using the search to decision reduction of Theorem 2.19, we actually
know that there is a g(n)-sized circuit family {C/] }nen such that for every such formula ¢ and
u € {0,1}", if there is a string v € {0, 1}" such that ¢(u,v) = 1 then C} (¢, u) outputs such a string
v. Since C/, can be described using 10g(n)? bits, this implies that if (2) is true then the following
quantified formula is also true:

Jw € {0, 1}10‘5’(")2 V€ {0,1}" w describes a circuit C” s.t. ¢(u, C'(p,u)) = 1. (3)

6.3. CIRCUIT LOWERBOUNDS p6.7 (107)

Yet if (2) is false then certainly (regardless of whether P = NP) the formula (3) is false as well,
and hence (3) is actually equivalent to (2)! However, since evaluating a circuit on an input can be
done in polynomial time, evaluating the truth of (3) can be done in 5. B

Similarly the following theorem can be proven, though we leave the proof as Exercise 3.

THEOREM 6.14 (KARP-LIPTON, ATTRIBUTED TO A. MEYER)
If EXP C P /poly then EXP = 5.

Combining the time hierarchy theorem (Theorem 3.1) with the previous theorem implies that
if P = NP then EXP ¢ P/poly. Thus upperbounds (in this case, NP C P) can potentially be
used to prove circuit lowerbounds.

6.3 Circuit lowerbounds

Since P C P/poly, if NP ¢ P/poly then P # NP. The Karp-Lipton theorem gives hope that
NP ¢ P/poly. Can we resolve P versus NP by proving NP ¢ P/poly? There is reason to
invest hope in this approach as opposed to proving direct lowerbounds on Turing machines. By
representing computation using circuits we seem to actually peer into the guts of it rather than
treating it as a blackbox. Thus we may be able to get around the limitations of relativizing methods
shown in Chapter 3.

Sadly, such hopes have not yet come to pass. After two decades, the best circuit size lowerbound
for an NP language is only 5n. (However, see Exercise 1 for a better lowerbound for a language in
PH.) On the positive side, we have had notable success in proving lowerbounds for more restricted
circuit models, as we will see in Chapter 13.

By the way, it is easy to show that for large enough n, almost every boolean function on n
variables requires large circuits.

THEOREM 6.15
For n > 100, almost all boolean functions on n variables require circuits of size at least 2" /(10n).

PROOF: We use a simple counting argument. There are at most s circuits of size s (just count
the number of labeled directed graphs, where each node has indegree at most 2). Hence this is an
upperbound on the number of functions on n variables with circuits of size s. For s = 2"/(10n),
this number is at most 22"/19, which is miniscule compared 22", the number of boolean functions
on n variables. Hence most Boolean functions do not have such small circuits. B

REMARK 6.16

Another way to present this result is as showing that with high probability, a random function from
{0,1}" to {0,1} does not have a circuit of size 2"/10n. This kind of proof method, showing the
existence of an object with certain properties by arguing that a random object has these properties
with high probability, is called the probabilistic method, and will be repeatedly used in this book.

The problem with the above counting argument is of course, that it does not yield an explicit
Boolean function (say an NP language) that requires large circuits.

p6.8 (108) 6.4. NON-UNIFORM HIERARCHY THEOREM

6.4 Non-uniform hierarchy theorem

As in the case of deterministic time, non-deterministic time and space bounded machines, Boolean
circuits also have a hierarchy theorem. That is, larger circuits can compute strictly more functions
than smaller ones:

THEOREM 6.17
For every functions T,T" : N — N with 2"/(100n) > T'(n) > T(n) > n and T(n)logT(n) =
o(T"(n)),

SIZE(T(n)) C SIZE(T'(n))

PRrOOF: The diagonalization methods of Chapter 3 do not seem to work for such a function, but
nevertheless, we can prove it using the counting argument from above. To show the idea, we prove
that SIZE(n) C SIZE(n?).

For every /, there is a function f : {0,1}* — {0,1} that is not computable by 2¢/(10¢)-sized
circuits. On the other hand, every function from {0,1}" to {0,1} is computable by a 2¢10¢-sized
circuit.

Therefore, if we set £ = 1.1logn and let g : {0,1}" — {0,1} be the function that applies f on
the first £ bits of its input, then

gec SIZE(210¢) = SIZE(11n*!logn) C SIZE(n?)
gé SIZE(2'/(100)) = SIZE(n'!/(11logn)) D SIZE(n)

6.5 Finer gradations among circuit classes

There are two reasons why subclasses of P/poly are interesting. First, proving lowerbounds for
these subclasses may give insight into how to separate NP from P /poly. Second, these subclasses
correspond to interesting computational models in their own right.

Perhaps the most interesting connection is to massively parallel computers. In such a computer
one uses simple off-the-shelf microprocessors and links them using an interconnection network that
allows them to send messages to each other. Usual interconnection networks such as the hypercube
allows linking n processors such that interprocessor communication is possible —assuming some
upperbounds on the total load on the network—in O(logn) steps. The processors compute in
lock-step (for instance, to the ticks of a global clock) and are assumed to do a small amount of
computation in each step, say an operation on O(logn) bits. Thus each processor computers has
enough memory to remember its own address in the interconnection network and to write down
the address of any other processor, and thus send messages to it. We are purposely omitting many
details of the model (Leighton [Lei92] is the standard reference for this topic) since the validity
of Theorem 6.24 below does not depend upon them. (Of course, we are only aiming for a loose
characterization of parallel computation, not a very precise one.)

6.5. FINER GRADATIONS AMONG CIRCUIT CLASSES p6.9 (109)
6.5.1 Parallel computation and NC

DEFINITION 6.18
A computational task is said to have efficient parallel algorithms if inputs of size n can be solved

using a parallel computer with n®®) processors and in time logo(l) n.

EXAMPLE 6.19
Given two n bit numbers z,y we wish to compute z + y fast in parallel. The gradeschool algorithm
proceeds from the least significant bit and maintains a carry bit. The most significant bit is
computed only after n steps. This algorithm does not take advantage of parallelism. A better
algorithm called carry lookahead assigns each bit position to a separate processor and then uses
interprocessor communication to propagate carry bits. It takes O(n) processors and O(logn) time.
There are also efficient parallel algorithms for integer multiplication and division (the latter is
quite nonintuitive and unlike the gradeschool algorithm!).

ExXAMPLE 6.20
Many matrix computations can be done efficiently in parallel: these include computing the product,
rank, determinant, inverse, etc. (See exercises.)

Some graph theoretic algorithms such as shortest paths and minimum spanning tree also have
fast parallel implementations.

But many well-known polynomial-time problems such as minimum matching, maximum flows,
and linear programming are not known to have any good parallel implementations and are conjec-
tured not to have any; see our discussion of P-completeness below.

Now we relate parallel computation to circuits. The depth of a circuit is the length of the longest
directed path from an input node to the output node.

DEFINITION 6.21 (NICK’S CLASS OR NC)
A language is in NC" if there are constants ¢,d > 0 such that it can be decided by a logspace-

uniform family of circuits {C,} where C), has size O(n¢) and depth O(log?n). The class NC is
UileCi.

A related class is the following.

DEFINITION 6.22 (AC) '
The class AC* is defined similarly to NC* except gates are allowed to have unbounded fanin. The
class AC is U;j>9AC".

p6.10 (110) 6.5. FINER GRADATIONS AMONG CIRCUIT CLASSES

Since unbounded (but poly(n)) fanin can be simulated using a tree of ORs/ANDs of depth
O(logn), we have NC' C AC' C NC™!| and the inclusion is known to be strict for i = 0 as we
will see in Chapter 13. (Notice, NC? is extremely limited since the circuit’s output depends upon
a constant number of input bits, but AC? does not suffer from this limitation.)

EXAMPLE 6.23

The language PARITY ={z : z has an odd number of 1s} is in NC!. The circuit computing it
has the form of a binary tree. The answer appears at the root; the left subtree computes the parity
of the first |z| /2 bits and the right subtree computes the parity of the remaining bits. The gate
at the top computes the parity of these two bits. Clearly, unwrapping the recursion implicit in our
description gives a circuit of dept O(logn).

The classes AC, NC are important because of the following.

THEOREM 6.24
A language has efficient parallel algorithms iff it is in NC.

PROOF: Suppose a language L € NC and is decidable by a circuit family {C,,} where C), has size
N = O(n°) and depth D = O(log?n). Take a general purpose parallel computer with N nodes
and configure it to decide L as follows. Compute a description of C), and allocate the role of each
circuit node to a distinct processor. (This is done once, and then the computer is ready to compute
on any input of length n.) Each processor, after computing the output at its assigned node, sends
the resulting bit to every other circuit node that needs it. Assuming the interconnection network
delivers all messages in O(log N) time, the total running time is O(logd™! N).

The reverse direction is similar, with the circuit having N - D nodes arranged in D layers, and
the 7th node in the tth layer performs the computation of processor ¢ at time ¢. The role of the
interconnection network is played by the circuit wires. B

6.5.2 P-completeness

A major open question in this area is whether P = NC. We believe that the answer is NO
(though we are currently even unable to separate PH from NCl). This motivates the theory of
P-completeness, a study of which problems are likely to be in NC and which are not.

DEFINITION 6.25
A language is P-complete if it is in P and every language in P is logspace-reducible to it (as per

Definition 4.14).
The following easy theorem is left for the reader as Exercise 12.

THEOREM 6.26
If language L is P-complete then

1. Le NC iff P =NC.

6.6. CIRCUITS OF EXPONENTIAL SIZE p6.11 (111)

2. L €L if P=L. (Where L is the set languages decidable in logarithmic space, see Defini-
tion 4.5.)

The following is a fairly natural P-complete language:

THEOREM 6.27
Let CIRCUIT-EVAL denote the language consisting of all pairs (C,z) such that C is an n-inputs
single-output circuit and x € {0,1}" satisfies C'(x) = 1. Then CIRCUIT-EVAL is P-complete.

PROOF: The language is clearly in P. A logspace-reduction from any other language in P to this
language is implicit in the proof of Theorem 6.7. B

6.6 Circuits of exponential size

As noted, every language has circuits of size O(n2"). However, actually finding these circuits may
be difficult— sometimes even undecidable. If we place a uniformity condition on the circuits, that
is, require them to be efficiently computable then the circuit complexity of some languages could
exceed n2™. In fact it is possible to give alternative definitions of some familiar complexity classes,
analogous to the definition of P in Theorem 6.7.

DEFINITION 6.28 (DC-UNIFORM)

Let {Cp}n>1 be a circuit family. We say that it is a Direct Connect uniform (DC uniform) family if,
given (n,4), we can compute in polynomial time the i but of (the representation of) the circuit C,,.
More concretely, we use the adjacency matrix representation and hence a family {C),},cn is DC
uniform iff the functions SIZE, TYPE and EDGE defined in Remark 7?7 are computable in polynomial
time.

Note that the circuits may have exponential size, but they have a succinct representation in
terms of a TM which can systematically generate any required node of the circuit in polynomial
time.

Now we give a (yet another) characterization of the class PH, this time as languages computable
by uniform circuit families of bounded depth. We leave it as Exercise 13.

THEOREM 6.29
L € PH iff L can be computed by a DC uniform circuit family {C,} that

e uses AND, OR, NOT gates.
o has size 2°°"" and constant depth (i.e., depth O(1)).
e gates can have unbounded (exponential) fanin.

e the NOT gates appear only at the input level.

If we drop the restriction that the circuits have constant depth, then we obtain exactly EXP
(see Exercise 14).

6.7. CIRCUIT SATISFIABILITY AND AN ALTERNATIVE PROOF OF THE COOK-LEVIN
p6.12 (112) THEOREM

6.7 Circuit Satisfiability and an alternative proof of the Cook-
Levin Theorem

Boolean circuits can be used to define the following NP-complete language:

DEFINITION 6.30

The circuit satisfiability language CKT-SAT consists of all (strings representing) circuits with a
single output that have a satisfying assignment. That is, a string representing an n-input circuit
C' is in CKT-SAT iff there exists u € {0,1}" such that C(u) = 1.

CKT-SAT is clearly in NP because the satisfying assignment can serve as the certificate. It is
also clearly NP-hard as every CNF formula is in particular a Boolean circuit. However, CKT-SAT
can also be used to give an alternative proof (or, more accurately, a different presentation of the
same proof) for the Cook-Levin Theorem by combining the following two lemmas:

LEMMA 6.31
CKT-SAT is NP-hard.

PRrOOF: Let L be an NP-language and let p be a polynomial and M a polynomial-time TM such
that z € L iff M(z,u) = 1 for some u € {0, 1}p(|$|). We reduce L to CKT-SAT by mapping (in
polynomial-time) x to a circuit Cy, with p(|z|) inputs and a single output such that Cy(u) = M (z,u)
for every u € {0, 1}p(|w‘). Clearly, € L & C, € CKT-SAT and so this suffices to show that
L <p CKT-SAT.

Yet, it is not hard to come up with such a circuit. Indeed, the proof of Theorem 6.7 yields a
way to map M,z into the circuit C, in logarithmic space (which in particular implies polynomial
time). W

LEMMA 6.32
CKT-SAT <, 3SAT

PrOOF: As mentioned above this follows from the Cook-Levin theorem but we give here a direct
reduction. If C is a circuit, we map it into a 3CNF formula ¢ as follows:

For every node v; of C' we will have a corresponding variable z; in ¢. If the node v; is an AND of
the nodes v; and vy, then we add to ¢ clauses that are equivalent to the condition “z; = (2; A 2x)”.
That is, we add the clauses

(ZiVZiVzg) N(Zi V2 VZ) N (Zi V2 Vozg) Nz VZiV Zg) .

Similarly, if v; is an OR of v; and vy, then we add clauses equivalent to “z; = (z; V 2x)”, and if v;
is the NOT of v; then we add the clauses (2 V z;) A (Z; V Zj).

Finally, if v; is the output node of C' then we add the clause z; to . It is not hard to see that
the formula ¢ will be satisfiable if and only if the circuit C' is. B

6.7. CIRCUIT SATISFIABILITY AND AN ALTERNATIVE PROOF OF THE COOK-LEVIN
THEOREM p6.13 (113)

WHAT HAVE WE LEARNED?

e Boolean circuits can be used as an alternative computational model to TMs.
The class P /poly of languages decidable by polynomial-sized circuits is a strict
superset of P but does not contain NP unless the hierarchy collapses.

e Almost every function from {0, 1}" to {0, 1} requires exponential-sized circuits.
Finding even one function in NP with this property would show that P # NP.

e The class NC of languages decidable by (uniformly constructible) circuits with
polylogarithmic depth and polynomial size corresponds to computational tasks
that can be efficiently parallelized.

Chapter notes and history

Karp-Lipton theorem is from [KL82]. Karp and Lipton also gave a more general definition of advice
that can be used to define the class C/a(n) for every complexity class C and function a. However,
we do not use this definition here since it does not seem to capture the intuitive notion of advice
for classes such as NP N coNP, BPP and others.

The class of NC algorithms as well as many related issues in parallel computation are discussed
in Leighton [?].

Exercises

§1 [Kannan [Kan82]] Show for every k > 0 that PH contains languages whose circuit complexity
is Q(nk).

“Ayrxordurod 3moIro YISy
)M SUOIIOUN] JO 20uUa9s12a 99 Jo Jooxd oy purwr ur desy] :JUIE

§2 Solve the previous question with PH replaced by X5.
§3 ([KL82], attributed to A. Meyer) Show that if EXP C P /poly then EXP = X5.
§4 Show that if P = NP then there is a language in EXP that requires circuits of size 2" /n.

§5 A language L C {0,1}" is sparse if there is a polynomial p such that |L N {0,1}" | < p(n) for
every n € N. Show that every sparse language is in P /poly.

§6 (X’s Theorem 1977) Show that if a sparse language is NP-complete then P = NP. (This is
a strengthening of Exercise 13 of Chapter 2.)

6.7. CIRCUIT SATISFIABILITY AND AN ALTERNATIVE PROOF OF THE COOK-LEVIN
p6.14 (114) THEOREM
'S JO 921y
UOISINO2I 9} Ul seniqissod aunid 0) 7 01 |y WOIJ UOIPONPAI Y[}
osn ‘[,g] ur Tequnu e jo uoryejussardal Areulq o1y se pajerdiojur
aIe T)0q WAYM N < A JRT) [YONS o juomudisse Surkysries e sey o
pr 1 s;mdino {10} > a Suiys e pue & LU} o[qeLIRA-U € jnd
-Ul U0 YeT[) § UI}LIOS[R oUIl}-TeriuotiodXo 9ATSINDDI B MOUS :JUIH
§7 Show a logspace implicitly computable function f that maps any n-vertex graph in adjacency
matrix representation into the same graph in adjacency list representation. You can think
of the adjacency list representation of an n-vertex graph as a sequence of n strings of size
O(nlogn) each, where the i string contains the list of neighbors of the i vertex in the
graph (and is padded with zeros if necessary).
§8 (Open) Suppose we make a stronger assumption than NP C P /poly: every language in NP
has linear size circuits. Can we show something stronger than PH = X87?
§9 (a) Describe an NC circuit for the problem of computing the product of two given n x n
matrices A, B.
(b) Describe an NC circuit for computing, given an n X n matrix, the matrix A™.
'z(tﬂzv) =V :3urrenbs pojeedor os() JUIH
(c) Conclude that the PATH problem (and hence every NL language) is in NC.
LoV Jo A1yue (L ‘2) o1y Jo Surueaw o) ST JRYA JUTE]
§10 A formula is a circuit in which every node (except the input nodes) has outdegree 1. Show
that a language is computable by polynomial-size formulae iff it is in (nonuniform) NC!.
‘oee ¢/uyg 1sout
1€ 9ZIS JO SOOIJQNS SOALI] [BAOWIAI ISOUYM OpOU B SABM[E SI 9IOY)
W 9ZIS JO 991 ATRUI] © Ul pUR ‘091) AIRUI(POIIDIIP © Se—Sopou
mdut oY} OpN[OXe oM 9OUO— DPOMAIA 9 ARUI B[NULIOJ ® JUIH
§11 Show that NC! = L. Conclude that PSPACE # NC'.
§12 Prove Theorem 6.26. That is, prove that if L is P-complete then L € NC (resp. L) iff
P = NC (resp. L).
§13 Prove Theorem 6.29 (that PH is the set of languages with constant-depth DC uniform cir-
cuits).
§14 Show that EXP is exactly the set of languages with DC uniform circuits of size 2"° where c
is some constant (¢ may depend upon the language).
§15 Show that if linear programming has a fast parallel algorithm then P = NC.

juresa[ooq
10U pUR poN[RA-[ROI oI WRISoId Iedul] ® Ul SO[(RLIRA ST} [NJOIRD
og ‘T <fi+x gt 1 ="M Ax yey) 10e] o) osn pur wersord resur|
' se worqoxd TYAJ-LINDYID 9Y? sserdxo ‘woronpos ok ut :Jury

Chapter 7

Randomized Computation

“We do not assume anything about the distribution of the instances of the problem
to be solved. Instead we incorporate randomization into the algorithm itself... It may
seem at first surprising that employing randomization leads to efficient algorithm.
This claim s substantiated by two examples. The first has to do with finding the
nearest pair in a set of n points in R¥. The second example is an extremely efficient
algorithm for determining whether a number is prime.”

Michael Rabin, 1976

Thus far our standard model of computation has been the deterministic Turing Machine. But
everybody who is even a little familiar with computation knows that that real-life computers need
not be deterministic since they have built-in ”random number generators.” In fact these generators
are very useful for computer simulation of "random” processes such as nuclear fission or molecular
motion in gases or the stock market. This chapter formally studies probablistic computation, and
complexity classes associated with it.

We should mention right away that it is an open question whether or not the universe has any
randomness in it (though quantum mechanics seems to guarantee that it does). Indeed, the output
of current "random number generators” is not guaranteed to be truly random, and we will revisit
this limitation in Section 7.4.3. For now, assume that true random number generators exist. Then
arguably, a realistic model for a real-life computer is a Turing machine with a random number
generator, which we call a Probabilistic Turing Machine (PTM). It is natural to wonder whether
difficult problems like 3SAT are efficiently solvable using a PTM.

We will formally define the class BPP of languages decidable by polynomial-time PTMs and
discuss its relation to previously studied classes such as P /poly and PH. One consequence is that
if PH does not collapse, then 3SAT does not have efficient probabilistic algorithms.

We also show that probabilistic algorithms can be very practical by presenting ways to greatly
reduce their error to absolutely minuscule quantities. Thus the class BPP (and its sister classes
RP,coRP and ZPP) introduced in this chapter are arguably as important as P in capturing
efficient computation. We will also introduce some related notions such as probabilistic logspace
algorithms and probabilistic reductions.

p7.1 (115)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p7.2 (116) 7.1. PROBABILISTIC TURING MACHINES

Though at first randomization seems merely a tool to allow simulations of randomized physical
processes, the surprising fact is that in the past three decades randomization has led to more efficient
—and often simpler—algorithms for problems in a host of other fields—such as combinatorial
optimization, algebraic computation, machine learning, and network routing.

In complexity theory too, the role of randomness extends far beyond a study of randomized
algorithms and classes such as BPP. Entire areas such as cryptography and interactive and prob-
abilistically checkable proofs rely on randomness in an essential way, sometimes to prove results
whose statement did not call for randomness at all. The groundwork for studying those areas will
be laid in this chapter.

In a later chapter, we will learn something intriguing: to some extent, the power of randomness
may be a mirage. If a certain plausible complexity-theoretic conjecture is true (see Chapters 16
and 17), then every probabilistic algorithm can be simulated by a deterministic algorithm (one that
does not use any randomness whatsoever) with only polynomial overhead.

Throughout this chapter and the rest of the book, we will use some notions from elementary
probability on finite sample spaces; see Appendix A for a quick review.

7.1 Probabilistic Turing machines

We now define probabilistic Turing machines (PTMs). Syntactically, a PTM is no different from a
nondeterministic TM: it is a TM with two transition functions dg, d1. The difference lies in how we
interpret the graph of all possible computations: instead of asking whether there ezists a sequence
of choices that makes the TM accept, we ask how large is the fraction of choices for which this
happens. More precisely, if M is a PTM, then we envision that in every step in the computation,
M chooses randomly which one of its transition functions to apply (with probability half applying
dp and with probability half applying ;). We say that M decides a language if it outputs the right
answer with probability at least 2/3.

Notice, the ability to pick (with equal probability) one of g, d1 to apply at each step is equivalent
to the machine having a ”fair coin”, which, each time it is tossed, comes up "Heads” or ”Tails”
with equal probability regardless of the past history of Heads/Tails. As mentioned, whether or not
such a coin exists is a deep philosophical (or scientific) question.

DEFINITION 7.1 (THE cLAsSES BPTIME anD BPP)

For T:N — N and L C {0,1}", we say that a PTM M decides L in time T'(n), if
for every x € {0,1}", M halts in T(|z|) steps regardless of its random choices, and
Pr[M (z) = L(z)] > 2/3, where we denote L(z) =1if x € L and L(z) =0if = & L.
We let BPTIME(T (n)) denote the class of languages decided by PTMs in O(T'(n))
time and let BPP = U.BPTIME(n¢).

REMARK 7.2
We will see in Section 7.4 that this definition is quite robust. For instance, the ”coin” need not
be fair. The constant 2/3 is arbitrary in the sense that it can be replaced with any other constant

7.2. SOME EXAMPLES OF PTMS p7.3 (117)

greater than half without changing the classes BPTIME(T(n)) and BPP. Instead of requiring
the machine to always halt in polynomial time, we could allow it to halt in expected polynomial
time.

REMARK 7.3

While Definition 7.1 allows the PTM M, given input z, to output a value different from L(x)
with positive probability, this probability is only over the random choices that M makes in the
computation. In particular for every input x, M (z) will output the right value L(z) with probability
at least 2/3. Thus BPP, like P, is still a class capturing worst-case computation.

Since a deterministic TM is a special case of a PTM (where both transition functions are equal),
the class BPP clearly contains P. As alluded above, under plausible complexity assumptions it
holds that BPP = P. Nonetheless, as far as we know it may even be that BPP = EXP. (Note
that BPP C EXP, since given a polynomial-time PTM M and input = € {0,1}" in time 9POly(n)
it is possible to enumerate all possible random choices and compute precisely the probability that

M(z)=1.)

An alternative definition. As we did with NP, we can define BPP using deterministic TMs
where the ”probabilistic choices” to apply at each step can be provided to the TM as an additional
input:

DEFINITION 7.4 (BPP, ALTERNATIVE DEFINITION)
BPP contains a language L if there exists a polynomial-time TM M and a polynomial p: N — N

such that for every x € {0,1}", Pr 1}p<|z|)[M(x,r) = L(x)] > 2.

7.2 Some examples of PTMs

The following examples demonstrate how randomness can be a useful tool in computation. We will
see many more examples in the rest of this book.

7.2.1 Probabilistic Primality Testing

In primality testing we are given an integer N and wish to determine whether or not it is prime.
Generations of mathematicians have learnt about prime numbers and —before the advent of
computers— needed to do primality testing to test various conjectures'. Ideally, we want effi-
cient algorithms, which run in time polynomial in the size of N’s representation, in other words,
poly(logn). We knew of no such efficient algorithms? until the 1970s, when an effficient proba-
bilistic algorithm was discovered. This was one of the first to demonstrate the power of proba-
bilistic algorithms. In a recent breakthrough, Agrawal, Kayal and Saxena [?] gave a deterministic

polynomial-time algorithm for primality testing.

!Though a very fast human computer himself, Gauss used the help of a human supercomputer —an autistic person
who excelled at fast calculations—to do primality testing.

2In fact, in his letter to von Neumann quoted in Chapter 2, G6del explicitly mentioned this problem as an example
for an interesting problem in NP but not known to be efficiently solvable.

p7.4 (118) 7.2. SOME EXAMPLES OF PTMS

Formally, primality testing consists of checking membership in the language PRIMES = { N, : N is a prime nun
Notice, the corresponding search problem of finding the factorization of a given composite number
N seems very different and much more difficult. It is the famous FACTORING problem, whose
conjectured hardness underlies many current cryptosystems. Chapter 20 describes Shor’s algorithm
to factors integers in polynomial time in the model of quantum computers.
We sketch an algorithm showing that PRIMES is in BPP (and in fact in coRP). For every
number N, and A € [N — 1], define

0 ged(A,N)#1

A is a quadratic residue modulo N

QRN(A) = { +1 That is, A = B> (mod N) for some B with ged(B, N) =1

—1 otherwise

We use the following facts that can be proven using elementary number theory:

e For every odd prime N and A € [N — 1], QRy(A) = AN=D/2 (mod N).

e For every odd N, A define the Jacobi symbol (X) as Hle QRp,(A) where Pi, ..., Py are all
the (not necessarily distinct) prime factors of N (i.e., N = Hle P;). Then, the Jacobi symbol
is computable in time O(log A - log V).

e For every odd composite N, [{4 € [N — 1] : ged(N,A)=1 and () = A(N_l)/Q}‘ <il{Ae

[N — 1] : ged(N, A) = 1}

Together these facts imply a simple algorithm for testing primality of N (which we can assume
without loss of generality is odd): choose a random 1 < A < N, if gcd(N, A) > 1 or (%) # AN-1)/2
(mod N) then output “composite”, otherwise output “prime”. This algorithm will always output
“prime” is N is prime, but if IV is composite will output “composite” with probability at least 1/2.
(Of course this probability can be amplified by repeating the test a constant number of times.)

7.2.2 Polynomial identity testing

So far we described probabilistic algorithms solving problems that have known deterministic poly-
nomial time algorithms. We now describe a problem for which no such deterministic algorithm is
known:

We are given a polynomial with integer coefficients in an implicit form, and we want to decide
whether this polynomial is in fact identically zero. We will assume we get the polynomial in the
form of an arithmetic circuit. This is analogous to the notion of a Boolean circuit, but instead of the
operators A,V and —, we have the operators +, — and x. Formally, an n-variable arithmetic circuit
is a directed acyclic graph with the sources labeled by a variable name from the set z1,...,z,,
and each non-source node has in-degree two and is labeled by an operator from the set {+, —, x }.
There is a single sink in the graph which we call the output node. The arithmetic circuit defines
a polynomial from Z" to Z by placing the inputs on the sources and computing the value of
each node using the appropriate operator. We define ZEROP to be the set of arithmetic circuits
that compute the identically zero polynomial. Determining membership in ZEROP is also called

7.2. SOME EXAMPLES OF PTMS p7.5 (119)

polynomial identity testing, since we can reduce the problem of deciding whether two circuits C, C’
compute the same polynomial to ZEROP by constructing the circuit D such that D(x1,...,z,) =
C(z1y. oy 2pn) — C'(x1, ..y Th).

Since expanding all the terms of a given arithmetic circuit can result in a polynomial with
exponentially many monomials, it seems hard to decide membership in ZEROP. Surprisingly, there
is in fact a simple and efficient probabilistic algorithm for testing membership in ZEROP. At the
heart of this algorithm is the following fact, typically known as the Schwartz-Zippel Lemma, whose
proof appears in Appendix A (see Lemma A.25):

LEMMA 7.5
Let p(z1,x2,...,%y) be a polynomial of total degree at most d and S is any finite set of integers.
When a1, a2, ...,a,, are randomly chosen with replacement from S, then
d
Pr[p(a17a27 e 7am) % O] Z 1- @

Now it is not hard to see that given a size m circuit C' on n variables, it defines a polynomial of
degree at most 2™. This suggests the following simple probabilistic algorithm: choose n numbers
Z1,...,2y from 1 to 10-2™ (this requires O(n-m) random bits), evaluate the circuit C' on x1,...,z,
to obtain an output y and then accept if y = 0, and reject otherwise. Clearly if C' € ZEROP then
we always accept. By the lemma, if C' ¢ ZEROP then we will reject with probability at least 9/10.

However, there is a problem with this algorithm. Since the degree of the polynomial represented
by the circuit can be as high as 2™, the output y and other intermediate values arising in the
computation may be as large as (10-2™)?" — this is a value that requires exponentially many bits
just to describe!

We solve this problem using the technique of fingerprinting. The idea is to perform the evalu-
ation of C' on z1,...,7, modulo a number k that is chosen at random in [2?™]. Thus, instead of
computing y = C(z1,...,z,), we compute the value y (mod k). Clearly, if y = 0 then y (mod k) is
also equal to 0. On the other hand, we claim that if y # 0, then with probability at least § = I()Lm’
k does not divide y. (This will suffice because we can repeat this procedure O(1/6) times to ensure
that if y # 0 then we find this out with probability at lest 9/10.) Indeed, assume that y # 0 and
let S = {p1,...,pe} denote set of the distinct prime factors of y. It is sufficient to show that with
probability at §, the number k£ will be a prime number not in §. Yet, by the prime number theorem,
the probability that k is prime is at least % = 24. Also, since y can have at most logy < 5m2™
distinct factors, the probability that & is in S is less than 5;3?:” < ﬁ = ¢§. Hence by the union
bound, with probability at least §, k& will not divide y.

7.2.3 Testing for perfect matching in a bipartite graph.

If G = (V1, Vi, E) is the bipartite graph where |V;| = [Va| and E C V; x V5 then a perfect matching
is some E' C E such that every node appears exactly once among the edges of E’. Alternatively,
we may think of it as a permutation o on the set {1,2,...,n} (where n = |V;|) such that for
each i € {1,2,...,n}, the pair (i,0(i)) is an edge. Several deterministic algorithms are known for
detecting if a perfect matching exists. Here we describe a very simple randomized algorithm (due
to Lovész) using the Schwartz-Zippel lemma.

p7.6 (120) 7.3. ONE-SIDED AND ZERO-SIDED ERROR: RP, CORP, ZPP

Consider the n x n matrix X (where n = |V1| = |Va|) whose (i, j) entry X;; is the variable z;;
if (,7) € E and 0 otherwise. Recall that the determinant of matrix det(X) is

n

det(X) = 37 (~1)) [] X, o, M)

oESy =1

where S, is the set of all permutations of {1,2,...,n}. Note that every permutation is a potential
perfect matching, and the corresponding monomial in det(X) is nonzero iff this perfect matching
exists in G. Thus the graph has a perfect matching iff det(X) # 0.

Now observe two things. First, the polynomial in (1) has |E| variables and total degree at most
n. Second, even though this polynomial may be of exponential size, for every setting of values to
the X;; variables it can be efficiently evaluated, since computing the determinant of a matrix with
integer entries is a simple polynomial-time computation (actually, even in NC?).

This leads us to Lovéasz’s randomized algorithm: pick random values for X;;’s from [1,...,2n],
substitute them in X and compute the determinant. If the determinant is nonzero, output “accept”
else output “reject.” The advantage of the above algorithm over classical algorithms is that it can
be implemented by a randomized NC circuit, which means (by the ideas of Section 6.5.1) that it
has a fast implementation on parallel computers.

7.3 One-sided and zero-sided error: RP, coRP, ZPP

The class BPP captured what we call probabilistic algorithms with two sided error. That is, it
allows the machine M to output (with some small probability) both 0 when = € L and 1 when
x ¢ L. However, many probabilistic algorithms have the property of one sided error. For example
if x ¢ L they will never output 1, although they may output 0 when z € L. This is captured by
the definition of RP.

DEFINITION 7.6

RTIME(t(n)) contains every language L for which there is a is a probabilistic TM M running in
t(n) time such that

2
x € L = Pr[M accepts z] > 3
x ¢ L = Pr[M accepts] =0

We define RP = UesoRTIME(n®).

Note that RP C NP, since every accepting branch is a “certificate” that the input is in the
language. In contrast, we do not know if BPP C NP. The class coRP = {L | L € RP} captures
one-sided error algorithms with the error in the “other direction” (i.e., may output 1 when = ¢ L
but will never output 0 if z € L).

For a PTM M, and input =, we define the random variable T, to be the running time of M
on input x. That is, Pr[Tys, = T| = p if with probability p over the random choices of M on input
x, it will halt within 7" steps. We say that M has expected running time T'(n) if the expectation
E[Ta 4] is at most T'(|z|) for every x € {0,1}*. We now define PTMs that never err (also called
“zero error” machines):

7.4. THE ROBUSTNESS OF OUR DEFINITIONS p7.7 (121)

DEFINITION 7.7
The class ZTIME(T (n)) contains all the languages L for which there is an expected-time O(T'(n))
machine that never errs. That is,

x € L = Pr[M accepts z] =1
x ¢ L = Pr[M halts without accepting on z] =1

We define ZPP = U~ 0ZTIME(nc).

The next theorem ought to be slightly surprising, since the corresponding statement for nonde-
terminism is open; i.e., whether or not P = NP N coNP.

THEOREM 7.8
ZPP = RP NncoRP.

We leave the proof of this theorem to the reader (see Exercise 4). To summarize, we have the
following relations between the probabilistic complexity classes:

ZPP =RP N coRP
RP CBPP
coRP CBPP

7.4 The robustness of our definitions

When we defined P and NP, we argued that our definitions are robust and were likely to be the
same for an alien studying the same concepts in a faraway galaxy. Now we address similar issues
for probabilistic computation.

7.4.1 Role of precise constants, error reduction.

The choice of the constant 2/3 seemed pretty arbitrary. We now show that we can replace 2/3 with
any constant larger than 1/2 and in fact even with 1/2 +n~¢ for a constant ¢ > 0.

LEmMMA 7.9
For ¢ > 0, let BPP,,—. denote the class of languages L for which there is a polynomial-time PTM
M satisfying Pr[M(z) = L(x)] > /24 |z|~¢ for every z € {0,1}". Then BPP,,-. = BPP.

Since clearly BPP C BPP,,—., to prove this lemma we need to show that we can transform a
machine with success probability 1/2+n"¢ into a machine with success probability 2/3. We do this
by proving a much stronger result: we can transform such a machine into a machine with success
probability exponentially close to one!

p7.8 (122) 7.4. THE ROBUSTNESS OF OUR DEFINITIONS

THEOREM 7.10 (ERROR REDUCTION)

Let L C {0,1}" be a language and suppose that there exists a polynomial-time PTM
M such that for every z € {0,1}", Pr[M(z) = L(z) > 3 + |z|~°.

Then for every constant d > 0 there exists a polynomial-time PTM M’ such that
for every x € {0,1}", Pr[M’(z) = L(z)] > 1 — 2~ =",

PROOF: The machine M’ is quite simple: for every input x € {0,1}", run M(x) for k times
obtaining k outputs y1,...,yr € {0,1}, where k = 8|z|>4T¢. If the majority of these values are 1
then accept, otherwise reject.

To analyze this machine, define for every i € [k] the random variable X; to equal 1 if y; = L(x)
and to equal 0 otherwise. Note that Xi,..., X} are independent Boolean random variables with
E[X;] = Pr[X; = 1] > 1/2 + n=¢ (where n = |z|). The Chernoff bound (see Theorem A.18 in
Appendix A) implies the following corollary:

COROLLARY 7.11
Let Xy,..., X} be independent identically distributed Boolean random variables, with Pr[X; =
1] =p for every 1 <i <k. Let 6 € (0,1). Then,

k
Py X
i=1

In our case p = 1/2+n"¢, and plugging in § = n~¢/2, the probability we output a wrong answer
is bounded by

52

Pr[> 5} < e 4Pk

2c+d d

k
1 1
Prily X, <1/24n /2| <e @ 2™ <on
=1

A similar result holds for the class RP. In fact, there we can replace the constant 2/3 with
every positive constant, and even with values as low as n~¢. That is, we have the following result:

THEOREM 7.12
Let L C {0,1}" such that there exists a polynomial-time PTM M satisfying for every x € {0,1}":
(1) If x € L then Pr[M(x) =1)] > n~¢ and (2) if x ¢ L, then Pr[M(x) = 1] = 0.

Then for every d > 0 there exists a polynomial-time PTM M’ such that for every x € {0,1}",
(1) if x € L then Pr[M’(z) = 1] > 1— 27" and (2) if ¢ L then Pr[M’(z) = 1] = 0.

These results imply that we can take a probabilistic algorithm that succeeds with quite modest
probability and transform it into an algorithm that succeeds with overwhelming probability. In
fact, even for moderate values of n an error probability that is of the order of 27" is so small that
for all practical purposes, probabilistic algorithms are just as good as deterministic algorithms.

If the original probabilistic algorithm used m coins, then the error reduction procedure we use
(run k independent trials and output the majority answer) takes O(m - k) random coins to reduce
the error to a value exponentially small in k. It is somewhat surprising that we can in fact do
better, and reduce the error to the same level using only O(m + k) random bits (see Section 7.5).

7.4. THE ROBUSTNESS OF OUR DEFINITIONS

p7.9 (123)

NoTE 7.13 (THE CHERNOFF BOUND)

The Chernoff bound is extensively used (sometimes under different names)
in many areas of computer science and other sciences. A typical scenario is
the following: there is a universe U of objects, a fraction p of them have a
certain property, and we wish to estimate u. For example, in the proof of
Theorem 7.10 the universe was the set of 2™ possible coin tosses of some
probabilistic algorithm and we wanted to know how many of them cause the
algorithm to accept its input. Another example is that &/ may be the set of
all the citizens of the United States, and we wish to find out how many of
them approve of the current president.

A natural approach to compute the fraction p is to sample n members of the
universe independently at random, find out the number k of the sample’s
members that have the property and to estimate that u is k/n. Of course,
it may be quite possible that 10% of the population supports the president,
but in a sample of 1000 we will find 101 and not 100 such people, and so
we set our goal only to estimate p up to an error of +e for some € > 0.
Similarly, even if only 10% of the population have a certain property, we
may be extremely unlucky and select only people having it for our sample,
and so we allow a small probability of failure § that our estimate will be
off by more than e. The natural question is how many samples do we need
to estimate p up to an error of e with probability at least 1 — §7 The
Chernoff bound tells us that (considering p as a constant) this number is
O(log(1/6)/€?).

This implies that if we sample n elements, then the probability that the
number k having the property is py/n far from un decays exponentially with
p: that is, this probability has the famous “bell curve” shape:

k have

Pr property

1

pn-pn'2 pn - pn+pn'2 n

k

We will use this exponential decay phenomena several times in this book,
starting with the proof of Theorem 7.17, showing that BPP C P /poly.

p7.10 (124) 7.4. THE ROBUSTNESS OF OUR DEFINITIONS

7.4.2 Expected running time versus worst-case running time.

When defining RTIME(T'(n)) and BPTIME(T'(n)) we required the machine to halt in T'(n) time
regardless of its random choices. We could have used expected running time instead, as in the
definition of ZPP (Definition 7.7). It turns out this yields an equivalent definition: we can add a
time counter to a PTM M whose expected running time is 7'(n) and ensure it always halts after
at most 1007'(n) steps. By Markov’s inequality (see Lemma A.10), the probability that M runs
for more than this time is at most 1/100. Thus by halting after 1007'(n) steps, the acceptance
probability is changed by at most 1/100.

7.4.3 Allowing more general random choices than a fair random coin.

One could conceive of real-life computers that have a “coin” that comes up heads with probability
p that is not 1/2. We call such a coin a p-coin. Indeed it is conceivable that for a random source
based upon quantum mechanics, p is an irrational number, such as 1/e. Could such a coin give
probabilistic algorithms new power? The following claim shows that it will not.

LEMMA 7.14
A coin with Pr[Heads] = p can be simulated by a PTM in expected time O(1) provided the ith bit
of p is computable in poly(i) time.

PROOF: Let the binary expansion of p be 0.p1pops.... The PTM generates a sequence of random

bits by, bo, ..., one by one, where b; is generated at step i. If b; < p; then the machine outputs

“heads” and stops; if b; > p; the machine outputs “tails” and halts; otherwise the machine goes

to step ¢ + 1. Clearly, the machine reaches step i 4 1 iff b; = p; for all j < ¢, which happens with

probability 1/2¢. Thus the probability of “heads” is ", pi%, which is exactly p. Furthermore, the
1

expected running time is ¢ - 57- For every constant ¢ this infinite sum is upperbounded by

another constant (see Exercise 1). W

Conversely, probabilistic algorithms that only have access to p-coins do not have less power
than standard probabilistic algorithms:

LEMMA 7.15 (VON-NEUMANN)
A coin with Pr[Heads] = 1/2 can be simulated by a probabilistic TM with access to a stream of

p-biased coins in expected time O(—=—).

p(1—p)

PROOF: We construct a TM M that given the ability to toss p-coins, outputs a 1/2-coin. The
machine M tosses pairs of coins until the first time it gets two different results one after the other.
If these two results were first “heads” and then “tails”, M outputs “heads”. If these two results
were first “tails” and then “heads”, M outputs “tails”. For each pair, the probability we get two
“heads” is p?, the probability we get two “tails” is (1 — p)2, the probability we get “head” and
then “tails” is p(1 — p), and the probability we get “tails” and then “head” is (1 — p)p. We see that
the probability we halt and output in each step is 2p(1 — p), and that conditioned on this, we do
indeed output either “heads” or “tails” with the same probability. Note that we did not need to
know p to run this simulation. Bl

7.5. RANDOMNESS EFFICIENT ERROR REDUCTION. p7.11 (125)

Weak random sources. Physicists (and philosophers) are still not completely certain that ran-
domness exists in the world, and even if it does, it is not clear that our computers have access to
an endless stream of independent coins. Conceivably, it may be the case that we only have access
to a source of imperfect randomness, that although unpredictable, does not consist of independent
coins. As we will see in Chapter 16, we do know how to simulate probabilistic algorithms designed
for perfect independent 1/2-coins even using such a weak random source.

7.5 Randomness efficient error reduction.

In Section 7.4.1 we saw how we can reduce error of probabilistic algorithms by running them
several time using independent random bits each time. Ideally, one would like to be frugal with
using randomness, because good quality random number generators tend to be slower than the rest
of the computer. Surprisingly, the error reduction can be done just as effectively without using
truly independent runs, and “recycling” the random bits. Now we outline this idea; a much more
general theory will be later presented in Chapter 16.

The main tool we use is expander graphs. Expander graphs have played a crucial role in nu-
merous computer science applications, including routing networks, error correcting codes, hardness
of approximation and the PCP theorem, derandomization, and more. Expanders can be defined
in several roughly equivalent ways. One is that these are graphs where every set of vertices has a
very large boundary. That is, for every subset S of vertices, the number of S’s neighbors outside
S is (up to a constant factor) roughly equal to the number of vertices inside S. (Of course this
condition cannot hold if S is too big and already contains almost all of the vertices in the graph.)
For example, the n by n grid (where a vertex is a pair (7, j) and is connected to the four neighbors
(i+1,541)) is not an expander, as any k by k square (which is a set of size k?) in this graph only
has a boundary of size O(k) (see Figure 7.1).

Expander: no. of S’s neighbors = Omega(|S|) Grid is not an expander:
no. of §'s neighbors = 0(s| /3

Figure 7.1: In a combinatorial expander, every subset S of the vertices that is not too big has at least Q(|S|)
neighbors outside the set. The grid (and every other planar graph) is not a combinatorial expander as a k x k square
in the grid has only O(k) neighbors outside it.

We will not precisely define expanders now (but see Section 7.B at the end of the chapter).
However, an expander graph family is a sequence of graphs {Gn}nen such for every N, G is an
N-vertex D-degree graph for some constant D. Deep mathematics (and more recently, simpler
mathematics) has been used to construct expander graphs. These constructions yield algorithms

p7.12 (126) 7.6. BPP C P/POLY

that, given the binary representation of N and an index of a node in G, can produce the indices
of the D neighbors of this node in poly(log N) time.

We illustrate the error reduction procedure by showing how we transform an RP algorithm that
outputs the right answer with probability 1/2into an algorithm that outputs the right answer with
probability 1 —27%*) The idea is simple: let 2 be an input, and suppose we have an algorithm M
using m coins such that if x € L then Pr,c (0 1y»[M(z,7) = 1] > 12 and if € L then M(x,r) =0
for every r. Let N = 2™ and let G be an N-vertex expander family. We use m coins to select a
random vertex v from G, and then use log Dk coins to take a k — 1-step random walk from v on
Gpn. That is, at each step we choose a random number ¢ in [D] and move from the current vertex
to its i" neighbor. Let vy, ..., v be the vertices we encounter along this walk (where v; = v). We
can treat these vertices as elements of {0,1}"™ and run the machine M on input = with all of these
coins. If even one of these runs outputs 1, then output 1. Otherwise, output 0. It can be shown
that if less than half of the r’s cause M to output 0, then the probability that the walk is fully
contained in these “bad” r’s is exponentially small in k.

We see that what we need to prove is the following theorem:

THEOREM 7.16

Let G be an expander graph of N vertices and B a subset of G’s vertices of size at most 3N, where
(B < 1. Then, the probability that a k-vertex random walk is fully contained in B is at most p*,
where p < 1 is a constant depending only on [(and independent of k).

Theorem 7.16 makes intuitive sense, as in an expander graph a constant fraction of the edges
adjacent to vertices of B will have the other vertex in B’s complement, and so it seems that at each
step we will have a constant probability to leave B. However, its precise formulation and analysis
takes some care, and is done at the end of the chapter in Section 7.B.

Intuitively, We postpone the full description of the error reduction procedure and its analysis
to Section 7.B.

7.6 BPP C P/poly

Now we show that all BPP languages have polynomial sized circuits. Together with Theorem 77?7
this implies that if 3SAT € BPP then PH = XL,

THEOREM 7.17 (ADLEMAN)

PROOF: Sup-
BPP C P /poly.

pose L € BPP, then by the alternative definition of BPP and the error reduction procedure of
Theorem 7.10, there exists a TM M that on inputs of size n uses m random bits and satisfies

x € L= Pr,.[M(z,r) accepts | > 1 — 9—(n+2)
z & L= Pr,[M(z,r) accepts | < 272

7.7. BPP IS IN PH p7.13 (127)

(Such a machine exists by the error reduction arguments mentioned earlier.)

Say that an r € {0,1}"" is bad for an input z € {0,1}" if M(x,r) is an incorrect answer,
otherwise we say its good for x. For every z, at most 2-2™/ 2(n+2) values of r are bad for z. Adding
over all = € {0,1}", we conclude that at most 2" x 2™ /2("*1) = 2™ /9 strings r are bad for some
x. In other words, at least 2™ — 2™ /2 choices of r are good for every x € {0,1}". Given a string
ro that is good for every x € {0,1}", we can hardwire it to obtain a circuit C' (of size at most
quadratic in the running time of M) that on input z outputs M (x, 7). The circuit C will satisfy
C(z) = L(x) for every z € {0,1}". R

7.7 BPP is in PH

At first glance, BPP seems to have nothing to do with the polynomial hierarchy, so the next
theorem is somewhat surprising.

THEOREM 7.18 (SIPSER-GACS)
BPP C 3, NIIL,

PROOF: It is enough to prove that BPP C ¥} because BPP is closed under complementation (i.e.,
BPP = coBPP).

Suppose L € BPP. Then by the alternative definition of BPP and the error reduction proce-
dure of Theorem 7.10 there exists a polynomial-time deterministic TM M for L that on inputs of
length n uses m = poly(n) random bits and satisfies

x € L= Pr,[M(xz,r) accepts | >1—-2""
r ¢ L= Pr,[M(z,r) accepts | < 27"

For x € {0,1}", let S, denote the set of r’s for which M accepts the input pair (x,r). Then
either |S;| > (1 —27")2™ or | S| < 27"2™, depending on whether or not = € L. We will show how
to check, using two alternations, which of the two cases is true.

&2

Figure 7.2: There are only two possible sizes for the set of r’s such that M (z,r) =Accept: either this set is almost
all of {0,1}™ or a tiny fraction of {0,1}™. In the former case, a few random “shifts” of this set are quite likely to
cover all of {0,1}™. In the latter case the set’s size is so small that a few shifts cannot cover {0,1}™

For k = ™ 41, let U = {u,...,ux} be a set of k strings in {0,1}"". We define Gy to be a
graph with vertex set {0,1}" and edges (r,s) for every r, s such that r = s + u; for some i € [k]

p7.14 (128) 7.8. STATE OF OUR KNOWLEDGE ABOUT BPP

(where + denotes vector addition modulo 2, or equivalently, bitwise XOR). Note that the degree
of Gy is k. For aset S C {0,1}", define I'y(S) to be all the neighbors of S in the graph Gyy. That
is, 7 € Ty (9) if there is an s € S and i € [k] such that r = s + u,.
Claim 1: For every set S C {0,1}" with |S| < 2™™" and every set U of size k, it holds that
'y (S) # {0,1}™. Indeed, since I'y has degree k, it holds that [Ty (S)| < k|S| < 2™.
Claim 2: For every set S C {0,1}" with |S] > (1 —27")2™ there exists a set U of size k such that
I'y(S) = {0,1}™. We show this by the probabilistic method, by proving that for every S, if we
choose U at random by taking k random strings uy, ..., ug, then Pr[['y(S) = {0,1}"™] > 0. Indeed,
for r € {0,1}", let B, denote the “bad event” that r is not in I'y(S). Then, B, = Nicik) B where
B! is the event that r € S + u;, or equivalently, that » + u; € S (using the fact that modulo 2,
a+b=cs a=c+b). Yet, r + u; is a uniform element in {0,1}"™, and so it will be in S with
probability at least 1 —27". Since B},..., Bf are independent, the probability that B, happens is
at most (1 —27")¥ < 27™. By the union bound, the probability that T'y/(.S) # {0,1}™ is bounded
by Zre{ﬁ,l}m Pr[B,] < 1.

Together Claims 1 and 2 show x € L if and only if the following statement is true

k
Juq,...,up € {0,1}" Vr € {0,1}"™ \/ M (z,r & u;)accepts

=1

thus showing L € ¥o. B

7.8 State of our knowledge about BPP

We know that P € BPP C P/poly, and furthermore, that BPP C 35 N II} and so if NP = p
then BPP = P. As mentioned above, there are complexity-theoretic reasons to strongly believe
that BPP C DTIME(2¢) for every € > 0, and in fact to reasonably suspect that BPP = P (see
Chapters 16 and 17). However, currently we are not even able to rule out that BPP = NEXP!

Complete problems for BPP?

Though a very natural class, BPP behaves differently in some ways from other classes we have
seen. For example, we know of no complete languages for it (under deterministic polynomial time
reductions). One reason for this difficulty is that the defining property of BPTIME machines is
semantic, namely, that for every string they either accept with probability at least 2/3 or reject
with probability at least 1/3. Given the description of a Turing machine M, testing whether it has
this property is undecidable. By contrast, the defining property of an NDTM is syntactic: given a
string it is easy to determine if it is a valid encoding of an NDTM. Completeness seems easier to
define for syntactically defined classes than for semantically defined ones. For example, consider
the following natural attempt at a BPP-complete language: L = {(M,z) : Pr[M(z) = 1] > 2/3}.
This language is indeed BPP-hard but is not known to be in BPP. In fact, it is not in any level
of the polynomial hierarchy unless the hierarchy collapses. We note that if, as believed, BPP = P,
then BPP does have a complete problem. (One can sidestep some of the above issues by using
promise problems instead of languages, but we will not explore this.)

7.9. RANDOMIZED REDUCTIONS p7.15 (129)

Does BPTIME have a hierarchy theorem?

Is BPTIME(n®) contained in BPTIME(n) for some ¢ > 1?7 One would imagine not, and this
seems as the kind of result we should be able to prove using the tools of Chapter 3. However
currently we are even unable to show that BPTIME(nlOgQ") (say) is not in BPTIME(n). The
standard diagonalization techniques fail, for similar reasons as the ones above. However, recently
there has been some progress on obtaining hierarchy theorem for some closely related classes (see
notes).

7.9 Randomized reductions

Since we have defined randomized algorithms, it also makes sense to define a notion of random-
ized reduction between two languages. This proves useful in some complexity settings (e.g., see
Chapters 9 and 8).

DEFINITION 7.19
Language A reduces to language B under a randomized polynomial time reduction, denoted A <, B,

if there is a probabilistic TM M such that for every x € {0,1}", Pr[B(M(x)) = A(z)] > 2/.

We note that if A <, B and B € BPP then A € BPP. This alerts us to the possibility that we
could have defined NP-completeness using randomized reductions instead of deterministic reduc-
tions, since arguably BPP is as good as P as a formalization of the notion of efficient computation.
Recall that the Cook-Levin theorem shows that NP may be defined as the set {L : L <, 3SAT}.
The following definition is analogous.

DEFINITION 7.20 (BP - NP)
BP NP = {L: L <, 35AT}.

We explore the properties of BP-NP in the exercises, including whether or not 3SAT € BP-NP.

One interesting application of randomized reductions will be shown in Chapter 9, where we
present a (variant of a) randomized reduction from 3SAT to the solving special case of 3SAT
where we are guaranteed that the formula is either unsatisfiable or has a single unique satisfying
assignment.

7.10 Randomized space-bounded computation

A PTM is said to work in space S(n) if every branch requires space O(S(n)) on inputs of size n and
terminates in 20(5(") time. Recall that the machine has a read-only input tape, and the work space
only cell refers only to its read/write work tapes. As a PTM it has two transition functions that
are applied with equal probability. The most interesting case is when the work tape has O(logn)
size. The classes BPL and RL are the two-sided error and one-sided error probabilistic analogs of
the class L defined in Chapter 4.

p7.16 (130) 7.10. RANDOMIZED SPACE-BOUNDED COMPUTATION

DEFINITION 7.21 ()

The classes BPL and RL] A language L is in BPL if there is an O(logn)-space
probabilistic TM M such that Pr[M (x) = L(z)] > 2/s.

A language L is in RL if there is an O(logn)-space probabilistic TM M such that
if x € L then Pr[M(xz) =1] > 2/3 and if ¢ L then Pr[M(z) =1] = 0.

The reader can verify that the error reduction procedure described in Chapter 7 can be imple-
mented with only logarithmic space overhead, and hence also in these definitions the choice of the
precise constant is not significant. We note that RL C NL, and thus RL C P. The exercises ask
you to show that BPL C P as well.

One famous RL-algorithm is the algorithm to solve UPATH: the restriction of the NL-complete
PATH problem (see Chapter 4) to undirected graphs. That is, given an n-vertex undirected graph
G and two vertices s and t, determine whether s is connected to t in G.

THEOREM 7.22 ([AKL*79])
UPATH € RL.

The algorithm for UPATH is actually very simple: take a random walk of length n3 starting
from s. That is, initialize the variable v to the vertex s and in each step choose a random neighbor
w of v, and set v < u. Accept iff the walk reaches t within n3 steps. Clearly, if s is not connected to
t then the algorithm will never accept. It can be shown that if s is connected to ¢ then the expected
number of steps it takes for a walk from s to hit ¢ is at most Q%n?’ and hence our algorithm will accept
with probability at least %. We defer the analysis of this algorithm to the end of the chapter at
Section 7.A, where we will prove that a somewhat larger walk suffices to hit ¢ with good probability
(see also Exercise 9).

In Chapter 16 we show a recent deterministic logspace algorithm for the same problem. It is
known that BPL (and hence also RL) is contained in SPACE(log®?n). In Chapter 16 we will
see a somewhat weaker result: a simulation of BPL in log? n space and polynomial time.

7.10. RANDOMIZED SPACE-BOUNDED COMPUTATION p7.17 (131)

WHAT HAVE WE LEARNED?

e The class BPP consists of languages that can be solved by a probabilistic
polynomial-time algorithm. The probability is only over the algorithm’s coins
and not the choice of input. It is arguably a better formalization of efficient
computation than P.

e RP,coRP and ZPP are subclasses of BPP corresponding to probabilistic
algorithms with one-sided and “zero-sided” error.

e Using repetition, we can considerably amplify the success probability of prob-
abilistic algorithms.

e We only know that P C BPP C EXP, but we suspect that BPP = P.

e BPP is a subset of both P/poly and PH. In particular, the latter implies
that if NP = P then BPP = P.

e Randomness is used in complexity theory in many contexts beyond BPP. Two
examples are randomized reductions and randomized logspace algorithms, but
we will see many more later.

Chapter notes and history

Early researchers realized the power of randomization since their computations —e.g., for design
of nuclear weapons— used probabilistic tools such as Monte Carlo simulations. Papers by von
Neumann [von61] and de Leeuw et al. [LMSS56] describe probabilistic Turing machines. The
definitions of BPP, RP and ZPP are from Gill [Gil77]. (In an earlier conference paper [Gil74],
Gill studies similar issues but seems to miss the point that a practical algorithm for deciding a
language must feature a gap between the acceptance probability in the two cases.)

The algorithm used to show PRIMES is in coRP is due to Solovay and Strassen [SS77]. Another
primality test from the same era is due to Rabin [Rab80]. Over the years, better tests were proposed.
In a recent breakthrough, Agrawal, Kayal and Saxena finally proved that PRIMES € P. Both the
probabilistic and deterministic primality testing algorithms are described in Shoup’s book [?].

Lovész’s randomized NC algorithm [Lov79] for deciding the ezistence of perfect matchings is
unsatisfying in the sense that when it outputs “Accept,” it gives no clue how to find a matching!
Subsequent probabilistic NC algorithms can find a perfect matching as well; see [KUW86, MVV8T7].

BPP C P/poly is from Adelman [Adl78]. BPP C PH is due to Sipser [Sip83], and the stronger
form BPP C X N1II) is due to P. Gécs. Recent work [] shows that BPP is contained in classes
that are seemingly weaker than X5 N TI5.

Even though a hierarchy theorem for BPP seems beyond our reach, there has been some success
in showing hierarchy theorems for the seemingly related class BPP/1 (i.e., BPP with a single bit
of nonuniform advice) [Bar02, ?, ?].

p7.18 (132) 7.10. RANDOMIZED SPACE-BOUNDED COMPUTATION

Readers interested in randomized algorithms are referred to the books by Mitzenmacher and
Upfal [MUO05] and Motwani and Raghavan [MR95].

STILL A LOT MISSING

Expanders were well-studied for a variety of reasons in the 1970s but their application to
pseudorandomness was first described by Ajtai, Komlos, and Szemeredi [AKS87]. Then Cohen-
Wigderson [CW89] and Impagliazzo-Zuckerman (1989) showed how to use them to “recycle” ran-
dom bits as described in Section 7.B.3. The upcoming book by Hoory, Linial and Wigderson (draft
available from their web pages) provides an excellent introduction to expander graphs and their
applications.

The explicit construction of expanders is due to Reingold, Vadhan and Wigderson [RVWO00],
although we chose to present it using the replacement product as opposed to the closely related
zig-zag product used there. The deterministic logspace algorithm for undirected connectivity is due
to Reingold [?].

Exercises

§1 Show that for every ¢ > 0, the following infinite sum is finite:

i
P

i>1

§2 Show, given input the numbers a,n,p (in binary representation), how to compute a”(modp)
in polynomial time.

“Surrenbs pojesdar pue u Jo uonejueserdor Areurq o) osn JUIH

§3 Let us study to what extent Claim 7?7 truly needs the assumption that p is efficiently com-
putable. Describe a real number p such that given a random coin that comes up “Heads”
with probability p, a Turing machine can decide an undecidable language in polynomial time.

$PRI9A0DDI 9($91q
)T red MO] "SULIYS 9dTAPR UR s ¢ I9qUINU DI 91} JO YUIY) :JUTE]

84 Show that ZPP = RP N coRP.

§5 A nondeterministic circuit has two inputs x,y. We say that it accepts x iff there exists y
such that C(z,y) = 1. The size of the circuit is measured as a function of |z|. Let NP /poly
be the languages that are decided by polynomial size nondeterministic circuits. Show that
BP - NP C NP/poly.

§6 Show using ideas similar to the Karp-Lipton theorem that if 3SAT € BP - NP then PH
collapses to 3%. (Combined with above, this shows it is unlikely that 3SAT <, 3SAT.)

§7 Show that BPL C P

7.10. RANDOMIZED SPACE-BOUNDED COMPUTATION p7.19 (133)

‘uorgeordinur xrrjeur
10 Surmreidord otureudp JIoyje Suisn uoreIngyuoos jdesde oY) ul
dn spue eurgorwr oY) ey} Aiqeqord oy) ondurod 0 A13 JUIH

§8 Show that the random walk idea for solving connectivity does not work for directed graphs.
In other words, describe a directed graph on n vertices and a starting point s such that the
expected time to reach ¢ is £2(2") even though there is a directed path from s to ¢.

§9 Let GG be an n vertex graph where all vertices have the same degree.

(a)

We say that a distribution p over the vertices of G (where p; denotes the probability
that vertex ¢ is picked by p) is stable if when we choose a vertex ¢ according to p and
take a random step from i (i.e., move to a random neighbor j or i) then the resulting
distribution is p. Prove that the uniform distribution on G’s vertices is stable.

For p be a distribution over the vertices of G, let A(p) = max;{p; — 1/n}. For every
k, denote by p* the distribution obtained by choosing a vertex i at random from p and
taking k random steps on G. Prove that if G is connected then there exists k such that
A(pF) < (1 —=n~1")A(p). Conclude that

i. The uniform distribution is the only stable distribution for G.

ii. For every vertices u, v of G, if we take a sufficiently long random walk starting from
u, then with high probability the fraction of times we hit the vertex v is roughly
1/n. That is, for every € > 0, there exists k such that the k-step random walk from
u hits v between (1 — €)k/n and (1 + €)k/n times with probability at least 1 — e.

For a vertex u in G, denote by F, the expected number of steps it takes for a random
walk starting from u to reach back u. Show that E, < 10n?.
“YTem sty ur saoerd oY) Jo UOIYORI]
3 /7 = ueyy sso] ut sieadde n ‘spunoq [rey pIrepuejs Aq uoy} 3y
< M7 31 "M WOIJ SUILIR)S [eM UIOPURI 9)TUYUI 9} 19PISU0D :JUIE]
For every two vertices u,v denote by E, , the expected number of steps it takes for
a random walk starting from u to reach v. Show that if u and v are connected by a
path of length at most £ then E, , < 100kn?. Conclude that for every s and t that are
connected in a graph G, the probability that an 1000n? random walk from s does not
hit ¢ is at most 1/10.
7 qm Aqrerpusuodxs sAedep o
317 30U SO0p 1 wWody yem wopuet dojs- uy we ey Aiqeqod oyl
R} MOUS 0} SooIyns 41 08 pue [w < y]1g N2"7< 03 enbe st N 1040
X 9[qelrea wopuel € Jo uolyeidadxa oY) jer) 9j0N ‘Uorye3dadxs jo
AjLreaur] Sursn ST} 0) Poonpor oq ued T < ¥ Jo ased o1y ‘(o3pe ue
Aq po10auTod aIe 4 PUR N “9'T) T = Y 9Sed 9} [YHM LIRS JUTE]
Let G be an n-vertex graph that is not necessarily regular (i.e., each vertex may have
different degree). Let G’ be the graph obtained by adding a sufficient number of parallel
self-loops to each vertex to make G regular. Prove that if a k-step random walk in G’
from a vertex s hits a vertex t with probability at least 0.9, then a 10n?k-step random
walk from s will hit ¢ with probability at least 1/2.

p7.20 (134) 7.10. RANDOMIZED SPACE-BOUNDED COMPUTATION

The following exercises are based on Sections 7.A and 7.B.

§10 Let A be a symmetric stochastic matrix: A = A" and every row and column of A has non-
negative entries summing up to one. Prove that ||A| < 1.

] ?f| 5 (za) Sygpenbouy oy pue (zmg7) = (27 ‘) Lyenbo
oY) Jursn EHAs/VH < “llay, V|| pue onseypogs osfe st 7 ‘T < & A1oa0
103 yery oa0ad ‘udy, “ u Aes jsOu e S I¥7]] veys moys 381 :gurfy

§11 Let A, B be two symmetric stochastic matrices. Prove that A(A 4+ B) < A(A) + A(B).

§12 Let a n,d random graph be an n-vertex graph chosen as follows: choose d random permuta-
tions 71, ldots, g from [n] to [n]. Let the the graph G contains an edge (u,v) for every pair
u,v such that v = m;(u) for some 1 < i < d. Prove that a random n,d graph is an (n,2d, 2d)
combinatorial expander with probability 1 — o(1) (i.e., tending to one with n).

‘1 A19A9
10§ 1, 5 (§)"x yeyy Lypiqeqord oyy punoq oy £13 ¢|g|(pE + 1) > |
[[u] S 19s pue g/u > |g] qrm u S g 198 A10a0 10] JUIH

7.A. RANDOM WALKS AND EIGENVALUES p7.21 (135)

The following two section assume some knowledge of elementary linear algebra (vector spaces and
Hilbert spaces); see Appendix A for a quick review.

7.A Random walks and eigenvalues

In this section we study random walks on (undirected regular) graphs, introducing several important
notions such as the spectral gap of a graph’s adjacency matrix. As a corollary we obtain the proof
of correctness for the random-walk space-efficient algorithm for UPATH of Theorem 7.22. We will
see that we can use elementary linear algebra to relate parameters of the graph’s adjacency matrix
to the behavior of the random walk on that graph.

REMARK 7.23
In this section, we restrict ourselves to reqular graphs, in which every vertex have the same degree,
although the definitions and results can be suitably generalized to general (non-regular) graphs.

7.A.1 Distributions as vectors and the parameter \(G).

Let G be a d-regular n-vertex graph. Let p be some probability distribution over the vertices of G.
We can think of p as a (column) vector in R™ where p; is the probability that vertex i is obtained
by the distribution. Note that the Li-norm of p (see Note 7.24), defined as |p|, = > 7" |pi|, is
equal to 1. (In this case the absolute value is redundant since p; is always between 0 and 1.)

Now let q represent the distribution of the following random variable: choose a vertex ¢ in G
according to p, then take a random neighbor of 7 in G. We can compute q as a function of p: the
probability q; that j is chosen is equal to the sum over all j’s neighbors i of the probability p; that
i is chosen times 1/d (where 1/d is the probability that, conditioned on 7 being chosen, the walk
moves to q). Thus q = Ap, where A = A(G) which is the normalized adjacency matriz of G. That
is, for every two vertices i, j, A;; is equal to the number of edges between ¢ and j divided by d.
Note that A is a symmetric matrix,® where each entry is between 0 and 1, and the sum of entries
in each row and column is exactly one (such a matrix is called a symmetric stochastic matrix).

Let {€'} | be the standard basis of R™ (i.e. e has 1 in the i'® coordinate and zero everywhere
else). Then, AT e® represents the distribution X7 of taking a T-step random walk from the vertex
s. This already suggests that considering the adjacency matrix of a graph G could be very useful
in analyzing random walks on G.

DEFINITION 7.25 (THE PARAMETER A(G).)

Denote by 1 the vector (1/n,1/n,...,1/n) corresponding to the uniform distri-
bution. Denote by 1+ the set of vectors perpendicular to 1 (ie., v € 1+ if
(v, 1) = (1/n) 3, vi = 0).

The parameter A\(A), denoted also as A(G), is the maximum value of ||Av||, over all
vectors v € 1+ with ||v||, = 1.

3A matrix A is symmetric if A= AT, where A" denotes the transpose of A. That is, (A1), ; = A;; for every i, .

p7.22 (136) 7.A. RANDOM WALKS AND EIGENVALUES

NoTE 7.24 (L, NORMS)

A norm is a function mapping a vector v into a real number ||v|| satisfying
(1) ||[v|l > 0 with ||v|| = 0 if and only v is the all zero vector, (2) [|av| =
la| - ||v]| for every @ € R, and (3) ||v +u| < ||v] + ||u]| for every vector u.
The third inequality implies that for every norm, if we define the distance
between two vectors u,v as |[u— v|| then this notion of distance satisfies the
triangle inequality.

For every v € R™ and number p > 1, the L, norm of v, denoted ||v|| , is equal
to (3o, |V¢]p)1/p. One particularly interesting case is p = 2, the so-called

Euclidean norm, in which ||v||, = />, vZ = \/(v, V). Another interesting

case is p = 1, where we use the single bar notation and denote |v|, =
Yoy [vi]. Another case is p = 0o, where we denote ||v|| = limy, . [|V], =
maxiep) [Vil

The Hélder inequality says that for every p,q with % + % =1, [[ul,||v], >
>y |uivi|. To prove it, note that by simple scaling, it suffices to con-

sider norm one vectors, and so it enough to show that if |[ul[, = [|v|, =1
then 30, [uiflvi| < 1. But L Jugllvi| = S0y [P v o9 <
Yo %]ui\p + %|vi|‘1 =]lj + é = 1, where the last inequality uses the fact

that for every a,b > 0 and a € [0,1], a®b'~® < aa + (1 — a)b. This fact is
due to the log function being concave— having negative second derivative,
implying that aloga + (1 —) logb < log(aa + (1 — «)b).

Setting p = 1 and g = o0, the Holder inequality implies that

Vil < E v

Setting p = ¢g = 2, the Holder inequality becomes the Cauchy-
Schwartz Inequality stating that Y . | [u;v;| < |[ul,||v],. Setting u =

(1/v/n,1/\/n,...,1/y/n), we get that

n
v/ V=Y Zlvil < vl
i=1

7.A. RANDOM WALKS AND EIGENVALUES p7.23 (137)

REMARK 7.26

The value A\(G) is often called the second largest eigenvalue of G. The reason is that since A is a
symmetric matrix, we can find an orthogonal basis of eigenvectors v!,...,v"” with corresponding
eigenvalues Ag,...,\, which we can sort to ensure |[A;| > |A2|... > |Ay|. Note that A1 = 1.
Indeed, for every i, (A1); is equal to the inner product of the ith row of A and the vector 1 which
(since the sum of entries in the row is one) is equal to 1/n. Thus, 1 is an eigenvector of A with
the corresponding eigenvalue equal to 1. One can show that a symmetric stochastic matrix has
all eigenvalues with absolute value at most 1 (see Exercise 10) and hence we can assume \; = 1
and v! = 1. Also, because 1+ = Span{v?,...,v"}, the value A above will be maximized by (the
normalized version of) v2, and hence A\(G) = |A\2|. The quantity 1 — \(G) is called the spectral gap
of the graph. We note that some texts use un-normalized adjacency matrices, in which case A(G)
is a number between 0 and d and the spectral gap is defined to be d — A\(G).

One reason that A(G) is an important parameter is the following lemma:

LEMMA 7.27
For every regular n vertex graph G = (V, E) let p be any probability distribution over V, then

AP — 1], < AT

PROOF: By the definition of A(G), ||Av]|, < A||v||, for every v L 1. Note that if v L 1 then
Av 1 1 since (1, Av) = (AT1,v) = (1,v) =0 (as A = AT and A1 = 1). Thus A maps the space
1+ to itself and since it shrinks any member of this space by at least A, A(AT) < A(4)T. (In fact,
using the eigenvalue definition of), it can be shown that A(AT) = A\(A).)

Let p be some vector. We can break p into its components in the spaces parallel and orthogonal
to 1 and express it as p = al + p’ where p’ L 1 and « is some number. If p is a probability
distribution then o = 1 since the sum of coordinates in p’ is zero. Therefore,

ATp:AT(1+p,):1+ATp/

Since 1 and p’ are orthogonal, ||p||? = ||1||2 + ||p/||? and in particular |p'||, < ||p||,. Since p is
a probability vector, ||pll, < |p|, -1 <1 (see Note 7.24). Hence ||p’||, < 1 and

IATp — 1|, = [|ATP']l, < AT

It turns out that every connected graph has a noticeable spectral gap:

LEMMA 7.28

For every d-regular connected G with self-loops at each vertex, \(G) < 1 — <

8dn3 "

PROOF: Let u L 1 be a unit vector and let v = Au. We’'ll show that 1 — ||v||2 > -1 which implies

2 = d4n3
[v]? <1 - —ks and hence ||v|, <1 -

_1
d8n3*

p7.24 (138) 7.A. RANDOM WALKS AND EIGENVALUES

Since [luf, =1, 1 — [|v|? = [lu|? — [|v]|2. We claim that this is equal to > Aig(u — v;)?
where i, j range from 1 to n. Indeed,

Do A= vy =) Aigui -2 Agupvi 4y AV =
i i i i
[all? = 2(Au,v) + V]2 = [[ull? = 2[v]} + [Iv]3,

where these equalities are due to the sum of each row and column in A equalling one, and because
VI3 = (v,v) = (Au,v) = 37, ; Aijupv;.
Thus it suffices to show >, - A; j(u; — v;)? > d4n3

suffices to show that for some z,], Aij(u; —vj)? > d4n3'
Ai; > 1/d for all 4, and so we can assume |u; — vi| < 515

done.

This is a sum of non-negative terms so it

First, because we have all the self-loops,
for every i € [n], as otherwise we’d be

Now sort the coordinates of u from the largest to the smallest, ensuring that u; > us > - - - u,.
Since), u; = 0 it must hold that u; > 0 > u,,. In fact, since u is a unit vector, either u; > 1/\/n
oru, < 1/y/n and so u; —u, > 1/y/n. One of the n—1 differences between consecutive coordinates

u; — u;41 must be at least 1/n!5 and so there must be an ip such that if we let S = {1,...,ip}
and S = [n]\ S;, then for every i € S and j € S, u; — > 1/n'?. Since G is connected there
exists an edge (3,) between S and S. Since |v; — uj] < 55, for this choice of 4,7, [u; — v;| >
lu; —u;| — n115 > 2n15 Thus A; ;(u; —v])2 > éﬁ. [|

REMARK 7.29

The proof can be strengthened to show a similar result for every connected non-bipartite graph
(not just those with self-loops at every vertex). Note that this condition is essential: if A is the
adjacency matrix of a bipartite graph then one can find a vector v such that Av = —v.

7.A.2 Analysis of the randomized algorithm for undirected connectivity.

Together, Lemmas 7.27 and 7.28 imply that, at least for regular graphs, if s is connected to t then
a sufficiently long random walk from s will hit ¢ in polynomial time with high probability.

COROLLARY 7.30

Let G be a d-regular n-vertex graph with all vertices having a self-loop. Let s be a vertex in G.
Let T > 10dn®logn and let Xp denote the distribution of the vertex of the T*" step in a random
walk from s. Then, for every j connected to s, Pr[Xp = j] > %

PROOF: By these Lemmas, if we consider the restriction of an n-vertex graph G to the connected
component of s, then for every probability vector p over this component and T > 10dn3logn,
[ATp — 1|, < & --1= (where 1 here is the uniform distribution over this component). Using the
relations between the L; and Ly norms (see Note 7.24), |[ATp — 1|, < 5= and hence every element
in the connected component appears in A”p with at least 1/n — 1/(2n) > 1/(2n) probability. B

Note that Corollary 7.30 implies that if we repeat the 10dn®logn walk for 10n times (or equiv-
alently, if we take a walk of length 100dn*logn) then we will hit ¢ with probability at least 3/4.

7.B. EXPANDER GRAPHS. p7.25 (139)

7.B Expander graphs.

Expander graphs are extremely useful combinatorial objects, which we will encounter several times
in the book. They can be defined in two equivalent ways. At a high level, these two equivalent
definitions can be described as follows:

o Combinatorial definition: A constant-degree regular graph G is an expander if for every subset
S of less than half of GG’s vertices, a constant fraction of the edges touching S are from S to
its complement in G. This is the definition alluded to in Section 7.5 (see Figure 7.1).%

o Algebraic expansion: A constant-degree regular graph G is an expander if its parameter A(G)
bounded away from 1 by some constant. That is, A\(G) < 1 — e for some constant € > 0;,

What do we mean by a constant? By constant we refer to a number that is independent of the size
of the graph. We will typically talk about graphs that are part of an infinite family of graphs, and
so by constant we mean a value that is the same for all graphs in the family, regardless of their
size.

Below we make the definitions more precise, and show their equivalence. We will then complete
the analysis of the randomness efficient error reduction procedure described in Section 7.5.

7.B.1 The Algebraic Definition

The Algebraic definition of expanders is as follows:

DEFINITION 7.31 ((n,d, \)-GRAPHS.)

If G is an n-vertex d-regular G with A(G) < A for some number A < 1 then we say
that G is an (n,d, \)-graph.

A family of graphs {G,, }nen is an expander graph family if there are some constants
d € N and A < 1 such that for every n, G, is an (n,d, \)-graph.

Explicit constructions. We say that an expander family {G,},en is explicit if there is a
polynomial-time algorithm that on input 1™ with n € I outputs the adjacency matrix of G,.
We say that the family is strongly explicit if there is a polynomial-time algorithm that for every
n € I on inputs (n,v,i) where 1 <v <n’ and 1 < i < d outputs the ith neighbor of v. (Note that
the algorithm runs in time polynomial in the its input length which is polylogarithmic in n.)

As we will see below it is not hard to show that expander families exist using the probabilistic
method. But this does not yield ezplicit (or very explicit) constructions of such graphs (which, as
we saw in Section 7.4.1 are often needed for applications). In fact, there are also several explicit and

4The careful reader might note that there we said that a graph is an expander if a constant fraction of S’s
neighboring vertices are outside S. However, for constant-degree graphs these two notions are equivalent.

p7.26 (140) 7.B. EXPANDER GRAPHS.

NOTE 7.33 (EXPLICIT CONSTRUCTION OF PSEUDORANDOM OBJECTS)
Expanders are one instance of a recurring theme in complexity theory (and
other areas of math and computer science): it is often the case that a ran-
dom object can be easily proven to satisfy some nice property, but the ap-
plications require an explicit object satisfying this property. In our case,
a random d-regular graph is an expander, but to use it for, say, reducing
the error of probabilistic algorithms, we need an explicit construction of an
expander family, with an efficient deterministic algorithm to compute the
neighborhood relations. Such explicit constructions can be sometimes hard
to come by, but are often surprisingly useful. For example, in our case the
explicit construction of expander graphs turns out to yield a deterministic
logspace algorithm for undirected connectivity.

We will see another instance of this theme in Chapter 17, which discusses
error correcting codes.

strongly explicit constructions of expander graphs known. The smallest A can be for a d-regular
n-vertex graph is Q(ﬁ) and there are constructions meeting this bound (specifically the bound

is (1 — 0(1))2%\/? where by o(1) we mean a function that tends to 0 as the number of vertices
grows; graphs meeting this bound are called Ramanujan graphs). However, for most applications in
Computer Science, any family with constant d and A < 1 will suffice (see also Remark 7.32 below).
Some of these constructions are very simple and efficient, but their analysis is highly non-trivial
and uses relatively deep mathematics.> In Chapter 16 we will see a strongly explicit construction
of expanders with elementary analysis. This construction also introduces a tool that is useful to
derandomize the random-walk algorithm for UPATH.

REMARK 7.32

One reason that the particular constants of an expander family are not extremely crucial is that we
can improve the constant A (make it arbitrarily smaller) at the expense of increasing the degree:
this follows from the fact, observed above in the proof of Lemma 7.27, that A(GT) = A\(G)T, where
GT denotes the graph obtained by taking the adjacency matrix to the T power, or equivalently,
having an edge for every length-T path in G. Thus, we can transform an (n,d, \) graph into an
(n,d”, \T)-graph for every T > 1. In Chapter 16 we will see a different transformation called
the replacement product to decrease the degree at the expense of increasing A somewhat (and also
increasing the number of vertices).

5An example for such an expander is the following 3-regular graph: the vertices are the numbers 1 to p — 1 for
some prime p, and each number z is connected to + 1,z — 1 and z=* (mod p).

7.B. EXPANDER GRAPHS. p7.27 (141)

7.B.2 Combinatorial expansion and existence of expanders.

We describe now a combinatorial criteria that is roughly equivalent to Definition 7.31. One ad-
vantage of this criteria is that it makes it easy to prove that a non-explicit expander family exists
using the probabilistic method. It is also quite useful in several applications.

DEFINITION 7.34 ([)

Combinatorial (edge) expansion] An n-vertex d-regular graph G = (V, E) is called
an (n,d, p)-combinatorial expander if for every subset S C V with |S| < n/2,
|E(S,S)| > pd|S|, where for subsets S,T of V, E(S,T) denotes the set of edges
(s,t) withse Sandt eT.

Note that in this case the bigger p is the better the expander. We’ll loosely use the term expander
for any (n, d, p)-combinatorial expander with ¢ a positive constant. Using the probabilistic method,
one can prove the following theorem: (Exercise 12 asks you to prove a slightly weaker version)

THEOREM 7.35 (EXISTENCE OF EXPANDERS)
Let € > 0 be some constant. Then there exists d = d(e) and N € N such that for every n > N
there exists an (n,d,1 — €)-combinatorial expander.

The following theorem related combinatorial expansion with our previous Definition 7.31

THEOREM 7.36 (COMBINATORIAL AND ALGEBRAIC EXPANSION)
1. If G is an (n,d, \)-graph then it is an (n,d, (1 —\)/2)-combinatorial expander.

2. If G is an (n,d, p)-combinatorial expander then it is an (n,d,1 — %)—graph.

The first part of Theorem 7.36 follows by plugging T' = S into the following lemma:

LEMMA 7.37 (EXPANDER MIXING LEMMA)
Let G = (V,E) be an (n,d, \)-graph. Let S, T C V, then

d
(5,71 - S1s1i7| < xavISTE

PROOF: Let s denote the vector such that s; is equal to 1 if 7 € S and equal to 0 otherwise, and let
t denote the corresponding vector for the set .S. Thinking of s as a row vector and of t as a column
vector, the Lemma’s statement is equivalent to

sae — BT < 5 /JS]TTT, (2)

where A is G’s normalized adjacency matrix. Yet by Lemma 7.40, we can write A as (1—\)J +AC,
where J is the matrix with all entries equal to 1/n and C' has norm at most one. Hence,

sAt = (1 — N)sJt + AsCt < BETL 4 5\ /15]T7,

p7.28 (142) 7.B. EXPANDER GRAPHS.
where the last inequality follows from sJt = |S||T|/n and sCt = (s, Ct) < [s|,[|t]l, = /|S||T]- A

PROOF OF SECOND PART OF THEOREM 7.36.: We prove a slightly relaxed version, replacing
the constant 2 with 8. Let G = (V| E) be an n-vertex d-regular graph such that for every subset
S C V with |S| < n/2, there are p|S| edges between S and S = V'\ S, and let A be G’s normalized
adjacency matrix.

Let A = A(G). We need to prove that A < 1 — p?/8. Using the fact that)\ is the second
eigenvalue of A, there exists a vector u 1 1 such that Au = Au. Write u = v +w where v is equal
to u on the coordinates on which u is positive and equal to 0 otherwise, and w is equal to u on the
coordinates on which u is negative, and equal to 0 otherwise. Note that, since u L 1, both v and
w are nonzero. We can assume that u is nonzero on at most n/2 of its coordinates (as otherwise
we can take —u instead of u).

Since Au = Au and (v,w) =0,

(Av,v) + (Aw,v) = (A(v+w),v) = (Au,v) = (\M(v+ w),Vv) =)\||v||§

Since (Aw, v) is negative, we get that <Av,v>/||v||§ > Aor

(Av,v) IVIZ=(Av,v) X, Aii(vi—v))°
V]2 V]2 2[|v|Z ’

1-A>1-

where the last equality is due to Zi,j Ai,j (VZ' — Vj)2 = Zi,j Ai7le-2 -2 Zi,j Ai,jvivj + Zi,j AZ'J‘V]Z =
2|[v[|? — 2(Av,v). (We use here the fact that each row and column of A sums to one.) Multiply
both numerator and denominator by >, ; 4; ; (v + VJZ) By the Cauchy-Schwartz inequality,® we
can bound the new numerator as follows:

2

Do Augvi=vi)? | [Do A (vit Vi) | < | D0 Au(vi = vi)(vi+ v;)
i, i,j 4J
Hence, using (a — b)(a + b) = a® — b2,

2 2
(0 Ausv? =v3) (i Ais(v2 =)
1—=A= 21vII2 A (v N2 =
VI 2205 A (Vi EVil® w2 (4 Aigvd + 28 digvivs + i 4i5v3)
2 2
(Zu Aij(vi = V?)) - (Z” Aij(vi— ij))
2[vIiZ CIIVIE +2(Av,v)) IV |

where the last inequality is due to A having matrix norm at most 1, implying (Av, v) < [|v|2. We
conclude the proof by showing that

2 2 2
> Aii(vi =) = pllvl?, (3)
i?j
®The Cauchy-Schwartz inequality is typically stated as saying that for x,y € R™, > xiys < /O, x2)(X, ¥2)-
However, it is easily generalized to show that for every non-negative pu1,..., tn, >, HiXiys < \/(ZZ wix2)(O°, piy?)

(this can be proven from the standard Cauchy-Schwartz by multiplying each coordinate of x and y by /p;. It is this
variant that we use here with the A; ;’s playing the role of u1,..., tn.

7.B. EXPANDER GRAPHS. p7.29 (143)

4
which indeed implies that 1 — X > 08”||VHH42 = %.

To prove (3) sort the coordinates of v so that vi > vy > -+ > v,, (with v; = 0 for i > n/2).
Then

DA (vi=vH =Y Y Ay(vi-vi) =) avi - vin),
%] 1=1 j=i+1 1=1

where ¢; denotes »_,_; A; ;. But ¢; is equal to the number of edges in G from the set {k : k < i} to
its complement, divided by d. Hence, by the expansion of G, ¢; > pi, implying (using the fact that
v; =0 for i > n/2):

n/2 n/2
ZAuv —v? >Zm Vi) =Y (pivi—p- (i — 1)v2) = p||v|?2,
=1

establishing (3). W

7.B.3 Error reduction using expanders.

We now complete the analysis of the randomness efficient error reduction procedure described in
Section 7.5. Recall, that this procedure was the following: let N = 2 where m is the number of
coins the randomized algorithm uses. We use m + O(k) random coins to select a k-vertex random
walk in an expander graph Gy, and then output 1 if and only if the algorithm outputs 1 when given
one of the vertices in the walk as random coins. To show this procedure works we need to show
that if the probabilistic algorithm outputs 1 for at least half of the coins, then the probability that
all the vertices of the walk correspond to coins on which the algorithm outputs 0 is exponentially
small in k. This will be a direct consequence of the following theorem: (think of the set B below
as the set of vertices corresponding to coins on which the algorithm outputs 0)

THEOREM 7.38 (EXPANDER WALKS)

Let G be an (N, d, \) graph, and let B C [N] be a set with |B| < BN. Let X1,..., Xy
be random variables denoting a k — 1-step random walk from X1, where X is chosen
uniformly in [N]. Then,

[v1<z<k)(S fg \/ﬁ7+-A
(*)

Note that if A and (3 are both constants smaller than 1 then so is the expression (1 — X))/ + .
PROOF: For 1 <i < k, let B; be the event that X; € B. Note that the probability (x) we’re trying
to bound is Pr[Bi|Pr[By|Bi]---Pr[By|Bi,...,Br_1]. Let p' € RY be the vector representing
the distribution of X;, conditioned on the events By, ..., B;. Denote by B the followmg linear
transformation from R™ to R™: for every u E RN, and j 6 [N], (Bu); = u; if j € B and (Bu); =0

otherwise. It’s not hard to verify that p* = Pr[B 1 (recall that 1 = (1/N,...,1/N) is the

p7.30 (144) 7.B. EXPANDER GRAPHS.

vector representing the uniform distribution over [N]). Similarly, p? = mﬁj@flf)’l where

A = A(G) is the adjacency matrix of G. Since every probability vector p satisfies |p|, = 1,
(x) = [(BA*'B1],
We bound this norm by showing that

> —15 1-X NF-L
[(BAY- B, < (U=AWEA (4)
which suffices since for every v € RV, |v|, <V N|v||, (see Note 7.24).

To prove (4), we use the following definition and lemma:

DEFINITION 7.39 (MATRIX NORM)

If A is an m by n matrix, then || A|| is the maximum number « such that ||Av||, < «||v]|, for every
v e R".

Note that if A is a normalized adjacency matrix then |A|| =1 (as A1 =1 and ||Av], < |v],
for every v). Also note that the matrix norm satisfies that for every two n by n matrices A, B,
1A+ Bl < [|All + [|B]| and [|AB|| < [|A[|[|B]-

LEMMA 7.40
Let A be a normalized adjacency matrix of an (n,d, \)-graph G. Let J be the adjacency matrix of
the n-clique with self loops (i.e., J; j = 1/n for every i,j). Then

A=(1-NJ+\C (5)
where ||C]| < 1.

Note that for every probability vector p, Jp is the uniform distribution, and so this lemma

tells us that in some sense, we can think of a step on a (n,d, \)-graph as going to the uniform
distribution with probability 1 — A, and to a different distribution with probability A. This is of
course not completely accurate, as a step on a d-regular graph will only go the one of the d neighbors
of the current vertex, but we’ll see that for the purposes of our analysis, the condition (5) will be
just as good.”
PROOF OF LEMMA 7.40: Indeed, simply define C' = 3 (A4 — (1 —A)J). We need to prove ||Cv]|, <
[v|, for very v. Decompose v as v = u + w where u is al for some o and w L 1, and ||v|? =
[ul|? + [[w[?. Since A1 = 1 and J1 = 1 we get that Cu = }(u— (1 — A\)u) = u. Now, let
w’ = Aw. Then ||w'|, < M||w]|, and, as we saw in the proof of Lemma 7.27, w' L 1. Furthermore,
since the sum of the coordinates of w is zero, Jw = 0. We get that Cw = %w’. Since w' L u,
[Ow]2 = lu+ kw2 = a2+ [Aw/[2 < [ul + w2 = [[w]2. m

Returning to the proof of Theorem 7.38, we can write BA = B((l —A)J + AC), and hence
|BA|| < (1= \)||BJ|| + A||BC|. Since J’s output is always a vector of the form al, |BJ|| < v/B.
Also, because B is an operation that merely zeros out some parts of its input, ||B|| < 1 implying

" Algebraically, the reason (5) is not equivalent to going to the uniform distribution in each step with probability
1 — A is that C is not necessarily a stochastic matrix, and may have negative entries.

7.B. EXPANDER GRAPHS. p7.31 (145)

|BC|| < 1. Thus, ||[BA|| < (1—A)v/B+ . Since B1 has the value 1/N in |B| places, | B1|, = \/—‘/%,
and hence ||(BA)*1B1|, < (1= A3+ A)k_I%, establishing (4). W

One can obtain a similar error reduction procedure for two-sided error algorithms by running
the algorithm using the k sets of coins obtained from a k — 1 step random walk and deciding on the
output according to the majority of the values obtained. The analysis of this procedure is based
on the following theorem, whose proof we omit:

THEOREM 7.41 (EXPANDER CHERNOFF BOUND [?])

Let G be an (N, d, \)-graph and B C [N] with |B| = BN. Let Xy, ..., X} be random
variables denoting a k — 1-step random walk in G (where X is chosen uniformly).
For every i € [k|, define B; to be 1 if X; € B and 0 otherwise. Then, for every § > 0,

Pr[|ZeB g5 5] < 260-N8%k/60

p7.32 (146) 7.B. EXPANDER GRAPHS.

Chapter 8

Interactive proofs

“What is intuitively required from a theorem-proving procedure? First, that it is
possible to “prove” a true theorem. Second, that it is impossible to “prove” a false
theorem. Third, that communicating the proof should be efficient, in the following
sense. It does not matter how long must the prover compute during the proving
process, but it is essential that the computation required from the verifier is easy.”
Goldwasser, Micali, Rackoff 1985

The standard notion of a mathematical proof follows the certificate definition of NP. That is,
to prove that a statement is true one provides a sequence of symbols that can be written down in a
book or on paper, and a valid sequence exists only for true statements. However, people often use
more general ways to convince one another of the validity of statements: they interact with one
another, with the person verifying the proof (henceforth the verifier) asking the person providing
it (henceforth the prover) for a series of explanations before he is convinced.

It seems natural to try to understand the power of such interactive proofs from the complexity-
theoretic perspective. For example, can one prove that a given formula is not satisfiable? (recall
that is this problem is coNP-complete, it’s not believed to have a polynomial-sized certificate).
The surprising answer is yes. Indeed, interactive proofs turned out to have unexpected powers
and applications. Beyond their philosophical appeal, interactive proofs led to fundamental insights
in cryptographic protocols, the power of approximation algorithms, program checking, and the
hardness of famous “elusive” problems (i.e., NP-problems not known to be in P nor to be NP-
complete) such as graph isomorphism and approximate shortest lattice vector.

8.1 Warmup: Interactive proofs with a deterministic verifier

Let us consider what happens when we introduce interaction into the NP scenario. That is, we’d
have an interrogation-style proof system where rather than the prover send a written proof to the
verifier, the prover and verifier interact with the verifier asking questions and the prover responding,
where at the end the verifier decides whether or not to accept the input. Of course, both verifier
and prover can keep state during the interaction, or equivalently, the message a party sends at any

p8.1 (147)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p8.2 (148) 8.1. WARMUP: INTERACTIVE PROOFS WITH A DETERMINISTIC VERIFIER

point in the interaction can be a function of all messages sent and received so far. Formally, we
make the following definition:

DEFINITION 8.1 (INTERACTION OF DETERMINISTIC FUNCTIONS)
Let f,g: {0,1}" — {0,1}" be functions. A k-round interaction of f and g on input x € {0,1}",
denoted by (f, g)(x) is the sequence of the following strings a1, ..., ax € {0,1}* defined as follows:

ar = f(x)

az = g(x,a1) (1)
a2i4+1 = f(%al, ceey a2i)
a2i+2 = g(x,al, ceey a27;+1)

(Where we consider a suitable encoding of i-tuples of strings to strings.)
The output of f (resp. g) at the end of the interaction denoted out¢(f, g)(z) (resp. outy(f, g)(x)
) is defined to be f(z,a1,...,ax) (resp. g(z,a1,...,ax)).

DEFINITION 8.2 (DETERMINISTIC PROOF SYSTEMS)
We say that a language L has a k-round deterministic interactive proof system if there’s a deter-

ministic TM V' that on input z, a4, ...,a; runs in time polynomial in |z|, satisfying:
(Completeness)xr € L = AP : {0,1}* — {0,1}* outy (V, P)(x) = 1
(Soundness)r ¢ L = VP :{0,1}" — {0,1} outy(V, P)(z) =1

The class dIP contains all languages with a k(n)-round deterministic interactive proof systems
with k(n) polynomial in n.

It turns out this actually does not change the class of languages we can prove:

THEOREM 8.3
dIP = NP.

PrOOF: Clearly, every NP language has a 1-round proof system. Now we prove that if a L has
an interactive proof system of this type then L € NP. The certificate for membership is just the

transcript (a1, ag, ..., a) causing the verifier to accept. To verify this transcript, check that indeed
V(z) = a1, V(z,a1,a2) = as, ..., and V(x,a1,...,a;) = 1. If z € L then there indeed exists such
a transcript. If there exists such a transcript (a1, ..., ax) then we can define a prover function P to

satisfy P(z,a1) = a2, P(x,a1,a2,a3) = a4, etc. We see that outy (V, P)(xz) = 1 and hence = € L.
|

8.2. THE CLASS IP p8.3 (149)
8.2 The class IP

In order to realize the full potential of interaction, we need to let the verifier be probabilistic. The
idea is that, similar to probabilistic algorithms, the verifier will be allowed to come to a wrong
conclusion (e.g., accept a proof for a wrong statement) with some small probability. However, as in
the case of probabilistic algorithms, this probability is over the verifier’s coins and the verifier will
reject proofs for a wrong statement with good probability regardless of the strategy the prover uses.
It turns out that the combination of interaction and randomization has a huge effect: as we will
see, the set of languages which have interactive proof systems now jumps from NP to PSPACE.

EXAMPLE 8.4

As an example for a probabilistic interactive proof system, consider the following scenario: Marla
claims to Arthur that she can distinguish between the taste of Coke (Coca-Cola) and Pepsi. To
verify this statement, Marla and Arthur repeat the following experiment 50 times: Marla turns her
back to Arthur, as he places Coke in one unmarked cup and Pepsi in another, choosing randomly
whether Coke will be in the cup on the left or on the right. Then Marla tastes both cups and states
which one contained which drinks. While, regardless of her tasting abilities, Marla can answer
correctly with probability % by a random guess, if she manages to answer correctly for all the 50
repetitions, Arthur can indeed be convinced that she can tell apart Pepsi and Coke.

To formally define this we extend the notion of interaction to probabilistic functions (actually,
we only need to do so for the verifier). To model an interaction between f and g where f is
probabilistic, we add an additional m-bit input r to the function f in (1), that is having a; = f(z,),
a3 = f(x,7,a1,az2), etc. The interaction (f,g)(z) is now a random variable over r €p {0,1}".
Similarly the output outs(f, g)(x) is also a random variable.

DEFINITION 8.5 (IP)

Let k : N — N be some function with k(n) computable in poly(n) time. A language L is in IP[k]
if there is a Turing machine V such that on inputs z,r,ay,...,a;, V runs in time polynomial in |z|
and such that

(Completeness) x € L = 3P Prlouty (V, P)(x) =
(Soundness) x ¢ L = VP Prouty(V, P)(xz) =1] <1/3. (3)

We define IP = U.>1IP[n¢].

REMARK 8.6
The following observations on the class IP are left as an exercise (Exercise 1).

1. Allowing the prover to be probabilistic (i.e., the answer function a; depends upon some
random string used by the prover) does not change the class IP. The reason is that for
any language L, if a probabilistic prover P results in making verifier V' accept with some
probability, then averaging implies there is a deterministic prover which makes V' accept with
the same probability.

p8.4 (150) 8.3. PROVING THAT GRAPHS ARE NOT ISOMORPHIC.

Figure unavailable in pdf file.

Figure 8.1: Two isomorphic graphs.

2. Since the prover can use an arbitrary function, it can in principle use unbounded computa-
tional power (or even compute undecidable functions). However, one can show that given any
verifier V', we can compute the optimum prover (which, given z, maximizes the verifier’s ac-

ceptance probability) using poly(|z|) space (and hence 2POLY (1)) time). Thus IP C PSPACE.

3. The probabilities of correctly classifying an input can be made arbitrarily close to 1 by using
the same boosting technique we used for BPP (see Section ??): to replace 2/3 by 1—exp(—m),
sequentially repeat the protocol m times and take the majority answer. In fact, using a more
complicated proof, it can be shown that we can decrease the probability without increasing the
number of rounds using parallel repetition (i.e., the prover and verifier will run m executions
of the protocol in parallel). We note that the proof is easier for the case of public coin proofs,
which will be defined below.

4. Replacing the constant 2/3 in the completeness requirement (2) by 1 does not change the
class IP. This is a nontrivial fact. It was originally proved in a complicated way but today
can be proved using our characterization of IP later in Section 8.5.

5. In contrast replacing the constant 2/3 by 1 in the soundness condition (3) is equivalent to
having a deterministic verifier and hence reduces the class IP to NP.

6. We emphasize that the prover functions do not depend upon the verifier’s random strings,
but only on the messages/questions the verifier sends. In other words, the verifier’s random
string is private. (Often these are called private coin interactive proofs.) Later we will also
consider the model where all the verifier’s questions are simply obtained by tossing coins and
revealing them to the prover (this is known as public coins or Arthur-Merlin proofs).

8.3 Proving that graphs are not isomorphic.

We’ll now see an example of a language in IP that is not known to be in NP. Recall that the usual
ways of representing graphs —adjacency lists, adjacency matrices— involve a numbering of the
vertices. We say two graphs G1 and Go are isomorphic if they are the same up to a renumbering
of vertices. In other words, if there is a permutation 7 of the labels of the nodes of G; such that
m(G1) = Gy. The graphs in figure 7?7, for example, are isomorphic with 7 = (12)(3654). (That is,
1 and 2 are mapped to each other, 3 to 6, 6 to 5, 5 to 4 and 4 to 1.) If G; and G are isomorphic,
we write G; = G3. The Gl problem is the following: given two graphs G1,Gs (say in adjacency
matrix representation) decide if they are isomorphic. Note that clearly Gl € NP, since a certificate
is simply the description of the permutation .

The graph isomorphism problem is important in a variety of fields and has a rich history (see
[?]). Along with the factoring problem, it is the most famous NP-problem that is not known to be

8.4. PUBLIC COINS AND AM p8.5 (151)

either in P or NP-complete. The results of this section show that Gl is unlikely to be NP-complete,
unless the polynomial hierarchy collapses. This will follow from the existence of the following proof
system for the complement of Gl: the problem GNI of deciding whether two given graphs are not
isomorphic.

Protocol: Private-coin Graph Non-isomorphism

Vi pick i € {1,2} uniformly randomly. Randomly permute the vertices of G; to get a
new graph H. Send H to P.

P: identify which of G, G2 was used to produce H. Let G; be that graph. Send j to V.

Vi accept if ¢ = j; reject otherwise.

To see that Definition 8.5 is satisfied by the above protocol, note that if G; # G4 then there exists
a prover such that Pr[V accepts] = 1, because if the graphs are non-isomorphic, an all-powerful
prover can certainly tell which one of the two is isomorphic to H. On the other hand, if Gy = G»
the best any prover can do is to randomly guess, because a random permutation of Gy looks exactly
like a random permutation of G. Thus in this case for every prover, Pr[Vaccepts] < 1/2. This
probability can be reduced to 1/3 by sequential or parallel repetition.

8.4 Public coins and AM

Allowing the prover full access to the verifier’s random string leads to the model of interactive
proofs with public-coins.

DEFINITION 8.7 (AM, MA)

For every k we denote by AMJ[k] the class of languages that can be decided by a k round interactive
proof in which each verifier’s message consists of sending a random string of polynomial length,
and these messages comprise of all the coins tossed by the verifier. A proof of this form is called a
public coin proof (it is sometimes also known an Arthur Merlin proof).!

We define by AM the class AMJ[2].2 That is, AM is the class of languages with an interactive
proof that consist of the verifier sending a random string, the prover responding with a message,
and where the decision to accept is obtained by applying a deterministic polynomial-time function
to the transcript. The class M A denotes the class of languages with 2-round public coins interactive
proof with the prover sending the first message. That is, L € MA if there’s a proof system for L
that consists of the prover first sending a message, and then the verifier tossing coins and applying
a polynomial-time predicate to the input, the prover’s message and the coins.

! Arthur was a famous king of medieval England and Merlin was his court magician. Babai named these classes
by drawing an analogy between the prover’s infinite power and Merlin’s magic. One “justification” for this model
is that while Merlin cannot predict the coins that Arthur will toss in the future, Arthur has no way of hiding from
Merlin’s magic the results of the coins he tossed in the past.

“Note that AM = AM][2] while IP = IP[poly]. While this is indeed somewhat inconsistent, this is the standard
notation used in the literature. We note that some sources denote the class AM[3] by AMA, the class AM[4] by
AMAM etc.

p8.6 (152) 8.4. PUBLIC COINS AND AM

Note that clearly for every k, AM[k] C IP[k]. The interactive proof for GNI seemed to crucially
depend upon the fact that P cannot see the random bits of V. If P knew those bits, P would know
1 and so could trivially always guess correctly. Thus it may seem that allowing the verifier to keep
its coins private adds significant power to interactive proofs, and so the following result should be
quite surprising:

THEOREM 8.8 ([GS87])
For every k : N — N with k(n) computable in poly(n),

IP[k] C AM[k + 2]

The central idea of the proof of Theorem 8.8 can be gleaned from the proof for the special case
of GNI.

THEOREM 8.9
GNI € AM]k] for some constant k > 2.

The key idea in the proof of Theorem 8.9 is to look at graph nonisomorphism in a different,
more quantitative, way. (Aside: This is a good example of how nontrivial interactive proofs can be
designed by recasting the problem.) Consider the set S = {H : H = G; or H = G2}. Note that it
is easy to prove that a graph H is a member of S, by providing the permutation mapping either
G1 or G4 to H. The size of this set depends on whether (1 is isomorphic to Go2. An n vertex graph
G has at most n! equivalent graphs. If G; and Gy have each exactly n! equivalent graphs (this will
happen if for i = 1,2 there’s no non-identity permutation 7 such that 7(G;) = G;) we’ll have that

if G1 ;Té G2 then ’S| = 2n! (4)
if G1 = Gy then |S|=nl! (5)

(To handle the general case that G; or G2 may have less than n! equivalent graphs, we actually
change the definition of S to

S={(H,7m): H=G; or H=Gy and 7 € aut(H)}

where m € aut(H) if 7(H) = H. It is clearly easy to prove membership in the set S and it can be
verified that S satisfies (4) and (5).)

Thus to convince the verifier that G; # G2, the prover has to convince the verifier that case (4)
holds rather than (5). This is done by using a set lower bound protocol.

8.4.1 Set Lower Bound Protocol.

In a set lower bound protocol, the prover proves to the verifier that a given set S (where membership
in S is efficiently verifiable) has cardinality at least K up to accuracy of, say, factor of 2. That
is, if |S| > K then the prover can cause the verifier to accept with high probability, while if
|S| < K/2 then the verifier will reject with high probability, no matter what the prover does. By
the observations above, such a protocol suffices to complete the proof of Theorem 8.9.

8.4. PUBLIC COINS AND AM p8.7 (153)

Tool: Pairwise independent hash functions.

The main tool we use for the set lower bound protocol is a pairwise independent hash function
collection. This is a simple but incredibly useful tool that has found numerous applications in
complexity theory and computer science at large (see Note 8.13).

DEFINITION 8.10 (PAIRWISE INDEPENDENT HASH FUNCTIONS)

Let H,x be a collection of functions from {0,1}" to {0, 1}*. We say that Hp 1 is
pairwise independent if for every x, 2’ € {0,1}" with = # 2/ and for every y,y' €
{0, 1}k, Pl"heRHn,k[h(fC) =y A h(z)=y]=2"2"

Note that an equivalent formulation is that for every two distinct strings z,2’ € {0,1}" the
random variable (h(x),h(z’)) for h chosen at random from M, is distributed according to the
uniform distribution on {0,1}* x {0, 1}*.

Recall that we can identify the elements of {0,1}" with the finite field (see Section A.4 in
the appendix), denoted GF(2"), containing 2" elements, whose addition (+) and multiplication (-)
operations satisfy the usual commutative and distributive laws, where and every element x has an
additive inverse (denoted by —z) and, if nonzero, a multiplicative inverse (denoted by z~!). The
following theorem provides a construction of an efficiently computable pairwise independent hash
functions (see also Exercise 4 for a different construction):

THEOREM 8.11 (EFFICIENT PAIRWISE INDEPENDENT HASH FUNCTIONS)

For every n define the collection Hy, ,, to be {hap}apear(en) where for every a,b € GF(2"), the func-
tion hqyp : GF(2") — GF(2") maps x to ax +b. Then, H,,, is a collection of pairwise independent
hash functions.

REMARK 8.12

Theorem 8.11 implies the existence of an efficiently computable pairwise independent hash functions
Hy, 1 for every m, k: if K > n we can use the collection Hj, ;, and reduce the size of the input to n
by padding it with zeros. If £ < n then we can use the collection H,, , and truncate the last n —k
bits of the output.

PROOF: For every x # 2/ € GF(2") and y,y' € GF(2"), hop(z) =y and hqp(2’) = ¢/ iff a,b satisfy
the equations:

a-r+b=y
a7’ +b=y

These imply a- (x —2') =y —% or a = (y —y')(z — 2')~!. Since b = y — a - x, the pair (a,b) is
completely determined by these equations, and so the probability that this happens over the choice
of a,b is exactly one over the number of possible pairs, which indeed equals 22%]

p8.8 (154) 8.4. PUBLIC COINS AND AM

NOTE 8.13 (THE HASHING PARADIGM)

A hash function collection is a collection of functions mapping a large uni-
verse, say {0,1}", to a smaller universe, say {0, l}k for k < n. Typically, we
require of such a collection that it maps its input in a fairly uniform way to
the output range. For example, if S is a subset of {0,1}" then we wish that,
if h is chosen at random from the collection, then most elements of {0, 1}k
have roughly |S|27% preimages in S (which is the expected number if h was
a completely random function). In particular, if S has size roughly 2¥ then
we expect the mapping to be one-to-one or almost one-to-one, and so there

should be a relatively small number of collisions: pairs z # x’ € S such that
h(xz) = h(z"). Therefore, the image of S under h should look like this:

o

In databases, hash functions are used to maintain very efficient databases
(that allow fast membership queries to a subset S C {0,1}" of size 2 re-
quiring only 2* as opposed to 2" bits of storage). In theoretical computer
science, hash functions have a variety of uses. An example is Lemma 9.16
of the next chapter that shows that if the collection is pairwise independent
and S C {0,1}" has size roughly 2¥, then with good probability the value
0% will have exactly one preimage in S.

In all these cases it is important that the hash function is chosen at random
from some collection independently of the choice of set S. It is easy to see
that if k is small enough (e.g., k < n/2) then for every h : {0,1}" — {0,1}*
there is a set S C {0,1}" of size 2¥ that is “very bad” for h in the sense that
all the members of S map to the same element under h.

Pairwise independent hash functions are but one example of a hash func-
tion collection. Several types of such collections are known in the literature
featuring various tradeoffs between efficiency and uniformity of output.

8.4. PUBLIC COINS AND AM p8.9 (155)

The lower-bound protocol.

The lower-bound protocol is as follows:

Protocol: Goldwasser-Sipser Set Lowerbound

Conditions: S C {0,1}" is a set such that membership in S can be certified. Both
parties know a number K. The prover’s goal is to convince the verifier that |S| > K

and the verifier should reject if |S| < % Let k£ be a number such that 2¥72 < K <
2k=1,

V: Randomly pick a function h : {0,1}" — {0, 1}k from a pairwise independent hash
function collection H,, ;. Pick y €r {0, l}k. Send h,y to prover.

P: Try to find an z € S such that h(x) = y. Send such an z to V, together with a
certificate that x € S.

V’s output: If certificate validates that x € S and h(z) = y, accept; otherwise reject.

Let p = 25,6 If |S| < & then clearly |A(S)] < %k and so the verifier will accept with probability
at most £. The main challenge is to show that if |S| > K then the verifier will accept with
probability noticeably larger than p/2 (the gap between the probabilities can then be amplified
using repetition). That is, it suffices to prove

CrAamm 8.13.1
k
Let S C {0,1}™ satisty |S| < 4. Then,

Pr Beesh(z) =y > 3181
h€ RHom kwER{0,1}*

PROOF: For every y € {0,1}", we’ll prove the claim by showing that

Pr [Bueshl(z) =y] > 3p,
WP Bresh() =) 2 §p

(where p = |S|/2%). Indeed, for every z € S define the event E, to hold if h(z) = y. Then,
Pr[3,esh(x) = y] = Pr[UzesE,] but by the inclusion-exclusion principle this is at least

Y Pr[E,] -3 Y PrlE.NE]

z€eS r#x’ €8
However, by pairwise independence, if # ', then Pr[E,] = 27% and Pr[E, N E,] = 272" and so

this probability is at least
ISP _LISP ISl 1SIY 3
ok 2 ok ok okt1) = 4P

p8.10 (156) 8.4. PUBLIC COINS AND AM

Figure unavailable in pdf file.

Figure 8.2: AM]Jk] looks like JT%, with the V quantifier replaced by probabilitic choice.

Proving Theorem 8.9. The public-coin interactive proof system for GNI consists of the verifier
and prover running several iterations of the set lower bound protocol for the set S as defined
above, where the verifier accepts iff the fraction of accepting iterations was at least 0.6p (note that
both parties can compute p). Using the Chernoff bound (Theorem A.18) it can be easily seen
that a constant number of iteration will suffices to ensure completeness probability at least % and
soundness error at most % |

REMARK 8.14

How does this protocol relate to the private coin protocol of Section 8.37 The set S roughly
corresponds to the set of possible messages sent by the verifier in the protocol, where the verifier’s
message is a random element in S. If the two graphs are isomorphic then the verifier’s message
completely hides its choice of a random i € {1, 2}, while if they’re not then it completely reveals it
(at least to a prover that has unbounded computation time). Thus roughly speaking in the former
case the mapping from the verifier’s coins to the message is 2-to-1 while in the latter case it is
1-to-1, resulting in a set that is twice as large. Indeed we can view the prover in the public coin
protocol as convincing the verifier that its probability of convincing the private coin verifier is large.
While there are several additional intricacies to handle, this is the idea behind the generalization
of this proof to show that IP[k] C AMIk + 2].

REMARK 8.15

Note that, unlike the private coins protocol, the public coins protocol of Theorem 8.9 does not enjoy
perfect completeness, since the set lowerbound protocol does not satisfy this property. However,
we can construct a perfectly complete public-coins set lowerbound protocol (see Exercise 3), thus
implying a perfectly complete public coins proof for GNI. Again, this can be generalized to show that
any private-coins proof system (even one not satisfying perfect completeness) can be transformed
into a perfectly complete public coins system with a similar number of rounds.

8.4.2 Some properties of IP and AM
We state the following properties of IP and AM without proof:

1. (Exercise 5) AM[2] = BP - NP where BP - NP is the class in Definition ??. In particular it
follows thatAM][2] C XF.

2. (Exercise 4) For constants k > 2 we have AM[k] = AM][2]. This “collapse” is somewhat
surprising because AM][k] at first glance seems similar to PH with the V quantifiers changed
to “probabilistic V7 quantifiers, where most of the branches lead to acceptance. See Figure 8.2.

3. It is open whether there is any nice characterization of AM][o(n)], where o(n) is a suitably
slow growing function of n, such as loglogn.

8.5. IP = PSPACE p8.11 (157)
8.4.3 Can G|l be NP-complete?

We now prove that if Gl is NP-complete then the polynomial hierarchy collapses.

THEOREM 8.16 ([?])
If Gl is NP-complete then Yo = Ils.

Proor: If Gl is NP-complete then GNI is coNP-complete which implies that there exists a function
f such that for every n variable formula ¢, Vy¢(y) holds iff f(¢) € GNI. Let

Y = Fpeq0,13" Vyeqo,13m (2, Y)

be a YX9SAT formula. We have that 1 is equivalent to
Jzeq0,1)79(x) € GNI

where g(x) = f(12).

Using Remark 8.15 and the comments of Section 8.4.2, we have that GNI has a two round AM
proof with perfect completeness and (after appropriate amplification) soundness error less than
27", Let V be the verifier algorithm for this proof system, and denote by m the length of the
verifier’s random tape and by m’ the length of the prover’s message and . We claim that 1) is
equivalent to

77[)* = VTG{O,I}Y’L/ EI:):G{O,l}n 3aE{O,l}mVv(g(gj)v T, a) =1

Indeed, by perfect completeness if i is satisfiable then * is satisfiable. If v is not satisfiable
then by the fact that the soundness error is at most 27", we have that there exists a single string
r € {0,1}"™ such that for every = with g(z) & GNI, there’s no a such that V(g(x),r,a) =1, and so
1¥* is not satisfiable. Since ¥* can easily be reduced to a II3SAT formula, we get that 3o C Tlg,
implying (since ¥ = collz) that 3o =II;. B

8.5 IP =PSPACE

In this section we show a surprising characterization of the set of languages that have interactive
proofs.

THEOREM 8.17 (LFKN, SHAMIR, 1990)
IP = PSPACE.

Note that this is indeed quite surprising: we already saw that interaction alone does not increase
the languages we can prove beyond NP, and we tend to think of randomization as not adding
significant power to computation (e.g., we’ll see in Chapter 16 that under reasonable conjectures,
BPP = P). Asnoted in Section 8.4.2, we even know that languages with constant round interactive
proofs have a two round public coins proof, and are in particular contained in the polynomial
hierarchy, which is believed to be a proper subset of PSPACE. Nonetheless, it turns out that the
combination of sufficient interaction and randomness is quite powerful.

p8.12 (158) 8.5. IP = PSPACE

By our earlier Remark 8.6 we need only show the direction PSPACE C IP. To do so, we’ll show
that TQBF € IP[poly(n)]. This is sufficient because every L € PSPACE is polytime reducible to
TQBF. We note that our protocol for TQBF will use public coins and also has the property that if
the input is in TQBF then there is a prover which makes the verifier accept with probability 1.

Rather than tackle the job of designing a protocol for TQBF right away, let us first think about
how to design one for 3SAT. How can the prover convince the verifier than a given 3CNF formula
has no satisfying assignment? We show how to prove something even more general: the prover can
prove to the verifier what the number of satisfying assignments is. (In other words, we will design
a prover for #SAT.) The idea of arithmetization introduced in this proof will also prove useful in
our protocol for TQBF.

8.5.1 Arithmetization

The key idea will be to take an algebraic view of boolean formulae by representing them as polyno-
mials. Note that 0,1 can be thought of both as truth values and as elements of some finite field F.
Thus we have the following correspondence between formulas and polynomials when the variables
take 0/1 values:

zANy «— XY
r «— 1-X
zVy «— 1-(1-X)(1-Y)
xrVyV-z «— 1-(1-X)(1-Y)Z

Given any 3CNF formula ¢(z1, 22, . . ., z,) with m clauses, we can write such a degree 3 polyno-
mial for each clause. Multiplying these polynomials we obtain a degree 3m multivariate polynomial
P,(X1,Xs,...,X,) that evaluates to 1 for satisfying assignments and evaluates to 0 for unsatis-
fying assignments. (Note: we represent such a polynomial as a multiplication of all the degree 3
polynomials without “opening up” the parenthesis, and so P, (X1, Xo,..., X,) has a representation
of size O(m).) This conversion of ¢ to P, is called arithmetization. Once we have written such
a polynomial, nothing stops us from going ahead and and evaluating the polynomial when the
variables take arbitrary values from the field F instead of just 0,1. As we will see, this gives the
verifier unexpected power over the prover.

8.5.2 Interactive protocol for #SATp

To design a protocol for 3SAT we give a protocol for #SATp, which is a decision version of the
counting problem #SAT we saw in Chapter 77:

#SATp = {(¢, K) : K is the number of satisfying assignments of ¢} .

and ¢ is a 3CNF formula of n variables and m clauses.

THEOREM 8.18
#SATp € IP.

8.5. IP = PSPACE p8.13 (159)

PROOF: Given input (¢, K), we construct, by arithmetization, Py. The number of satisfying as-
signments #¢ of ¢ is:

o S Pt b (6)

b1€{0,1} b2€{0,1} bn€{0,1}

To start, the prover sends to the verifier a prime p in the interval (27,22"]. The verifier can check
that p is prime using a probabilistic or deterministic primality testing algorithm. All computations
described below are done in the field F = F,, of numbers modulo p. Note that since the sum in (6)
is between 0 and 2", this equation is true over the integers iff it is true modulo p. Thus, from now
on we consider (6) as an equation in the field F,. We’ll prove the theorem by showing a general
protocol, Sumcheck, for verifying equations such as (6).

Sumcheck protocol.

Given a degree d polynomial g(X1,...,X,), an integer K, and a prime p, we present an interactive

proof for the claim
K= > > Y gX,...,X) (7)

b1€{0,1} b2€{0,1} b,e{0,1}
(where all computations are modulo p). To execute the protocol V' will need to be able to evaluate
the polynomial g for any setting of values to the variables. Note that this clearly holds in the case
g = P¢.
For each sequence of values bg, bs, ..., b, to Xo, X3,..., X, note that g(Xi,b2,bs3,...,by,) is a
univariate degree d polynomial in the variable X;. Thus the following is also a univariate degree d

polynomial:
= > 0 Y g(Xiba.. by)

b2€{0,1} b,e{0,1}

If Claim (7) is true, then we have h(0) + h(1) = K.
Consider the following protocol:

Protocol: Sumcheck protocol to check claim (7)

V: If n =1 check that g(1) + g(0) = K. If so accept, otherwise reject. If n > 2, ask P
to send h(X7) as defined above.

P: Sends some polynomial s(X7) (if the prover is not “cheating” then we’ll have s(X;) =
h(X1)).

V: Reject if s(0) + s(1) # K; otherwise pick a random a. Recursively use the same
protocol to check that

Z Z g(a,ba, ... by).

be{0,1} bn€{0,1}

p8.14 (160) 8.5. IP = PSPACE

If Claim (7) is true, the prover that always returns the correct polynomial will always convince
V. If (7) is false then we prove that V rejects with high probability:

Pr[V rejects (K, g)] > <1 - i)n. (8)

With our choice of p, the right hand side is about 1 — dn/p, which is very close to 1 since d < n?
and p > n*.

Assume that (7) is false. We prove (8) by induction on n. For n = 1, V simply evaluates
9(0),g(1) and rejects with probability 1 if their sum is not K. Assume the hypothesis is true for
degree d polynomials in n — 1 variables.

In the first round, the prover P is supposed to return the polynomial h. If it indeed returns
h then since h(0) + h(1) # K by assumption, V' will immediately reject (i.e., with probability 1).
So assume that the prover returns some s(X;) different from h(X;). Since the degree d nonzero
polynomial s(X7) — h(X7) has at most d roots, there are at most d values a such that s(a) = h(a).
Thus when V' picks a random a,

Prfs(a) # h(a)] > 1 - j (9)

If s(a) # h(a) then the prover is left with an incorrect claim to prove in the recursive step.
By the induction hypothesis, the prover fails to prove this false claim with probability at least

d n—1
> <1 — 5) . Thus we have

Py rejects] > (15 (1- Z)l - (1- ;j) (10)

This finishes the induction.
[|

8.5.3 Protocol for TQBF: proof of Theorem 8.17

We use a very similar idea to obtain a protocol for TQBF. Given a quantified Boolean formula
U = JxVaodas - - - Vaé(21,. .., 2,), we use arithmetization to construct the polynomial Py. We
have that W € TQBF if and only if

o< > I > -+ II Pstbr,....bn) (11)

b1€{0,1} b2e{0,1} b3e{0,1} bn€{0,1}

A first thought is that we could use the same protocol as in the #SATp case, except check that
5(0)-s(1) = K when you have a [[. But, alas, multiplication, unlike addition, increases the degree of
the polynomial — after k steps, the degree could be 2¥. Such polynomials may have 2* coefficients
and cannot even be transmitted in polynomial time if k£ > logn.

The solution is to look more closely at the polynomials that are are transmitted and their relation
to the original formula. We’ll change ¥ into a logically equivalent formula whose arithmetization

8.6. THE POWER OF THE PROVER p8.15 (161)

does not cause the degrees of the polynomials to be so large. The idea is similar to the way circuits
are reduced to formulas in the Cook-Levin theorem: we’ll add auxiliary variables. Specifically, we’ll
change 1) to an equivalent formula ¢’ that is not in prenex form in the following way: work from
right to left and whenever encountering a V quantifier on a variable x; — that is, when considering
a postfix of the form V., 7(z1,...,2;), where 7 may contain quantifiers over additional variables
ZTit1,. .., &y — ensure that the variables z1, ..., z; never appear to the right of another V quantifier
in 7 by changing the postfix to Va; 3z, ..., 2l (2] = x1) A+ A (2], = ;) AT(21, ..., 2,). Continuing
this way we’ll obtain the formula ¢’ which will have O(n?) variables and will be at most O(n?)
larger than 1. It can be seen that the natural arithmetization for v/’ will lead to the polynomials
transmitted in the sumcheck protocol never having degree more than 2.

Note that the prover needs to prove that the arithmetization of ¥’ leads to a number K different
than 0, but because of the multiplications this number can be as large as 22". Nevertheless the
prover can find a prime p between 0 and 2" such that X' mod p # 0 (in fact as we saw in Chapter 7
a random prime will do). This finishes the proof of Theorem 8.17. B

REMARK 8.19

An alternative way to obtain the same result (or, more accurately, an alternative way to describe
the same protocol) is to notice that for 2 € {0,1}, ¥ = z for all £ > 1. Thus, in principle we can
convert any polynomial p(x1,...,z,) into a multilinear polynomial ¢(x1,...,z,) (i.e., the degree of
q(+) in any variable z; is at most one) that agrees with p(-) on all x1,...,x, € {0,1}. Specifically,
for any polynomial p(-) let L;(p) be the polynomial defined as follows

Li(p)(.’El, ... ,SL‘n) = .%‘Z'P(SL‘l, cey Ti—1, L iy, . .,l‘n)+
(1 —x)P(x1,. .., 2i-1,0, 2541, ..., xn) (12)

then Ly (La(--- (Ln(p) - -) is such a multilinear polynomial agreeing with p(-) on all values in {0, 1}.
We can thus use O(n?) invocations operator to convert (11) into an equivalent form where all the
intermediate polynomials sent in the sumcheck protocol are multilinear. We’ll use this equivalent
form to run the sumcheck protocol, where in addition to having round for a) or [] operator,
we’ll also have a round for each application of the operator L (in such rounds the prover will send
a polynomial of degree at most 2).

8.6 The power of the prover

A curious feature of many known interactive proof systems is that in order to prove membership
in language L, the prover needs to do more powerful computation than just deciding membership
in L. We give some examples.

1. The public coin system for graph nonisomorphism in Theorem 8.9 requires the prover to
produce, for some randomly chosen hash function h and a random element y in the range of
h, a graph H such that h(H) is isomorphic to either G1 or Gy and h(z) = y. This seems
harder than just solving graph non-isomorphism.

p8.16 (162) 8.7. PROGRAM CHECKING

2. The interactive proof for 3SAT, a language in coNP, requires the prover to do #P compu-
tations, doing summations of exponentially many terms. (Recall that all of PH is in P#F)

In both cases, it is an open problem whether the protocol can be redesigned to use a weaker
prover.

Note that the protocol for TQBF is different in that the prover’s replies can be computed in
PSPACE as well. This observation underlies the following result, which is in the same spirit
as the Karp-Lipton results described in Chapter 7?7, except the conclusion is stronger since MA
is contained in ¥o (indeed, a perfectly complete M A-proof system for L trivially implies that
Le 22)

THEOREM &.20
If PSPACE C P/poly then PSPACE = MA.

Proor: If PSPACE C P/poly then the prover in our TQBF protocol can be replaced by a circuit
of polynomial size. Merlin (the prover) can just give this circuit to Arthur (the verifier) in Round
1, who then runs the interactive proof using this “prover.” No more interaction is needed. Note
that there is no need for Arthur to put blind trust in Merlin’s circuit, since the correctness proof of
the TQBF protocol shows that if the formula is not true, then no prover can make Arthur accept
with high probability. B

In fact, using the Karp-Lipton theorem one can prove a stronger statement, see Lemma 77
below.

8.7 Program Checking

The discovery of the interactive protocol for the permanent problem was triggered by a field called
program checking. Blum and Kannan’s motivation for introducing this field was the fact that
program verification (deciding whether or not a given program solves a certain computational task)
is undecidable. They observed that in many cases we can guarantee a weaker guarantee of the
program’s “correctness” on an instance by instance basis. This is encapsulated in the notion of
a program checker. A checker C for a program P is itself another program that may run P as
a subroutine. Whenever P is run on an input z, C’s job is to detect if P’s answer is incorrect
(“buggy”) on that particular instance z. To do this, the checker may also compute P’s answer on
some other inputs. Program checking is sometimes also called instance checking, perhaps a more
accurate name, since the fact that the checker did not detect a bug does not mean that P is a
correct program in general, but only that P’s answer on z is correct.

DEFINITION 8.21
Let P be a claimed program for computational task T'. A checker for T is a probabilistic polynomial
time TM, C, that, given any z, has the following behavior:

1. If P is a correct program for T (i.e., Vy P(y) =T(y)), then P[C” accepts P(z)] > 2

2. If P(z) # T(x) then P[CT accepts P(z)] < %

8.7. PROGRAM CHECKING p8.17 (163)

Note that in the case that P is correct on z (i.e., P(x) = C(x)) but the program P is not correct
everywhere, there is no guarantee on the output of the checker.

Surprisingly, for many problems, checking seems easier than actually computing the problem.
(Blum and Kannan’s suggestion was to build checkers into the software whenever this is true; the
overhead introduced by the checker would be negligible.)

EXAMPLE 8.22 (CHECKER FOR GRAPH NON-ISOMORPHISM)
The input for the problem of Graph Non-Isomorphism is a pair of labelled graphs (Gi,Gs), and
the problem is to decide whether G1 = GG3. As noted, we do not know of an efficient algorithm for
this problem. But it has an efficient checker.

There are two types of inputs, depending upon whether or not the program claims G; = Gb.
If it claims that G; = G2 then one can change the graph little by little and use the program to
actually obtain the permutation 7 (). We now show how to check the claim that G; # G2 using
our earlier interactive proof of Graph non-isomorphism.

Recall the IP for Graph Non-Isomorphism:

e In case prover admits G1 # G repeat k times:
e Choose i €r {1,2}. Permute G; randomly into H
e Ask the prover (Gy, H); (G2, H) and check to see if the prover’s first answer is consistent.

Given a computer program that supposedly computes graph isomorphism, P, how would we check
its correctness? The program checking approach suggests to use an IP while regarding the program
as the prover. Let C be a program that performs the above protocol with P as the prover, then:

THEOREM 8.23
If P is a correct program for Graph Non-Isomorphism then C outputs ”correct” always. Otherwise,
if P(G1, G2) is incorrect then P[C outputs “correct” | < 27%. Moreover, C runs in polynomial time.

8.7.1 Languages that have checkers

Whenever a language L has an interactive proof system where the prover can be implemented
using oracle access to L, this implies that L has a checker. Thus, the following theorem is a direct
consequence of the interactive proofs we have seen:

THEOREM 8.24
The problems Graph Isomorphism (Gl), Permanent (perm) and True Quantified Boolean Formulae
(TQBF) have checkers.

Using the fact that P-complete languages are reducible to each other via NC-reductions, it suffices
to show a checker in NC for one P-complete language (as was shown by Blum & Kannan) to obtain
the following interesting fact:

p8.18 (164) 8.8. MULTIPROVER INTERACTIVE PROOFS (MIP)

THEOREM 8.25
For any P-complete language there exists a program checker in NC

Since we believe that P-complete languages cannot be computed in NC, this provides additional
evidence that checking is easier than actual computation.

8.8 Multiprover interactive proofs (MIP)

It is also possible to define interactive proofs that involve more than one prover. The important
assumption is that the provers do not communicate with each other during the protocol. They
may communicate before the protocol starts, and in particular, agree upon a shared strategy for
answering questions. (The analogy often given is that of the police interrogating two suspects in
separate rooms. The suspects may be accomplices who have decided upon a common story to tell
the police, but since they are interrogated separately they may inadvertently reveal an inconsistency
in the story.)

The set of languages with multiprover interactive provers is call MIP. The formal definition is
analogous to Definition 8.5. We assume there are two provers (though one can also study the case
of polynomially many provers; see the exercises), and in each round the verifier sends a query to
each of them —the two queries need not be the same. Each prover sends a response in each round.

Clearly, IP C MIP since we can always simply ignore one prover. However,it turns out that
MIP is probably strictly larger than IP (unless PSPACE = NEXP). That is, we have:

THEOREM 8.26 ([BFLI1])
NEXP = MIP

We will outline a proof of this theorem in Chapter ??. One thing that we can do using two
rounds is to force non-adaptivity. That is, consider the interactive proof as an “interrogation”
where the verifier asks questions and gets back answers from the prover. If the verifier wants to
ensure that the answer of a prover to the question ¢ is a function only of ¢ and does not depend
on the previous questions the prover heard, the prover can ask the second prover the question ¢
and accept only if both answers agree with one another. This technique was used to show that
multi-prover interactive proofs can be used to implement (and in fact are equivalent to) a model
of a “probabilistically checkable proof in the sky”. In this model we go back to an NP-like notion
of a proof as a static string, but this string may be huge and so is best thought of as a huge table,
consisting of the prover’s answers to all the possible verifier’s questions. The verifier checks the
proof by looking at only a few entries in this table, that are chosen randomly from some distribution.
If we let the class PCP[r, ¢] be the set of languages that can be proven using a table of size 2" and
q queries to this table then Theorem 8.26 can be restated as

THEOREM 8.27 (THEOREM 8.26, RESTATED)
NEXP = PCP|poly, poly] = U.PCP[n®, nc]

It turns out Theorem 8.26 can be scaled down to to obtain NP = PCP[polylog, polylog]. In
fact (with a lot of work) the following is known:

8.8. MULTIPROVER INTERACTIVE PROOFS (MIP) p8.19 (165)

THEOREM 8.28 (THE PCP THEOREM, [AS98, ALMT98])
NP = PCP[O(logn),O(1)]

This theorem, which will be proven in Chapter 18, has had many applications in complexity,
and in particular establishing that for many INP-complete optimization problems, obtaining an
approximately optimal solution is as hard as coming up with the optimal solution itself. Thus, it
seems that complexity theory has gone a full circle with interactive proofs: by adding interaction,
randomization, and multiple provers, and getting to classes as high as NEXP, we have gained new
and fundamental insights on the class NP the represents static deterministic proofs (or equivalently,
efficiently verifiable search problems).

WHAT HAVE WE LEARNED?

e An interactive proof is a generalization of mathematical proofs in which the
prover and polynomial-time probabilistic verifier interact.

e Allowing randomization and interaction seems to add significantly more power
to proof system: the class IP of languages provable by a polynomial-time
interactive proofs is equal to PSPACE.

e All languages provable by a constant round proof system are in the class AM:
that is, they have a proof system consisting of the the verifier sending a single
random string to the prover, and the prover responding with a single message.

Chapter notes and history

Interactive proofs were defined in 1985 by Goldwasser, Micali, Rackoff [GMRS89] for cryptographic
applications and (independently, and using the public coin definition) by Babai and Moran [BMS88].
The private coins interactive proof for graph non-isomorphism was given by Goldreich, Micali and
Wigderson [GMWS87]. Simulations of private coins by public coins we given by Goldwasser and
Sipser [GS87]. The general feeling at the time was that interactive proofs are only a “slight”
extension of NP and that not even 3SAT has interactive proofs. The result IP = PSPACE was
a big surprise, and the story of its discovery is very interesting.

In the late 1980s, Blum and Kannan [BK95] introduced the notion of program checking. Around
the same time, manuscripts of Beaver and Feigenbaum [BF90] and Lipton [Lip91] appeared. In-
spired by some of these developments, Nisan proved in December 1989 that #SAT has multiprover
interactive proofs. He announced his proof in an email to several colleagues and then left on va-
cation to South America. This email motivated a flurry of activity in research groups around the
world. Lund, Fortnow, Karloff showed that #SAT is in IP (they added Nisan as a coauthor and the
final paper is [LFK92]). Then Shamir showed that IP =PSPACE [Sha92| and Babai, Fortnow and
Lund [BFL91] showed MIP = NEXP. The entire story —as well as related developments—are
described in Babai’s entertaining survey [Bab90].

Vadhan [Vad00] explores some questions related to the power of the prover.

p8.20 (166) 8.8. MULTIPROVER INTERACTIVE PROOFS (MIP)

The result that approximating the shortest vector is probably not NP-hard (as mentioned in
the introduction) is due to Goldreich and Goldwasser [GGO0O].

Exercises

§1 Prove the assertions in Remark 8.6. That is, prove:

(a) Let IP’ denote the class obtained by allowing the prover to be probabilistic in Defini-
tion 8.5. That is, the prover’s strategy can be chosen at random from some distribution
on functions. Prove that IP’ = IP.

(b) Prove that IP C PSPACE.

(¢) Let IP’ denote the class obtained by changing the constant 2/3 in (2) and (3) to 1—2~1#1,
Prove that IP' = IP.

(d) Let IP’ denote the class obtained by changing the constant 2/3 in (2) to 1. Prove that

IP' = IP.
(e) Let IP’ denote the class obtained by changing the constant 2/3 in (3) to 1. Prove that
IP' = NP.

§2 We say integer y is a quadratic residue modulo m if there is an integer such that y = 22

(mod m). Show that the following language is in IP[2]:

QNR = {(y,m) : y is not a quadratic residue modulo m} .

§3 Prove that there exists a perfectly complete AM[O(1)] protocol for the proving a lowerbound
on set size.

'G Jo jonpoad
URISOLIE)) SOWT} 7 oY SI JeY)} ;G 308 9U} G JO PEIISUI SULIOPISUOD
£q posearour oq ued des oy J, 'q{{ ‘0} = (9)™y*N aaey [[om YSnouo
o8rey st ¢ JT ey uoaoxd oq wed 1 pue ‘fy ‘- ly SUOI)OUNJ YSRY
D42028 9sT 0} ToA0Id ST} MO[[e Ued oM J] YSNOUd 93Ie] ST 2 JT "3
JO UOIOUN] © WAAD oq WeD g < 0 omuM T S |g| pue y < |g]
9S®D 91} UMD USINSUIISIP 0% [000301d © SUIIONLIISUOD JO OSBRI IAT
-SBd 91} IOPISUO)) "UOIDUNJ T[S O} 9S00TD I9A0Id dT[) dARY R
oM [000701d PUNOQIOMO] 198 JUALIND JY) UI 1R} 9I0U ISI] JUTE]

§4 Prove that for every constant k > 2, AM[k + 1] C AMIk].
§5 Show that AM[2] = BP - NP
§6 [BFNWO3] Show that if EXP C P /poly then EXP = MA.

PUPTU HOVASd
' s1 1e() 1aoxd e soxmbor 4gq | 10 Jooid oArjoRIOIUL OV T, JUTH

8.A.

INTERACTIVE PROOF FOR THE PERMANENT p8.21 (167)

§7

§8

§9

§10

§11

Show that the problem Gl is downward self reducible. That is, prove that given two graphs
G1,G2 on n vertices and access to a subroutine P that solves the Gl problem on graphs with
up to n — 1 vertices, we can decide whether or not G and G5 are isomorphic in polynomial
time.

Prove that in the case that (G; and G are isomorphic we can obtain the permutation m
mapping G1 to G2 using the procedure of the above exercise. Use this to complete the proof
in Example 8.22 and show that graph isomorphism has a checker. Specifically, you have to
show that if the program claims that G; = G2 then we can do some further investigation
(including calling the programs on other inputs) and with high probability conclude that
either (a) conclude that the program was right on this input or (b) the program is wrong on
some input and hence is not a correct program for graph isomorphism.

Define a language L to be downward self reducible there’s a polynomial-time algorithm R that
for any n and x € {0,1}", R¥»-1(x) = L(x) where by L; we denote an oracle that solves L
on inputs of size at most k. Prove that if L is downward self reducible than L € PSPACE.

Show that MIP C NEXP.

Show that if we redefine multiprover interactive proofs to allow, instead of two provers, as
many as m(n) = poly(n) provers on inputs of size n, then the class MIP is unchanged.

"souury
maJ e s1y) qeader uay], ‘stesoxd (u)wr oY) JuOWR WOIJ A[UIOPURI
9SO ‘S10A0Id S1[) JO SUO 9IR[NUILS 01 PAYsk ST 10A0Id I9T[10 1) pue
‘stonoxd (w)ws [[e jo o[ol oy she[d s1oaold oY) JO 9UO ‘UOTYRINUIIS
sty ul -om) Sursn s1eaoxd (u)Afod oyemuuls 0} Moy moyg :JUTE

8.A Interactive proof for the Permanent

The permanent is defined as follows:

DEFINITION 8.29
Let A € F™*™ be a matrix over the field F. The permanent of A is:

perm(4) = > [aio0)

€Sy i=1

The problem of calculating the permanent is clearly in PSPACE. In Chapter 9 we will see that if
the permanent can be computed in polynomial time then P = NP, and hence this problem likely
does not have a polynomial-time algorithm.

Although the existence of an interactive proof for the Permanent follows from that for #SAT
and TQBF, we describe a specialized protocol as well. This is both for historical context (this
protocol was discovered before the other two protocols) and also because this protocol may be
helpful for further research. (One example will appear in a later chapter.)

p8.22 (168) 8.A. INTERACTIVE PROOF FOR THE PERMANENT

We use the following observation:

r1,1 T1,2 ... Tin
L T21 T e X2

f(z1,xa, ..., xy) := perm
Tpl Tp2 --- Tpn

is a degree n polynomial since
f(x1,$2, ce 71;77,) = Z Hxl,a(l)

We now show two properties of the permanent problem. The first is random self reducibility, earlier
encountered in Section ?77:

THEOREM 8.30 (LipTON ’88)
There is a randomized algorithm that, given an oracle that can compute the permanent on 1 — 3%
fraction of the inputs in F™*™ (where the finite field F' has size > 3n), can compute the permanent

on all inputs correctly with high probability.

PROOF: Let A be some input matrix. Pick a random matrix R €g F"*" and let B(z) := A+z- R
for a variable x. Notice that:

e f(x):= perm(B) is a degree n univariate polynomial.

e For any fixed b # 0, B(b) is a random matrix, hence the probability that oracle computes

perm(B(b)) correctly is at least 1 — 3-.

Now the algorithm for computing the permanent of A is straightforward: query oracle on all
matrices {B(i)|1 < i < n + 1}. According to the union bound, with probability of at least
1-— ”T‘H ~ % the oracle will compute the permanent correctly on all matrices.

Recall the fact (see Section ?? in Appendix A) that given n + 1 (point, value) pairs {(a;, b;)|i €
[n+ 1]}, there exists a unique a degree n polynomial p that satisfies Vi p(a;) = b;. Therefore, given
that the values B(i) are correct, the algorithm can interpolate the polynomial B(z) and compute

B(0)=A. m

Note: The above theorem can be strengthened to be based on the assumption that the oracle can
compute the permanent on a fraction of %—1—5 for any constant € > 0 of the inputs. The observation
is that not all values of the polynomial must be correct for unique interpolation. See Chapter 7?7

Another property of the permanent problem is downward self reducibility, encountered earlier in
context of SAT:

n
perm(A) = Z aiiperm(Ay;),
i=1
where A; ; is a (n—1) x (n— 1) sub-matrix of A obtained by removing the 1’st row and i’th column
of A (recall the analogous formula for the determinant uses alternating signs).

8.A. INTERACTIVE PROOF FOR THE PERMANENT p8.23 (169)

DEFINITION 8.31
Define a (n—1) x (n— 1) matrix D 4(z), such that each entry contains a degree n polynomial. This
polynomial is uniquely defined by the values of the matrices {4 ;|¢ € [n]}. That is:

Vien]. Da(i) = A1,

Where D4(i) is the matrix D(z) with ¢ substituted for z. (notice that these equalities force n
points and values on them for each polynomial at a certain entry of D (), and hence according
to the previously mentioned fact determine this polynomial uniquely)

Observation: perm(D4(x)) is a degree n(n — 1) polynomial in x.

8.A.1 The protocol

We now show an interactive proof for the permanent (the decision problem is whether perm(A4) = k
for some value k):

e Round 1: Prover sends to verifier a polynomial g(x) of degree n(n — 1), which is supposedly
perm(D4(z)).

e Round 2: Verifier checks whether: .
ki = Z CLLZ'Q(Z')
i=1

If not, rejects at once. Otherwise, verifier picks a random element of the field by € F and
asks the prover to prove that g(b;) = perm(D(b1)). This reduces the matrix dimension to
(n—2)x (n—2).

e Round 2(n — 1) — 1: Prover sends to verifier a polynomial of degree 2, which is supposedly
the permanent of a 2 x 2 matrix.

e Round 2(n — 1): Verifier is left with a 2 x 2 matrix and calculates the permanent of this
matrix and decides appropriately.

CLAIM &.32

The above protocol is indeed an interactive proof for perm.

PROOF: If perm(A) = k, then there exists a prover that makes the verifier accept with probability
1, this prover just returns the correct values of the polynomials according to definition.

On the other hand, suppose that perm(A) # k. If on the first round, the polynomial g(x) sent is
the correct polynomial D 4(z), then:

kS anig(i) = perm(A)
=1

p8.24 (170) 8.A. INTERACTIVE PROOF FOR THE PERMANENT

And the verifier would reject. Hence g(x) # Da(x). According to the fact on polynomials stated
above, these polynomials can agree on at most n(n — 1) points. Hence, the probability that they
would agree on the randomly chosen point b; is at most "(‘7}_1). The same considerations apply to
all subsequent rounds if exist, and the overall probability that the verifier will not accepts is thus

(assuming |F| > 10n?® and sufficiently large n):

(- 72) (o= =) o3

()

Pr

AV

v

Chapter 9

Complexity of counting

“It is an empirical fact that for many combinatorial problems the detection of the
existence of a solution is easy, yet no computationally efficient method is known
for counting their number.... for a variety of problems this phenomenon can be
explained.”

L. Valiant 1979

The class NP captures the difficulty of finding certificates. However, in many contexts, one is
interested not just in a single certificate, but actually counting the number of certificates. This
chapter studies #P, (pronounced “sharp p”), a complexity class that captures this notion.

Counting problems arise in diverse fields, often in situations having to do with estimations of
probability. Examples include statistical estimation, statistical physics, network design, and more.
Counting problems are also studied in a field of mathematics called enumerative combinatorics,
which tries to obtain closed-form mathematical expressions for counting problems. To give an
example, in the 19th century Kirchoff showed how to count the number of spanning trees in a graph
using a simple determinant computation. Results in this chapter will show that for many natural
counting problems, such efficiently computable expressions are unlikely to exist.

Here is an example that suggests how counting problems can arise in estimations of probability.

EXAMPLE 9.1
In the GraphReliability problem we are given a directed graph on n nodes. Suppose we are told that
each node can fail with probability 1/2 and want to compute the probability that node 1 has a
path to n.

A moment’s thought shows that under this simple edge failure model, the remaining graph is
uniformly chosen at random from all subgraphs of the original graph. Thus the correct answer is

1
%(number of subgraphs in which node 1 has a path to n.)

We can view this as a counting version of the PATH problem.

p9.1 (171)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p9.2 (172) 9.1. THE CLASS #P

In the rest of the chapter, we study the complexity class #P, a class containing the GraphReliability
problem and many other interesting counting problems. We will show that it has a natural and
important complete problem, namely the problem of computing the permanent of a given matrix.
We also show a surprising connection between PH and #P, called Toda’s Theorem. Along the way
we encounter related complexity classes such as PP and ®P.

9.1 The class #P

We now define the class #P. Note that it contains functions whose output is a natural number,
and not just 0/1.

DEFINITION 9.2 (#P)
A function f: {0,1}" — N is in #P if there exists a polynomial p : N — N and a
polynomial-time TM M such that for every x € {0,1}":

fla) = Hy e {0,13202D) . pr(z,y) = 1}] .

REMARK 9.3

As in the case of NP, we can also define #P using non-deterministic TMs. That is, #P consists
of all functions f such that f(z) is equal to the number of paths from the initial configuration to
an accepting configuration in the configuration graph G, of a polynomial-time NDTM M.

The big open question regarding #P, is whether all problems in this class are efficiently solvable.
In other words, whether #P = FP. (Recall that FP is the analog of the class P for functions
with more than one bit of output, that is, FP is the set of functions from {0,1}* to {0,1}"
computable by a deterministic polynomial-time Turing machine. Thinking of the output as the
binary representation of an integer we can identify such functions with functions from {0, 1}* to N.
Since computing the number of certificates is at least as hard as finding out whether a certificate
exists, if #P = FP then NP = P. We do not know whether the other direction also holds:
whether NP = P implies that #P = FP. We do know that if PSPACE = P then #P = FP,
since counting the number of certificates can be done in polynomial space.

Here are two more examples for problems in #P:

o #SAT is the problem of computing, given a Boolean formula ¢, the number of satisfying
assignments for ¢.

e #CYCLE is the problem of computing, given a directed graph G, the number of simple cycles
in G. (A simple cycle is one that does not visit any vertex twice.)

Clearly, if #SAT € FP then SAT € P and so P = NP. Thus presumably #SAT ¢ FP. How
about #CYCLE? The corresponding decision problem —given a directed graph decide if it has a

9.1. THE CLASS #P 9.3 (173)

cycle—can be solved in linear time by breadth-first-search. The next theorem suggests that the
counting problem may be much harder.

<R - R

Figure 9.1: Reducing Ham to #CYCLE: by replacing every edge in G with the above gadget to obtain G’, every
simple cycle of length £ in G becomes (2m)e simple cycles in G'.

THEOREM 9.4
If #CYCLE € FP, then P = NP.

PRrROOF: We show that if #CYCLE can be computed in polynomial time, then Ham € P, where Ham
is the NP-complete problem of deciding whether or not a given digraph has a Hamiltonian cycle
(i.e., a simple cycle that visits all the vertices in the graph). Given a graph G with n vertices, we
construct a graph G’ such that G has a Hamiltonian cycle iff G’ has at least n"’ cycles.

To obtain G, replace each edge (u,v) in G by the gadget shown in Figure 9.1. The gadget
has m = nlogn + 1 levels. It is an acyclic digraph, so cycles in G’ correspond to cycles in G.
Furthermore, there are 2™ directed paths from u to v in the gadget, so a simple cycle of length £
in G yields (2™)¢ simple cycles in G’.

Notice, if G has a Hamiltonian cycle, then G/ has at least (27)" > n™ cycles. If G has no
Hamiltonian cycle, then the longest cycle in G has length at most n — 1. The number of cycles is
bounded above by n"~!. So G can have at most (2)"1 x n"~! < n"* cycles. W

9.1.1 The class PP: decision-problem analog for #P.

Similar to the case of search problems, even when studying counting complexity, we can often
restrict our attention to decision problems. The reason is that there exists a class of decision
problems PP such that

PP=P < #P =FP (1)

Intuitively, PP corresponds to computing the most significant bit of functions in #P. That is,
L is in PP if there exists a polynomial-time TM M and a polynomial p : N — N such that for
every z € {0,1}",

rel & Hy € {0, 1}p(|z|) s M(z,y) = 1}‘ > % . op(lzD)

You are asked to prove the non-trivial direction of (1) in Exercise 1. It is instructive to compare
the class PP, which we believe contains problem requiring exponential time to solve, with the class
BPP, which although it has a seemingly similar definition, can in fact be solved efficiently using
probabilistic algorithms (and perhaps even also using deterministic algorithms, see Chapter 16).
Note that we do not know whether this holds also for the class of decision problems corresponding
to the least significant bit of #P, namely ®P (see Definition 9.13 below).

p9.4 (174) 9.2. #P COMPLETENESS.

9.2 #P completeness.

Now we define #P-completeness. Loosely speaking, a function f is #P-complete if it is in #P and
a polynomial-time algorithm for f implies that #P = FP. To formally define #P-completeness,
we use the notion of oracle TMs, as defined in Section 3.5. Recall that a TM M has oracle access
to a language O C {0,1}" if it can make queries of the form “Is ¢ € O?” in one computational
step. We generalize this to non-Boolean functions by saying that M has oracle access to a function
f:{0,1}" — {0,1}, if it is given access to the language O = {(x,i) : f(x); = 1}. We use the same
notation for functions mapping {0,1}" to N, identifying numbers with their binary representation
as strings. For a function f : {0,1}* — {0,1}*, we define FP/ to be the set of functions that are
computable by polynomial-time TMs that have access to an oracle for f.

DEFINITION 9.5
A function f is #P-complete if it is in #P and every g € #P is in FP/

If f € FP then FP/ = FP. Thus the following is immediate.

PRrROPOSITION 9.6
If f is #P-complete and f € FP then FP = #P.

Counting versions of many NP-complete languages such as 3SAT,Ham, and CLIQUE naturally
lead to #P-complete problems. We demonstrate this with #SAT:

THEOREM 9.7
#SAT is #P-complete

PrOOF: Consider the Cook-Levin reduction from any L in NP to SAT we saw in Section 2.3. This
is a polynomial-time computable function f : {0,1}* — {0,1}* such that for every z € {0,1}",
x € L & f(x) € SAT. However, the proof that the reduction works actually gave us more
information than that. It provided a Levin reduction, by which we mean the proof showed a way
to transform a certificate that x is in L into a certificate (i.e., satisfying assignment) showing that
f(x) € SAT, and also vice versa (transforming a satisfying assignment for f(z) into a witness that
xe€L).

In particular, it means that the mapping from the certificates of = to the assignments of f(x)
was invertible and hence one-to-one. Thus the number of satisfying assignments for f(zx) is equal
to the number of certificates for x.

As shown below, there are #P-complete problems for which the corresponding decision problems
are in fact in P.

9.2.1 Permanent and Valiant’s Theorem

Now we study another problem. The permanent of an n x n matrix A is defined as

perm(4) = > [Ai00) (2)

o€Sy =1

9.2. #P COMPLETENESS. 9.5 (175)

where S,, denotes the set of all permutations of n elements. Recall that the expression for the
determinant is similar

det(A) = Z (—1)%9m(@) ﬁAia(i)
i=1

oESy

except for an additional “sign” term.! This similarity does not translate into computational equiv-
alence: the determinant can be computed in polynomial time, whereas computing the permanent
seems much harder, as we see below.

The permanent function can also be interpreted combinatorially. First, suppose the matrix A
has each entry in {0, 1}. It may be viewed as the adjacency matrix of a bipartite graph G(X,Y, F),
with X = {z1,..., 2.}, Y = {y1,...,yn} and {z;,y;} € Eiff A;; = 1. Then the term [[iL; Aoy
is 1 iff o is a perfect matching (which is a set of n edges such that every node is in exactly one
edge). Thus if A is a 0.1 matrix then perm(A) is simply the number of perfect matchings in the
corresponding graph G and in particular computing perm(A) is in #P. If A is a {—1,0,1} matrix,
then perm(A) = ‘{0’ IS Aoy = 1}‘ — Ha s Ai) = —1}], so one can make two calls to a
#SAT oracle to compute perm(A). In fact one can show for general integer matrices that computing
the permanent is in FP#3AT (see Exercise 2).

The next theorem came as a surprise to researchers in the 1970s, since it implies that if perm €
FP then P = NP. Thus, unless P = NP, computing the permanent is much more difficult then
computing the determinant.

THEOREM 9.8 (VALIANT’S THEOREM)
perm for 0,1 matrices is #P-complete.

Before proving Theorem 9.8, we introduce yet another way to look at the permanent. Consider
matrix A as the the adjacency matrix of a weighted n-node digraph (with possible self loops). Then
the expression []7"; A; +(i) is nonzero iff o is a cycle-cover of A (a cycle cover is a subgraph in which
each node has in-degree and out-degree 1; such a subgraph must be composed of cycles). We define
the weight of the cycle cover to be the product of the weights of the edges in it. Thus perm(A) is
equal to the sum of weights of all possible cycle covers.

EXAMPLE 9.9

Consider the graph in Figure 9.2. Even without knowing what the subgraph G’ is, we show that
the permanent of the whole graph is 0. For each cycle cover in G’ of weight w there are exactly
two cycle covers for the three nodes, one with weight +w and one with weight —w. Any non-zero
weight cycle cover of the whole graph is composed of a cycle cover for G’ and one of these two cycle
covers. Thus the sum of the weights of all cycle covers of G is 0.

Tt is known that every permutation ¢ € S, can be represented as a composition of transpositions, where a
transposition is a permutation that only switches between two elements in [n] and leaves the other elements intact
(one proof for this statement is the Bubblesort algorithm). If 71,. .., 7 is a sequence of transpositions such that their
composition equals o, then the sign of o is equal to +1 if m is even and —1 if m is odd. It can be shown that the
sign is well-defined in the sense that it does not depend on the representation of o as a composition of transpositions.

9.6 (176) 9.2. #P COMPLETENESS.

1 * 1 weight= -1 o 1
R j » j _
[]

.V\H/ L

-1

Figure 9.2: The above graph G has cycle cover weight zero regardless of the choice of G’ since for every cycle cover
of weight w in G’, there exist two covers of weight +w and —w in the graph G. (Unmarked edges have +1 weight;
we follow this convention through out this chapter.)

PROOF OF VALIANT’S THEOREM (THEOREM 9.8): We reduce the #P-complete problem #3SAT
to perm. Given a boolean formula ¢ with n variables and m clauses, first we shall show how to
construct an integer matrix A’ with negative entries such that perm(A’) = 4™ - (#¢). (#¢ stands
for the number of satisfying assignments of ¢). Later we shall show how to to get a 0-1 matrix A
from A’ such that knowing perm(A) allows us to compute perm(A’).

The main idea is that our construction will result in two kinds of cycle covers in the digraph G’
associated with A’: those that correspond to satisfying assignments (we will make this precise) and
those that don’t. We will use negative weights to ensure that the contribution of the cycle covers
that do not correspond to satisfying assignments cancels out. (This is similar reasoning to the one
used in Example 9.9.) On the other hand, we will show that each satisfying assignment contributes
4™ to perm(A’), and so perm(A") = 4™ - (#¢).

To construct G’ from ¢, we combine the following three kinds of gadgets shown in Figure 9.3:

Variable gadget The variable gadget has two possible cycle covers, corresponding to an assign-
ment of 0 or 1 to that variable. Assigning 1 corresponds to a single cycle taking all the
external edges (“true-edges”), and assigning 0 correspond to taking all the self-loops and
taking the “false-edge”. Each external edge of a variable is associated with a clause in which
the variable appears.

Clause gadget The clause gadget is such that the only possible cycle covers exclude at least one
external edge. Also for a given (proper) subset of external edges used there is a unique cycle
cover (of weight 1). Each external edge is associated with a variable appearing in the clause.

XOR gadget We also use a gra& called the XOR gadget whose purpose is to ensure that for
some pair of edges uu’ and vv', ezactly one of these edges is present in any cycle cover that
counts towards the final sum.

— —
Suppose that we replace a pair of edges u v’ and v v’ in some graph G with the XOR gadget as
described in Figure count:fig:valiantgad to obtain some graph G’. Then, via similar reasoning
—
to Example 9.9, every cycle cover of G of weight w that uses exactly one of the edges uu’ and

9.2. #P COMPLETENESS.

p9.7 (177)

Gadget: Symbolic description:

variable gadget:

alse edge
variable gadget

®- o
&4@ CQa (U o A
o o o external edges
\\ A A

external (true) edges - one per clause

clause gadget:

(;w
(\/ (/> .Q A /N

|
\ o ° \\ clause gadget
D
\\ I
N I
. |
\ |

\

N \
external edges - one per variable

XOR gadget:

-1
1.1 /9 .) %
\. . 7

The overall construction:

variable gadget
for every variable

connect via XOR external
edges of gadgets for

variables that appear in clauses.
clause gadget

for every clause

Figure 9.3: The gadgets used in the proof of Valiant’s Theorem.

p9.8 (178) 9.2. #P COMPLETENESS.

—
v’ is mapped to a set of cycle covers in G’ whose total weight is 4w (i.e., the set of covers
that enter the gadget at u and exit at v’ or enter it at v and exit it at v), while all the other

cycle covers of G’ have total weight 0 (Exercise 3). For this reason, whenever we replace edges
—— —

uv' and vv’ with a XOR gadget, we can consider in the analysis only cycle covers that use
exactly one of these edges, as the other covers do not contribute anything to the total sum.

The XOR gadgets are used to connect the variable gadgets to the corresponding clause gadgets
so that only cycle covers corresponding to a satisfying assignment will be counted towards the total
number of cycle covers. Consider a clause, and a variable appearing in it. Each has an external
edge corresponding to the other, connected by an XOR gadget. If the external edge in the clause is
not taken then by the analysis of the XOR gadget the external edge in the variable must be taken
(and hence the variable is true). Since at least one external edge of each clause gadget has to be
omitted, each cycle cover that is counted towards the sum corresponds to a satisfying assignment.
Conversely, for each satisfying assignment, there is a a set of cycle covers with total weight 43™
(since they passes through the XOR gadget exactly 3m times). So perm(G’) = 43™m#¢.

Reducing to the case 0,1 matrices. Finally we have to reduce finding perm(G’) to finding
perm(G), where G is an unweighted graph (or equivalently, its adjacency matrix has only 0,1
entries). We start by reducing to the case that all edges have weights in {£1}. First, note that
replacing an edge of weight k& by k parallel edges of weight 1 does not change the permanent.
Parallel edges are not allowed, but we can make edges non-parallel by cutting each edge w© in two
and inserting a new node w with an edge from u to w, w to v and a self loop at w. To get rid
of the negative weights, note that the permanent of an n vertex graph with edge weights in {41}
is a number z in [-n!, +n!] and hence this permanent can be computed from y = z (mod 2™*1)
where m is sufficiently large (e.g., m = n? will do). But to compute y it is enough to compute
the permanent of the graph where all weight —1 edges are replaced with edges of weight 2. Such
edges can be converted to m edges of weight 2 in series, which again can be transformed to parallel
edges of weight +1 as above. l

9.2.2 Approximate solutions to #P problems

Since computing exact solutions to #P-complete problems is presumably difficult, a natural ques-
tion is whether we can approximate the number of certificates in the sense of the following definition.

DEFINITION 9.10
Let f:{0,1} — N and a < 1. An algorithm A is an a-approximation for f if for every z,

af(x) < A(z) < f(z)/a.

Not all #P problems behave identically with respect to this notion. Approximating certain
problems within any constant factor o > 0 is NP-hard (see Exercise 5). For other problems such
as 0/1 permanent, there is a Fully polynomial randomized approximation scheme (FPRAS), which
is an algorithm which, for any €, d, approximates the function within a factor 1+ € (its answer may
be incorrect with probability §) in time poly(n,log1/§,log1/€). Such approximation of counting
problems is sufficient for many applications, in particular those where counting is needed to obtain

9.3. TODA’S THEOREM: PH C P#3AT 9.9 (179)

estimates for the probabilities of certain events (e.g., see our discussion of the graph reliability
problem).

The approximation algorithm for the permanent —as well as other similar algorithms for a
host of #P-complete problems—use the Monte Carlo Markov Chain technique. The result that
spurred this development is due to Valiant and Vazirani and it shows that under fairly general
conditions, approximately counting the number of elements in a set (membership in which is
testable in polynomial time) is equivalent —in the sense that the problems are interreducible via
polynomial-time randomized reductions— to the problem of generating a random sample from the
set. We will not discuss this interesting area any further.

Interestingly, if P = NP then every #P problem has an FPRAS (and in fact an FPTAS: i.e.,
a deterministic polynomial-time approximation scheme), see Exercise 6.

9.3 Toda’s Theorem: PH C P#3AT

An important question in the 1980s was the relative power of the polynomial-hierarchy PH and
the class of counting problems #P. Both are natural generalizations of NP, but it seemed that
their features— alternation and the ability to count certificates, respectively — are not directly
comparable to each other. Thus it came as big surprise when in 1989 Toda showed:

THEOREM 9.11 (ToDA’S THEOREM [T0OD91])
PH C P#5AT,

That is, we can solve any problem in the polynomial hierarchy given an oracle to a #P-complete
problem.
REMARK 9.12
Note that we already know, even without Toda’s theorem, that if #P = FP then NP = P
and so PH = P. However, this does not imply that any problem in PH can be computed in
polynomial-time using an oracle to #SAT. For example, one implication of Toda’s theorem is that
a subexponential (i.e., 2”0(1)—time) algorithm for #SAT will imply such an algorithm for any problem
in PH. Such an implication is not known to hold from a 27" _time algorithm for SAT.

9.3.1 The class &P and hardness of satisfiability with unique solutions.

The following complexity class will be used in the proof:

DEFINITION 9.13

A language L in the class ®P (pronounced “parity P”) iff there exists a polynomial time NTM M
such that z € L iff the number of accepting paths of M on input z is odd.

Thus, ®P can be considered as the class of decision problems corresponding to the least sig-
nificant bit of a #P-problem. As in the proof of Theorem 9.7, the fact that the standard NP-
completeness reduction is parsimonious implies the following problem @SAT is @P-complete (under
many-to-one Karp reductions):

p9.10 (180) 9.3. TODA’S THEOREM: PH C P#5AT

DEFINITION 9.14
Define the quantifier @ as follows: for every Boolean formula ¢ on n variables. @, 0,1} o(x) is

true if the number of s such that o(z) is true is odd.? The language ©SAT consists of all the true
quantified Boolean formula of the form &, (013" o(x) where ¢ is an unquantified Boolean formula
(not necessarily in CNF form).

Unlike the class #P, it is not known that a polynomial-time algorithm for P implies that
NP = P. However, such an algorithm does imply that NP = RP since NP can be probabilistically
reduced to GSAT:

THEOREM 9.15 (VALIANT-VAZIRANI THEOREM)
There exists a probabilistic polynomial-time algorithm A such that for every n-
variable Boolean formula ¢

¢ € SAT = Pr[A(p) € ®SAT] > L

© & SAT = Pr[A(p) € @SAT] =0

To prove Theorem 9.15 we use the following lemma on pairwise independent hash functions:

LEMMA 9.16 (VALIANT-VAZIRANI LEMMA [?])
Let Hy, i, be a pairwise independent hash function collection from {0,1}" to {0, 1}* and S C {0,1}"
such that 28=2 < |S| < 2¥=1. Then,

Pr |
h€rHn k

{xes h(z)—ok}jzuzg

PROOF: For every = € S, let p = 27% be the probability that h(z) = 0¥ when h €g Hp k- Note
that for every = # 2/, Pr[h(z) =0F A h(2') =0*] = p2. Let N be the random variable denoting the
number of z € S satisfying h(z) = 0%. Note that E[N] = |S|p € [3, 3]. By the inclusion-exclusion
principle

[N >1] > Prlh(x — Y Prfh(z)=0" AR(z))=]ZS!p—<|§|>p2

€S r<x'eS

and by the union bound we get that Pr[N > 2] < (‘g‘)pz. Thus

Pr[N =1]=Pr[N > 1] - Pr[N > 2] > |S|p — 2<|§|>p2 > |S|p — |S|*p

OO\P—‘

where the last inequality is obtained using the fact that % <|S|p < % |

2Note that if we identify true with 1 and 0 with false then D.cioayn ¢(@) =2 cio1yn () (mod 2). Also note
that @xe{o’l}n p(z) = @xle{o,l} - @xne{o,l} o(T1, .. Tn).

9.3. TODA’S THEOREM: PH C P#3AT p9.11 (181)

Proof of Theorem 9.15

We now use Lemma 9.16 to prove Theorem 9.15. Given a formula ¢ on n variables, our probabilistic
algorithm A chooses k at random from {2,...,n + 1} and a random hash function h €r H,, j. It
then uses the Cook-Levin reduction to compute a formula 7 on variables z € {0,1}",y € {0,1}"™
(for m = poly(n)) such that h(z) = 0 if and only if there exists a unique y such that 7(z,y) = 1.3
The output of A if the formula

b= P e ATy,

z€{0,1}",ye{0,1}™

It is equivalent to the statement

B o) Ahlz) = 0",

z€{0,1}"

If ¢ is unsatisfiable then ¢ is false, since we’ll have no z’s satisfying the inner formula and
zero is an even number. If ¢ is satisfiable, we let S be the set of its satisfying assignments. With
probability 1/n, k satisfies 2#72 < |S| < 2*, conditioned on which, with probability 1/8, there is a
unique z such that ¢(z) A h(xz) = 0™. Since one happens to be an odd number, this implies that
is true.

REMARK 9.17 (HARDNESS OF UNIQUE SATISFIABILITY)

The proof of Theorem 9.15 implies the following stronger statement: the existence of an algorithm
to distinguish between an unsatisfiable Boolean formula and a formula with exactly one satisfying
assignment implies the existence of a probabilistic polynomial-time algorithm for all of NP. Thus,
the guarantee that a particular search problem has either no solutions or a unique solution does
not necessarily make the problem easier to solve.

9.3.2 Step 1: Randomized reduction from PH to &P

We now go beyond NP (that is to say, the Valiant-Vazirani theorem) and show that we can actually
reduce any language in the polynomial hierarchy to ©SAT.

LEMMA 9.18
Let ¢ € N be some constant. There exists a probabilistic polynomial-time algorithm A such that
for every i a Quantified Boolean formula with c levels of alternations,

¥ is true = Pr[A(¢) € @SAT] > 2
Y is false = Pr[A(y)) € ®@SAT] =0

Before proving the Lemma, let us make a few notations and observations: For a Boolean
formula ¢ on n variables, let #(¢) denote the number of satisfying assignments of ¢. We consider
also formulae ¢ that are partially quantified. That is, in addition to the n variables ¢ takes as input

3For some implementations of hash functions, such as the one described in Exercise 4, one can construct directly
(without going through the Cook-Levin reduction) such a formula 7 that does not use the y variables.

p9.12 (182) 9.3. TODA’S THEOREM: PH C P#5AT

it may also have other variables that are bound by a V, 3 or @ quantifiers (for example ¢ can be of
the form ¢(z1,...,2,) =Vy € {0,1}" 7(z1, ..., 2y, y) where 7 is, say, a 3CNF Boolean formula).

Given two (possibly partially quantified) formulae ¢, on variables z € {0,1}",y € {0,1}"" we
can construct in polynomial-time an n + m variable formula ¢ - ¢ and a (max{n, m} + 1)-variable
formula ¢ + ¢ such that #(p -) = #(p)#(p) and #(¢ +) = #(v) + #(¢). Indeed, take
¢ P(z,y) = o(x) Ap(y) and o +9(2) = ((20 = 0) A (21,5 20)) V ((20 = 1) A(z1,- -, 2m).-
For a formula ¢, we use the notation ¢ + 1 to denote the formula ¢ + ¢ where 1 is some canonical
formula with a single satisfying assignment. Since the product of numbers is even iff one of the
numbers is even, and since adding one to a number flips the parity, for every two formulae ¢, as
above

(P o) A (P rw) <Pl ¥)(,y) (3)
P o) ©Ple+1)(,2) (4)
(P e@) v @rw) < Ple+1)- @+1)+1)(z,y,2) (5)

x,Y,z
Proor orF LEMMA 9.18: Recall that membership in a PH-language can be reduced to deciding
the truth of a quantified Boolean formula with a constant number of alternating quantifiers. The
idea behind the proof is to replace one-by-one each 3/V quantifiers with a € quantifier.

Let ¢ be a formula with ¢ levels of alternating 3/V quantifiers, possibly with an initial
quantifier. We transform 1 in probabilistic polynomial-time to a formula ¢’ such that 1)’ has only
¢ — 1 levels of alternating 3/V quantifiers, an initial € quantifier, satisfying (1) if ¢ is false then
so is ¢', and (2) if ¢ is true then with probability at least 1 — ﬁ, 1’ is true as well. The lemma
follows by repeating this step ¢ times.

For ease of notation, we demonstrate the proof for the case that ¢ has a single @ quantifier
and two additional 3/V quantifiers. We can assume without loss of generality that 1 is of the form

Y= @ Hze{O,l}"vw€{071}k@(zv €, w))
z€{0,1}*

as otherwise we can use the identities V, P(x) = =3,-P(x) and (4) to transform v into this form.

The proof of Theorem 9.15 provides for every n, a probabilistic algorithm that outputs a for-
mula 7 on variables x € {0,1}" and y € {0,1}"™ such that for every nonempty set S C {0,1}",
Pr[®.ef0,11" yefo,13m7(2,y)] > 1/(8n). Run this algorithm ¢ = 100cflogn times to obtain the for-
mulae 7,...,7¢. Then, for every nonempty set S C {0,1}" the probability that there does not
exist @ € [t] such that ©,c(01)" yefo,13»7(7,y) is TRUE is less than 27¢/(10c). We claim that this
implies that with probability at least 1 — 1/(10c¢), the following formula is equivalent to v:

P i), (6)
2€{0,1}¢
where

0(2) = vg:l @ vwe{(),l}kTi(xa y) N QD($, 2, w)
ze{0,1}",ye{0,1}™

9.3. TODA’S THEOREM: PH C P#3AT p9.13 (183)

Indeed, for every z € {0, 1}Z define S, = {:17 e {0,1}": Vw6{071}kg0(:n, z, w)} Then, 7 is equivalent
0 (0,13t |S;| is nonempty. But by the union bound, with probability at least 1 —1/(10c¢) it holds
that for every z such that S, is nonempty, there exists 7; satisfying @, ,7;(x,y). This means that
for every such z, 6(z) is true. On the other hand, if S, is empty then certainly 0(z) is false, implying
that indeed v is equivalent to (6).

By applying the identity (5), we can transform (6) into an equivalent formula of the desired
form

P vue' (z,y,2,w)

Zi$7y1w

for some unquantified polynomial-size formula ¢'. B

9.3.3 Step 2: Making the reduction deterministic

To complete the proof of Toda’s Theorem (Theorem 9.11), we prove the following lemma:

LEMMA 9.19
There is a (deterministic) polynomial-time transformation T that, for every formula 1) that is an
input for @SAT, T'(,1™) is an unquantified Boolean formula and

1 € ®SAT =#(p) = —1 (mod 2m+1)
Y & ®SAT =#(p) =0 (mod 2™1)

PrROOF OF THEOREM 9.11 USING LEMMAS 9.18 AND 9.19.: Let L € PH. We show that we can
decide whether an input z € L by asking a single question to a #SAT oracle. For every z € {0,1}",
Lemmas 9.18 and 9.19 together imply there exists a polynomial-time TM M such that

re€l= Pr [#(M(z,7)=-1 (mod2m)]> %
TER{U,I}m

&L= Veep0ym#(M(z,7)) =0 (mod 2m*)

where m is the (polynomial in n) number of random bits used by the procedure described in that
Lemma. Furthermore, even in the case z € L, we are guaranteed that for every r € {0,1}",
#(M(z,7)) € {0,—~1} (mod 2m+1).

Consider the function that maps two strings r, u into the evaluation of the formula M (x, r) on the
assignment u. Since this function is computable in polynomial-time, the Cook-Levin transformation
implies that we can obtain in polynomial-time a CNF formula 6, on variables r, u,y such that for
every r,u, M(x,r) is satisfied by u if and only if there exist a unique y such that 6,(r, u,y) is true.
Let f,(r) be the number of u,y such that 0,(r, u,y) is true, then

#(0:) = Y falr),

re{0,1}™

But if 2 € L then f,(r) = 0 (mod 2™*!) for every 7, and hence #(0,) = 0 (mod 2™*1). On the
other hand, if € L then f.(r) = —1 (mod 2™*!) for between %Qm and 2™ values of r, and is

p9.14 (184) 9.4. OPEN PROBLEMS

equal to 0 on the other values, and hence #(6,) # 0 (mod 2™*!). We see that deciding whether
x € L can be done by computing #(6,.).H

PRrROOF OF LEMMA 9.19: For every pair of formulae ¢,7 recall that we defined formulas ¢ + 7 and
o - 7 satisfying #(¢ + 7) = #(p) + #(7) and #(¢ - 7) = #(¢)#(7), and note that these formulae
are of size at most a constant factor larger than ¢, 7. Consider the formula 473 + 374 (where 73 for
example is shorthand for 7 - (7 - 7)). One can easily check that

#(1) =—1 (mod 22i) :>#(47.3 + 37_4) — 1 (mod 22i+1)
#(T) =0 (mod 22i) :>#(47-3 + 37_4) -0 (mod 2)21—0—1

(7)
(8)
Let tg = v and ;11 = 493 + 3} Let ¢ = Yliog(m+1)]- Repeated use of equations (7), (8)

shows that if # (1) is odd, then #(¢»*) = —1 (mod 2™*1) and if #(1)) is even, then #(¢*)
(mod 2™*1). Also, the size of 1* is only polynomially larger than size of). B

0

WHAT HAVE WE LEARNED?

e The class #P consists of functions that count the number of certificates for a
given instance. If P £ NP then it is not solvable in polynomial time.

e Counting analogs of many natural NP-complete problems are #P-complete,
but there are also #P-complete counting problems for which the correspond-
ing decision problem is in P. One example for this is the problem perm of
computing the permanent.

e Surprisingly, counting is more powerful than alternating quantifiers: we can
solve every problem in the polynomial hierarchy using an oracle to a #P-
complete problem.

e The classes PP and &P contain the decision problems that correspond to
the most significant and least significant bits (respectively) of a #P function.
The class PP is as powerful as #P itself, in the sense that if PP = P then
#P = FP. We do not know if this holds for ®P but do know that every
language in PH randomly reduces to ®P.

9.4 Open Problems

e What is the exact power of ®SAT and #SAT 7

e What is the average case complexity of n x n permanent modulo small prime, say 3 or 5 ?
Note that for a prime p > n, random self reducibility of permanent implies that if permanent
is hard to compute on at least one input then it is hard to compute on 1 — O(p/n) fraction
of inputs, i.e. hard to compute on average (see Theorem ?7).

9.4. OPEN PROBLEMS p9.15 (185)

Chapter notes and history

The definition of #P as well as several interesting examples of #P problems appeared in Valiant’s
seminal paper [Val79b]. The #P-completeness of the permanent is from his other paper [Val79a].
Toda’s Theorem is proved in [Tod91]. The proof given here follows the proof of [KVVY93] (although
we use formulas where they used circuits.)

For an introduction to FPRAS’s for computing approximations to many counting problems,
see the relevant chapter in Vazirani [Vaz01] (an excellent resource on approximation algorithms in
general).

Exercises

§1 Let f € #P. Show a polynomial-time algorithm to compute f given access to an oracle for
some language L € PP (see Remark 77).

410} ur sSutys oy jo Surrepio orydeISoorxo [eanjeu
9} Ul X UR() I9SIR[IR JRYY) SHISWUSISSR SUIAISI)RS 1-uG A[3oexo
sey) eyl Yons & SUuLI)S ' puy 09} 9[orIO oY) osn 0} o[qrssod St 1
U9} SHUOWIUSISS® TUIAJSIYeS | _,,g ISB9[e Sy) JI Je(} SI 9sn ued
NOA WOTPRAIOS(O UTRWL Y], “}OU IO SJUOWIUSISSe TUIAJSIYes | _,,g 1589
1R Ser] ‘JNoIId J[(RLIBA-U UAAIS ® JI TOA S[[9} JeY} 9[ORIO UR UDAIS
aI' NOA Jer[) pur ‘) JIMOID URS[OOH USAIS ® I0J SIUOTIUIISSe SUl
-A1s1yes Jo JToquunu oy Surnduwoo jo weiqold o) ‘1yS — I MDF#
= [rey) uryy uwed nok Aerouss Jo SSO[oYM JUIE]

§2 Show that computing the permanent for matrices with integer entries is in FP#5AT,

§3 Complete the analysis of the XOR gadget in the proof of Theorem 9.8. Let G be any weighted
graph containing a pair of edges w and ﬁ , and let G’ be the graph obtained by replacing
these edges with the XOR gadget. Prove that every cycle cover of G of weight w that uses
exactly one of the edges zﬁ is mapped to a set of cycle covers in G’ whose total weight is
4w, and all the other cycle covers of G’ have total weight 0.

§4 Let £k < n. Prove that the following family H, ; is a collection of pairwise independent
functions from {0,1}" to {0,1}*: Identify {0,1} with the field GF(2). For every k x n
matrix A with entries in GF(2), and k-length vector b € GF(2)", H,, j, contains the function
hayp: GF(2)" — GF(2)* defined as follows: hap(z) = Az + b.

§5 Show that if there is a polynomial-time algorithm that approximates #CYCLE within a factor
1/2, then P = NP.

§6 Show that if NP = P then for every f € #P and there is a polynomial-time algorithm
that approximates f within a factor of 1/2. Can you show the same for a factor of 1 — € for
arbitrarily small constant ¢ > 07 Can you make these algorithms deterministic?

p9.16 (186) 9.4. OPEN PROBLEMS

Note that we do not know whether P = NP implies that exact computation of functions in
#P can be done in polynomial time.

(817, woI00y L) Hd O ddd ¥eys jooid o13 jo seapt
oY} 9SN OI)SIUTULINIOP WIILIOS R oY} oyewl O, ‘| Ioydey) Jo 0003
-o1d punoqromoq 9os IosdIg-1ossempior) o1} Surees Iojje 11 0} Yorq
QIO 0] JuRM TSI NOK JNOYIP UoI)senb sy} puy NoA Jj| "sSuL)s
JO 19S ® JO OZIS OY} 9JBUWIIISO 0} POPIIU OS[B oM IIOYM ‘TIDIOd}
s,epo], Jo Jooad 91} Ul 850} 0} IRIWILS SLIPI PUe USR] 8s[) JUIE]

§7 Show that every for every language in AC® there is a depth 3 circuit of nPOY(1°8™) gize that

decides it on 1 — 1/poly(n) fraction of inputs and looks as follows: it has a single @ gate at
the top and the other gates are V, A of fanin at most poly(logn).

"QT°6 ewwor] Jo jooxd dy) osn JUI

Chapter 10
Cryptography

“From times immemorial, humanity has gotten frequent, often cruel, reminders that
many things are easier to do than to reverse.”
L. Levin [Lev]

SOMEWHAT ROUGH STILL

The importance of cryptography in today’s online world needs no introduction. Here we focus
on the complexity issues that underlie this field. The traditional task of cryptography was to allow
two parties to encrypt their messages so that eavesdroppers gain no information about the message.
(See Figure 10.1.) Various encryption techniques have been invented throughout history with one
common characteristic: sooner or later they were broken.

Figure unavailable in pdf file.

Figure 10.1: People sending messages over a public channel (e.g., the internet) wish to use encryption so that
eavesdroppers learn “nothing.”

In the post NP-completeness era, a crucial new idea was presented: the code-breaker should be
thought of as a resource-bounded computational device. Hence the security of encryption schemes
ought to be proved by reducing the task of breaking the scheme into the task of solving some
computationally intractable problem (say requiring exponential time complexity or circuit size),
thus one could hope to design encryption schemes that are efficient enough to be used in practice,
but whose breaking will require, say, millions of years of computation time.

Early researchers tried to base the security of encyption methods upon the (presumed) in-
tractability of NP-complete problems. This effort has not succeeded to date, seemingly because
NP-completeness concerns the intractability of problems in the worst-case whereas cryptography
seems to need problems that are intractable on most instances. After all, when we encrypt email,
we require that decryption should be difficult for an eavesdropper for all (or almost all) messages,
not just for a few messages. Thus the concept most useful in this chapter will be average-case
complexity'. We will see a class of functions called one-way functions that are easy to compute

LA problem’s average-case and worst-case complexities can differ radically. For instance, 3COL is NP-complete

pl0.1 (187)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pl0.2 (188) 10.1. HARD-ON-AVERAGE PROBLEMS AND ONE-WAY FUNCTIONS

but hard to invert for most inputs —they are alluded to in Levin’s quote above. Such functions
exist under a variety of assumptions, including the famous assumption that factoring integers re-
quires time super-polynomial time in the integer’s bit-length to solve in the average case (e.g., for
a product of two random primes).

Furthermore, in the past two decades, cryptographers have taken on tasks above and beyond the
basic task of encryption—from implementing digital cash to maintaining the privacy of individuals
in public databases. (We survey some applications in Section 10.4.) Surprisingly, many of these
tasks can be achieved using the same computational assumptions used for encryption. A crucial
ingredient in these developments turns out to be an answer to the question: “What is a random
string and how can we generate one?” The complexity-theoretic answer to this question leads to the
notion of a pseudorandom generator, which is a central object; see Section 10.2. This notion is very
useful in itself and is also a template for several other key definitions in cryptography, including
that of encryption (see Section 10.4).

Private key versus public key: Solutions to the encryption problem today come in two distinct
flavors. In private-key cryptography, one assumes that the two (or more) parties participating in
the protocol share a private “key” —mnamely, a statistically random string of modest size—that is
not known to the eavesdropper?. In a public-key encryption system (a concept introduced by Diffie
and Hellman in 1976 [DH76]) we drop this assumption. Instead, a party P picks a pair of keys:
an encryption key and decryption key, both chosen at random from some (correlated) distribution.
The encryption key will be used to encrypt messages to P and is considered public —i.e., published
and known to everybody including the eavesdropper. The decryption key is kept secret by P
and is used to decrypt messages. A famous public-key encryption scheme is based upon the RSA
function of Example 10.4. At the moment we do not know how to base public key encryption on
the sole assumption that one-way functions exist and current constructions require the assumption
that there exist one-way functions with some special structure (such as RSA, factoring-based, and
Lattice-based one way functions). Most topics described in this chapter are traditionally labeled
private key cryptography.

10.1 Hard-on-average problems and one-way functions

A basic cryptographic primitive is a one-way function. Roughly speaking, this is a function f that is
easy to compute but hard to invert. Notice that if f is not one-to-one, then the inverse f~!(z) may
not be unique. In such cases “inverting” means that given f(x) the algorithm is able to produce
some preimage, namely, any element of f~!(f(z))). We say that the function is one-way function
if inversion is difficult for the “average” (or “many”) x. Now we define this formally; a discussion
of this definition appears below in Section 10.1.1. A function family (g,) is a family of functions
where g, takes n-bit inputs. It is polynomial-time computable if there is a polynomial-time TM
that given an input x computes gm(x).

on general graphs, but on most n-node graphs is solvable in quadratic time or less. A deeper study of average case
complexity appears in Chapter 15.

ZPractically, this could be ensured with a face-to-face meeting that might occur long before the transmission of
messages.

10.1. HARD-ON-AVERAGE PROBLEMS AND ONE-WAY FUNCTIONS pl10.3 (189)

DEFINITION 10.1 (ONE-WAY FUNCTION)
A family of functions {f,, : {0,1}"* — {0,1}™™} is e(n) one-way with security s(n) if it is
polynomial-time computable and furthermore for every algorithm A that runs in time s(n),

Prxe{(]’l}n[A inverts f,(z)] < €(n). (1)

Now we give a few examples and discuss the evidence that they are hard to invert “on average
inputs.”

ExXAMPLE 10.2
The first example is motivated by the fact that finding the prime factors of a given integer is
the famous FACTORING problem, for which the best current algorithm has running time about
20(n'/?) (and even that bounds relies on the truth of some unproven conjectures in number theory).
The hardest inputs for current algorithms appear to be of the type x -y, where z,y are random
primes of roughly equal size.

Here is a first attempt to define a one-way function using this observation. Let {f,} be a family
of functions where f,:{0,1}" x {0,1}" — {0,1}*" is defined as f,([z]2, [y]2) = [x - y]o. If 2 and y
are primes —which by the Prime Number Theorem happens with probability ©(1/n?) when z,y
are random n-bit integers— then f,, seems hard to invert. It is widely believed that there are
¢ > 1, f > 0 such that family f, is (1 — 1/n°)-one-way with security parameter on

An even harder version of the above function is obtained by using the existence of a randomized
polynomial-time algorithm A (which we do not describe) that, given 1", generates a random n-bit
prime number. Suppose A uses m random bits, where m = poly(n). Then A may be seen as
a (deterministic) mapping from m-bit strings to n-bit primes. Now let function f,n map (r1,72)
to [A(r1) - A(r2)]2, where A(r1), A(re) are the primes output by A using random strings ri,rs
respectively. This function seems hard to invert for almost all r1,75. (Note that any inverse (r,75)
for fm(r1,72) allows us to factor the integer A(r1) - A(ry) since unique factorization implies that
the prime pair A(r]), A(ry) must be the same as A(r1), A(r2).) It is widely conjecture that there

are ¢ > 1, f > 0 such that f, is 1/n%one-way with security parameter on’

The FACTORING problem, a mainstay of modern cryptography, is of course the inverse of
multiplication. Who would have thought that the humble multiplication, taught to children in
second grade, could be the source of such power? The next two examples also rely on elementary
mathematical operations such as exponentiation, albeit with modular arithmetic.

ExampPLE 10.3

Let p1,p2,... be a sequence of primes where p; has i bits. Let g; be the generator of the group
Z,., the set of numbers that are nonzero mod p;. Then for every y € 1,..,p; — 1, there is a unique
x € {1,..,p — 1} such that

9f =y (mod p;).

pl10.4 (190) 10.1. HARD-ON-AVERAGE PROBLEMS AND ONE-WAY FUNCTIONS

Then z — g¢7 (mod p;) is a permutation on 1,..,p; — 1 and is conjectured to be one-way. The
inversion problem is called the DISCRETE LOG problem. We show below using random self-
reducibility that if it is hard on worst-case inputs, then it is hard on average.

We list some more conjectured one-way functions.

EXAMPLE 10.4

RSA function. Let m = pq where p, q are large random primes and e be a random number coprime
to ¢(m) = (p—1)(¢ — 1). Let Z}, be the set of integers in [1,...,m]| coprime to m. Then the
function is defined to be fp4c(x) = ¢ (mod m). This function is used in the famous RSA public-
key cryptosystem.

Rabin function. For a composite number m, define f,,(z) = 22 (mod m). If we can invert
this function on a 1/poly(logm) fraction of inputs then we can factor m in poly(logm) time (see
exercises).

Both the RSA and Rabin functions are useful in public-key cryptography. They are examples
of trapdoor one-way functions: if the factors of m (the “trapdoor” information) are given as well
then it is easy to invert the above functions. Trapdoor functions are fascinating objects but will
not be studied further here.

Random subset sum. Let m = 10n. Let the inputs to f be n positive m-bit integers a1, as, . . . , @y,
and a subset S of {1,2,...,n}. Its output is (a1, as,...,an,» ;. a;). Note that f maps n(m+1)-bit
inputs to nm + m bits.

When the inputs are randomly chosen, this function seems hard to invert. It is conjectured that
there is ¢ > 1,d > 0 such that this function is 1/none-way with security o’

10.1.1 Discussion of the definition of one-way function

We will always assume that the the one-way function under consideration is such that the security
parameter s(n) is superpolynomial, i.e., larger than n* for every k& > 0. The functions described
earlier are actually believed to be one-way with a larger security parameter 2 for some fixed € > 0.

Of greater interest is the error parameter €¢(n), since it determines the fraction of inputs for
which inversion is easy. Clearly, a continuum of values is possible, but two important cases to
consider are (i) €(n) = (1 — 1/n°) for some fixed ¢ > 0, in other words, the function is difficult to
invert on at least 1/n¢ fraction of inputs. Such a function is often called a weak one-way function.
The simple one-way function f,, of Example 10.2 is conjectured to be of this type. (ii) e(n) < 1/n*
for every k > 1. Such a function is called a strong one-way function.

Yao showed that if weak one-way functions exist then so do strong one-way functions. We will
prove this surprising theorem (actually, something close to it) in Chapter 17. We will not use
it in this chapter, except as a justification for our intuition that strong one-way functions exist.

10.2. WHAT IS A RANDOM-ENOUGH STRING? pl0.5 (191)

(Another justification is of course the empirical observation that the candidate one-way functions
mentioned above do seem appear difficult to invert on most inputs.)

10.1.2 Random self-reducibility

Roughly speaking, a problem is random-self-reducible if solving the problem on any input z reduces
to solving the problem on a sequence of random inputs yi,¥2,..., where each y; is uniformly
distributed among all inputs. To put it more intuitively, the worst-case can be reduced to the
average case. Hence the problem is either easy on all inputs, or hard on most inputs. (In other
words, we can exclude the possibility that problem is easy on almost all the inputs but not all.) If
a function is one-way and also randomly self-reducible then it must be a strong one-way function.
This is best illustrated with an example.

THEOREM 10.5

Suppose A is an algorithm with running time t(n) that, given a prime p, a generator g for Ly,
and an input g*(mod p), manages to find x for § fraction of x € Z;. Then there is a randomized
algorithm A" with running time O(m(t(n) + poly(n))) that solves DISCRETE LOG on every
input with probability at least 1 — e.

PROOF: Suppose we are given y = ¢*(mod p) and we are trying to find z. Repeat the following
trial O(1/(dlog1/€)) times: “Randomly pick r € {0,1,...,p — 2} and use A to try to compute
the logarithm of y - ¢"(modp). Suppose A outputs z. Check if g* " (modp) is y, and if so, output
z —r(mod(p — 1)) as the answer.”

The main observation is that if 7 is randomly chosen, then y-¢"(mod p) is randomly distributed
in Zj, and hence the hypothesis implies that A has a ¢ chance of finding its discrete log. After
O(1/(01og1/e) trials, the probability that A failed every time is at most . l

COROLLARY 10.6
If for any infinite sequence of primes pi,ps,..., DISCRETE LOG mod p; is hard on worst-case
x € Z,,, then it is hard for almost all z.

Later as part of the proof of Theorem 10.14 we give another example of random self-reducibility:
linear functions over GF'(2).

10.2 What is a random-enough string?

Cryptography often becomes much easier if we have an abundant supply of random bits. Here is
an example.

EXAMPLE 10.7 (ONE-TIME PAD)

Suppose the message sender and receiver share a long string r of random bits that is not available
to eavesdroppers. Then secure communication is easy. To encode message m € {0,1}", take the
first n bits of r, say the string s. Interpret both strings as vectors in GF(2)"™ and encrypt m by the
vector m + s. The receiver decrypts this message by adding s to it (note that s+s = 01in GF(2)").

pl0.6 (192) 10.2. WHAT IS A RANDOM-ENOUGH STRING?

If s is statistically random, then so is m + s. Hence the eavesdropper provably cannot obtain even
a single bit of information about m regardless of how much computational power he expends.
Note that reusing s is a strict no-no (hence the name “one-time pad”). If the sender ever
reuses s to encrypt another message m’ then the eavesdropper can add the two vectors to obtain
(m+s)+ (m' 4+ s) = m+m/, which is some nontrivial information about the two messages.
Of course, the one-time pad is just a modern version of the old idea of using “codebooks” with
a new key prescribed for each day.

One-time pads are conceptually simple, but impractical to use, because the users need to agree
in advance on a secret pad that is large enough to be used for all their future communications. It
is also hard to generate because sources of quality random bits (e.g., those based upon quantum
phenomena) are often too slow. Cryptography’s suggested solution to such problems is to use a
pseudorandom generator. This is a deterministically computable function g:{0,1}" — {0,1}™ (for
some ¢ > 1) such that if # € {0,1}" is randomly chosen, then g(z) “looks” random. Thus so long as
users have been provided a common n-bit random string, they can use the generator to produce n¢
“random looking” bits, which can be used to encrypt n°~! messages of length n. (In cryptography
this is called a stream cipher.)

Clearly, at this point we need an answer to the question posed in the Section’s title! Philosophers
and statisticians have long struggled with this question.

ExaMPLE 10.8

What is a random-enough string? Here is Kolmogorov’s definition: A string of length n is random
if no Turing machine whose description length is < 0.99n (say) outputs this string when started on
an empty tape. This definition is the “right” definition in some philosophical and technical sense
(which we will not get into here) but is not very useful in the complexity setting because checking
if a string is random according to this definition is undecidable.

Statisticians have also attempted definitions which boil down to checking if the string has the
“right number” of patterns that one would expect by the laws of statistics, e.g. the number of times
11100 appears as a substring. (See Knuth Volume 3 for a comprehensive discussion.) It turns out
that such definitions are too weak in the cryptographic setting: one can find a distribution that
passes these statistical tests but still will be completely insecure if used to generate the pad for the
one-time pad encryption scheme.

10.2.1 Blum-Micali and Yao definitions

Now we introduce two complexity-theoretic definitions of pseudorandomness due to Blum-Micali
and Yao in the early 1980s. For a string y € {0,1}" and S C [n], we let y|s denote the projection
of Y to the coordinates of S. In particular, y|[1_.i] denotes the first ¢ bits of y.

10.2. WHAT IS A RANDOM-ENOUGH STRING? pl10.7 (193)

The Blum-Micali definition is motivated by the observation that one property (in fact, the defin-
ing property) of a statistically random sequence of bits y is that given y|j; ;, we cannot predict
yi+1 with odds better than 50/50 regardless of the computational power available to us. Thus one
could define a “pseudorandom” string by considering predictors that have limited computational
resources, and to show that they cannot achieve odds much better than 50/50 in predicting ;11
from y|[;. 5. Of course, this definition has the shortcoming that any single finite string would be
predictable for a trivial reason: it could be hardwired into the program of the predictor Turing
machine. To get around this difficulty the Blum-Micali definition (and also Yao’s definition below)
defines pseudorandomness for distributions of strings rather than for individual strings. Further-
more, the definition concerns an infinite sequence of distributions, one for each input size.

DEFINITION 10.9 (BLUM-MICALI)

Let {gn} be a polynomial-time computable family of functions, where g, : {0,1}" — {0,1}"" and
m = m(n) > n. We say the family is (e(n), t(n))-unpredictable if for every probabilistic polynomial-
time algorithm A that runs in time ¢(n) and every large enough input size n,

Pr[A(g(z)1.q) = 9(x)i+1] < 5 +€(n),

where the probability is over the choice of z € {0,1}",i € {1,...,n}, and the randomness used by
A.

If for every fixed k, the family {g,} is (1/n¢,n*)-unpredictable for every ¢ > 1, then we say in
short that it is unpredictable by polynomial-time algorithms.

REMARK 10.10
Allowing the tester to be an arbitrary polynomial-time machine makes perfect sense in a crypto-
graphic setting where we wish to assume nothing about the adversary except an upperbound on
her computational power.

Pseudorandom generators proposed in the pre-complexity era, such as the popular linear or
quadtratic congruential generators do not satisfy the Blum-Micali definition because bit-prediction
can in fact be done in polynomial time.

Yao gave an alternative definition in which the tester machine is given access to the entire string
at once. This definition implicitly sets up a test of randomness analogous to the more famous Turing
test for intelligence (see Figure 10.2). The tester machine A is given a string y € {0, 1}”8 that is
produced in one of two ways: it is either drawn from the uniform distribution on {0, 1}”c or
generated by taking a random string z € {0,1}" and stretching it using a deterministic function
g:{0,1}" — {0,1}™. The tester is asked to output “1” if the string looks random to it and 0
otherwise. We say that g is a pseudorandom generator if no polynomial-time tester machine A has
a great chance of being able to determine which of the two distributions the string came from.

DEFINITION 10.11 ([YA082])

Let {g,} be a polynomial-time computable family of functions, where g, :{0,1}" — {0,1}"" and
m = m(n) > n. We say it is a (d(n), s(n))-pseudorandom generator if for every probabilistic
algorithm A running in time s(n) and for all large enough n

|Prye{o,1}nc [A(y) = 1] = Prycgo1y7[A(gn(2)) = 1]| < d(n). (2)

pl10.8 (194) 10.2. WHAT IS A RANDOM-ENOUGH STRING?

We call 6(n) the distinguishing probability and s(n) the security parameter.
If for every ¢,k > 1, the family is (1/n¢, n*)-pseudorandom then we say in short that it is a
pseudorandom generator.

Figure unavailable in pdf file.

Figure 10.2: Yao’s definition: If ¢ > 1 then g:{0,1}" — {0, 1}"C is a pseudorandom generator if no polynomial-
time tester has a good chance of distinguishing between truly random strings of length n® and strings generated by
applying g on random n-bit strings.

10.2.2 Equivalence of the two definitions

Yao showed that the above two definitions are equivalent —up to minor changes in the security
parameter, a family is a pseudorandom generator iff it is (bitwise) unpredictable. The hybrid
argument used in this proof has become a central idea of cryptography and complexity theory.

The nontrivial direction of the equivalence is to show that pseudorandomness of the Blum-
Micali type implies pseudorandomness of the Yao type. Not surprisingly, this direction is also
more important in a practical sense. Designing pseudorandom generators seems easier for the
Blum-Micali definition —as illustrated by the Goldreich-Levin construction below— whereas Yao’s
definition seems more powerful for applications since it allows the adversary unrestricted access to
the pseudorandom string. Thus Yao’s theorem provides a bridge between what we can prove and
what we need.

THEOREM 10.12 (PREDICTION VS. INDISTINGUISHABILITY [?])
Let Let g,,:{0,1}" — {0, 1}N(") be a family of functions where N (n) = n* for some

If g, is (%,Qt(n))—unpredictable where t(n) > N(n)? then it is (e(n),t(n))-

pseudorandom.
Conversely, if g, is (e(n), t(n))-pseudorandom, then it is (¢(n),t(n))-unpredictable.

converse part is trivial since a bit-prediction algorithm can in particular be used to distinguish g(x)
from random strings of the same length. It is left to the reader.

Let N be shorthand for N(n). Suppose g is not (e(n),t(n))-pseudorandom, and A is a distin-
guishing algorithm that runs in ¢(n) time and satisfies:

Pr [Ag(e) =11~ Pr [A(y)=1]| > e(n). (3)
e ye{0,1}

By considering either A or the algorithm that is A with the answer flipped, we can assume that
the |-| can be removed and in fact

Pr [Alg(e) = 1] Pr_[Aly) = 1] > e(n). (@)
z€ ye{0,1}

10.2. WHAT IS A RANDOM-ENOUGH STRING? pl10.9 (195)

Consider B, the following bit-prediction algorithm. Let its input be g(z)|<; where z € {0,1}"
andi € {0,..., N — 1} are chosen uniformly at random. B’s program is: “Pick bits w41, it+2,...,unN
randomly and run A on the input g(z)|<iwit1uitr2 ... un. If A outputs 1, output u;y1 else output
wit1.” Clearly, B runs in time less than t(n) + O(N(n)) < 2t(n). To complete the proof we show
that B predicts g(z);4+1 correctly with probability at least % + 65:,1).

Consider a sequence of N + 1 distributions Dy through Dy defined as follows (in all cases,
x €{0,1}" and uy,ug,...,uy € {0,1} are assumed to be chosen randomly)

Do = uiuguzy - - - uN

D = g(x)1ugug - - un

D; = g(x)<itiy1 -~ uN

Dy = g(x)19(7)2- - g(w)Nn

Furthermore, we denote by D; the distribution obtained from D; by flipping the ith bit (i.e.,
replacing g(z); by g(x);). If D is any of these 2(N +1) distributions then we denote Pryep[A(y) = 1]
by ¢(D). With this notation we rewrite (4) as

4(Dn) — a(Do) > €(n). ()

Furthermore, in D;, the (i + 1)th bit is equally likely to be g(x);+1 and g(x)i+1, so

a(D;) = 3(a(Diy1) + ¢(Dis1)), (6)

Now we analyze the probability that B predicts g(z);+1 correctly. Since ¢ is picked randomly we
have

N

1<
Pr|B i t —
P i[is correct] = N

M1

<Pr[B’s guess for g(x);41 is correct | w1 = g(x)i41]
r,u

+ P

z,u

r[B’s guess for g(x);41 is correct | ujp1 = g(:c)i+1]) .

Since B’s guess is u;41 iff A outputs 1 this is

N—
Z Diy1) +1—q(Djy1))
i=0

1Nl

ﬁ 2+1
z:()

q(Dit1))

[\D\H

p10.10 (196)10.3. ONE-WAY FUNCTIONS AND PSEUDORANDOM NUMBER GENERATORS

From (6), ¢(Dit1) — ¢(Di+1) = 2(¢(Di+1) — q(D;)), so this becomes

) L V1
_ 3 4 N 2(¢(Dit1) — q(Dy))
=0
- % + %(Q(DN) — (Do)
2 N

This finishes our proof. B

10.3 Omne-way functions and pseudorandom number generators

Do pseudorandom generators exist? Surprisingly the answer (though we will not prove it in full
generality) is that they do if and only if one-way functions exist.

THEOREM 10.13
One-way functions exist iff pseudorandom generators do.

Since we had several plausible candidates for one-way functions in Section 10.1, this result helps
us design pseudorandom generators using those candidate one-way functions. If the pseudorandom
generators are ever proved to be insecure, then the candidate one-way functions were in fact not
one-way, and so we would obtain (among other things) efficient algorithms for FACTORING and
DISCRETE LOG.

The “if” direction of Theorem 10.13 is trivial: if ¢ is a pseudorandom generator then it must
also be a one-way function since otherwise the algorithm that inverts g would be able to distinguish
its outputs from random strings. The “only if” direction is more difficult and involves using a
one-way function to explicitly construct a pseudorandom generator. We will do this only for the
special case of one-way functions that are permutations, namely, they map {0,1}" to {0,1}" in a
one-to-one and onto fashion. As a first step, we describe the Goldreich-Levin theorem, which gives
an easy way to produce one pseudorandom bit, and then describe how to produce n¢ pseudorandom
bits.

10.3.1 Goldreich-Levin hardcore bit

Let {f.} be a one-way permutation where f,:{0,1}" — {0,1}". Clearly, the function g:{0,1}" x
{0,1}™ — {0,1}*" defined as g(z,r) = (f(z),r) is also a one-way permutation. Goldreich and
Levin showed that given (f(x),r), it is difficult for a polynomial-time algorithm to predict z ® r,
the scalar product of x and r (mod 2). Thus even though the string (f(z),r) in principle contains
all the information required to extract (z,7), it is computationally difficult to extract even the
single bit x ® r. This bit is called a hardcore bit for the permutation. Prior to the Goldreich-Levin
result we knew of hardcore bits for some specific (conjectured) one-way permutations, not all.

10.3. ONE-WAY FUNCTIONS AND PSEUDORANDOM NUMBER GENERATORSp10.11 (197)

THEOREM 10.14 (GOLDREICH-LEVIN THEOREM)
Suppose that {f,} is a family of €(n))-one-way permutation with security s(n). Let

S(n) = (min {s(n), E(ln) })1/8 Then for all algorithms A running in time S(n) PROOF: Sup-
1 1
Prorefonn[Afa(@),r) =2z 0r] < 5 + 0(%)- (7)

pose that some algorithm A can predict ®r with probability 1/2+§ in time ¢(n). We show how to
invert f,(z) for O(J) fraction of the inputs in O(n3t(n)/d*) time, from which the theorem follows.

CraiMm 10.15
Suppose that
1
Pr,seqopn [Alfala).) =201 2 5 +6. (8)
Then for at least ¢ fraction of x’s
1 9
Prrg{o,l}n [A(fu(x),r)=2071] > 5 + 5 ()

PROOF: We use an averaging argument. Suppose that p is the fraction of z’s satisfying (9). We
have p- 1+ (1 —p)(1/2+5/2) > 1/2+ 4. Solving this with respect to p, we obtain

>0 s
P=5ap—6p) ="

We design an inversion algorithm that given f,(z), where z € {0,1}", will try to recover x.
It succeeds with high probability if = is such that (9) holds, in other words, for at least § fraction
of z. Note that the algorithm can always check the correctness of its answer, since it has f,(x)
available to it and it can apply f,, to its answer and see if f,(z) is obtained.

WARMUP: Reconstruction when the probability in (9) is > 3/4+ 4.
Let P be any program that computes some unknown linear function over GF'(2)" but errs on
some inputs. Specifically, there is an unknown vector x € GF(2)" such that

P;r[P(r) =x-r]=3/4+6. (10)

Then we show to add a simple “correction” procedure to turn P into a probabilistic program
P’ such that
Vr PrlP(r)y=x-r]> l—n—12. (11)

(Once we know how to compute z - r for every r with high probability, it is easy to recover x
bit-by-bit using the observation that if e; is the n-bit vector that is 1 in the ith position and zero
elsewhere then x - e; = a;, the ith bit of a.)

pl10.12 (198)10.3. ONE-WAY FUNCTIONS AND PSEUDORANDOM NUMBER GENERATORS

“On input 7, repeat the following trial O(logn/6%) times. Pick y randomly from GF(2)" and
compute the bit P(r +y) + P(y). At the end, output the majority value.”

The main observation is that when y is randomly picked from GF(2)" then r + y and y are
both randomly distributed in GF(2)", and hence the probability that P(r + y) # a - (r +y) or
P(y) #a-yis at most 2-(1/4 —§) = 1/2 — 26. Thus with probability at least 1/2 + 2§, each trial
produces the correct bit. Then Chernoff bounds imply that probability is at least 1 — 1/n? that
the final majority is correct.

GENERAL CASE:

The idea for the general case is very similar, the only difference being that this time we want to
pick r1,..., 7y so that we already “know” z ®r;. The preceding statement may appear ridiculous,
since knowing the inner product of x with m > n random vectors is, with high probability, enough
to reconstruct = (see exercises). The explanation is that the r;’s will not be completely random.
Instead, they will be pairwise independent. Recall the following construction of a set of pairwise
independent vectors: Pick k random vectors t1,ta,...,tx € GF(2)"™ and for each nonempty S C
{1,...,k} define Yg = > . ot;. This gives 2% — 1 vectors and for S # S’ the random variables
Ys, Ys: are independent of each other.

Now let us describe the observation at the heart of the proof. Suppose m = 2¥ — 1 and our
random strings 1, ..., 7, are {Ys}’s from the previous paragraph. Then 1 ©Ys =2 (3 _,cqti) =
Y ics T © t;. Hence if we know x ® ¢; for i = 1,...,k, we also know = ® Ys. Of course, we don’t
actually know x © t; for i = 1,...,k since x is unknown and the ¢;’s are random vectors. But we
can just try all 2¥ possibilities for the vector (z ® ti)i=1,..r and run the rest of the algorithm for
each of them. Whenever our “guess” for these innerproducts is correct, the algorithm succeeds in
producing x and this answer can be checked by applying f, on it (as already noted). Thus the
guessing multiplies the running time by a factor 2%, which is only m. This is why we can assume
that we know x ® Yg for each subset S.

The details of the rest of the algorithm are similar to before. Pick m pairwise independent
vectors Yg’s such that, as described above, we “know” x ® Yg for all S. For each i = 1,2,...,n,
and each S run A on the input (fn(x),Ys @ e;) (where Ys @ e; is Yg with its ith entry flipped).
Compute the majority value of A(fn(z),Ys ® e;) —x ® Ys among all S’s and use it as your guess
for x;.

Suppose x € GF(2)" satisfies (9). We will show that this algorithm produces all n bits of =
with probability at least 1/2. Fix i. For each ¢, the guess for z; is a majority of m bits. The
expected number of bits among these that agree with x; is m(1/2 + §/2), so for the majority vote
to result in the incorrect answer it must be the case that the number of incorrect values deviates
from its expectation by more than md/2. Now, we can bound the variance of this random variable
and apply Chebyshev’s inequality (Lemma A.16 in Appendix A) to conclude that the probability
of such a deviation is < #.

Here is the calculation using Chebyshev’s inequality. Let {s denote the event that A produces
the correct answer on (f,(x),Ys@e;). Since x satisfies (9) and Yg @ e; is randomly distributed over
GF(2)", we have E({s) = 1/2+d/2 and Var({s) = E((s)(1-E(£s)) < 1. Let £ =) ¢ &g denote the
number of correct answers on a sample of size m. By linearity of expectation, E[¢] = m(1/2+§/2).
Furthermore, the Ys’s are pairwise independent, which implies that the same is true for the outputs
&s’s produced by the algorithm A on them. Hence by pairwise independence Var(£) < m. Now, by

10.4. APPLICATIONS p10.13 (199)

Chebyshev’s inequality, the probability that the majority vote is incorrect is at most 4‘:”%(25) < ﬁ.

Finally, setting m > 8/nd?, the probability of guessing the ith bit incorrectly is at most 1/2n.
By the union bound, the probability of guessing the whole word incorrectly is at most 1/2. Hence,
for every z satisfying (9), we can find the preimage of f(z) with probability at least 1/2, which
makes the overall probability of inversion at least §/2. The running time is about m?nx (running
time of A), which is g—z x t(n), as we had claimed. W

10.3.2 Pseudorandom number generation

We saw that if f is a one-way permutation, then g(z,r) = (f(z),r,x ® r) is a pseudorandom
generator that stretches 2n bits to 2n + 1 bits. Stretching to even more bits is easy too, as we
now show. Let f'(x) denote the i-th iterate of f on x (i.e., f(f(f(---(f(x))))) where f is applied

i times).

THEOREM 10.16
If f is a one-way permutation then gy(z,7) = (r,z O r, f(z) O r, f2(x)Or,...,fNx)or) is a
pseudorandom generator for N = n¢ for any constant ¢ > 0.

PROOF: Since any distinguishing machine could just reverse the string as a first step, it clearly
suffices to show that the string (v, fV(z) O r, fN Y z)Or, ..., f(x) ©r,z®r) looks pseudorandom.
By Yao’s theorem (Theorem 10.12), it suffices to show the difficulty of bit-prediction. For contra-
diction’s sake, assume there is a PPT machine A such that when z,7 € {0,1}" and i € {1,..., N}
are randomly chosen,

Pr[A predicts f'(z) © r given (r, fN(z) O r, fN " z)Or, ..., fFHz)or)] > % +e.
We describe an algorithm B that given f(z),r where z,r € {0,1}" are randomly chosen, predicts
the hardcore bit z ® r with reasonable probability, which contradicts Theorem 10.14.

Algorithm B picks i € {1,..., N} randomly. Let z € {0,1}" be such that f*(z) = 2. There is
of course no efficient way for B to find z, but for any I > 1, B can efficiently compute f+(z) =
I f(2))! So it produces the string r, fN(x) O r, fN"Hz)Or, ..., fiT(x) ©r and uses it as input
to A. By assumption, A predicts f(z) ® r = z ® r with good odds. Thus we have derived a
contradiction to Theorem 10.14. B

10.4 Applications

Now we give some applications of the ideas introduced in the chapter.

10.4.1 Pseudorandom functions

Pseudorandom functions are a natural generalization of (and are easily constructed using) pseudo-
random generators. This is a function g:{0,1}"™ x {0,1}" — {0,1}"™. For each K € {0,1}" we
denote by g|x the function from {0,1}" to {0,1}"™ defined by g|x(z) = g(K,x). Thus the family
contains 2™ functions from {0, 1}" to {0,1}"™, one for each K.

p10.14 (200) 10.4. APPLICATIONS

We say ¢ is a pseudorandom function generator if it passes a “Turing test” of randomness
analogous to that in Yao’s definition of a pseudorandom generator (Definition 10.11).

Recall that the set of all functions from {0,1}" to {0,1}", denoted F,,, , has cardinality
(2™)2". The PPT machine is presented with an “oracle” for a function from {0,1}" to {0,1}". The
function is one of two types: either a function chosen randomly from F,, ,,,, or a function f|x where
K € {0,1}™ is randomly chosen. The PPT machine is allowed to query the oracle in any points
of its choosing. We say f|x is a pseudorandom function generator if for all ¢ > 1 the PPT has
probability less than n~¢ of detecting which of the two cases holds. (A completely formal definition
would resemble Definition 10.1 and talk about a family of generators, one for each n. Then m is
some function of n.)

Figure unavailable in pdf file.

Figure 10.3: Constructing a pseudorandom function from {0,1}" to {0,1}™ using a random key K € {0,1}"™ and
a length-doubling pseudorandom generator g:{0,1}™ — {0, 1}2m.

Now we describe a construction of a pseudorandom function generator g from a length-doubling
pseudorandom generator f:{0,1}™ — {0,1}*™. For any K € {0,1}™ let Tx be a complete binary
tree of depth n whose each node is labelled with an m-bit string. The root is labelled K. If a node
in the tree has label y then its left child is labelled with the first m bits of f(y) and the right child
is labelled with the last m bits of f(y). Now we define g(K,z). For any z € {0,1}" interpret x as
a label for a path from root to leaf in Tk in the obvious way and output the label at the leaf. (See
Figure 10.3.)

We leave it as an exercise to prove that this construction is correct.

A pseudorandom function generator is a way to turn a random string K into an implicit de-
scription of an exponentially larger “random looking” string, namely, the table of all values of the
function g|x. This has proved a powerful primitive in cryptography; see the next section. Further-
more, pseudorandom function generators have also figured in a very interesting explanation of why
current lowerbound techniques have been unable to separate P from NP; see Chapter ?7.

10.4.2 Private-key encryption: definition of security

We hinted at a technique for private-key encryption in our discussion of a one-time pad (including
the pseudorandom version) at the start of Section 10.2. But that discussion completely omitted
what the design goals of the encryption scheme were. This is an important point: design of insecure
systems often traces to a misunderstanding about the type of security ensured (or not ensured) by
an underlying protocol.

The most basic type of security that a private-key encryption should ensure is semantic security.
Informally speaking, this means that whatever can be computed from the encrypted message is also
computable without access to the encrypted message and knowing only the length of the message.
The formal definition is omitted here but it has to emphasize the facts that we are talking about
an ensemble of encryption functions, one for each message size (as in Definition 10.1) and that the
encryption and decryption is done by probabilistic algorithms that use a shared private key, and

10.4. APPLICATIONS p10.15 (201)

that for every message the guarantee of security holds with high probability with respect to the
choice of this private key.

Now we describe an encryption scheme that is semantically secure. Let f:{0,1}" x {0,1}" —
{0,1}" be a pseudorandom function generator. The two parties share a secret random key K €
{0,1}". When one of them wishes to send a message = € {0,1}" to the other, she picks a random
string r € {0,1}" and transmits (r,z & fx(r)). To decrypt the other party computes fx(r) and
then XORs this string with the last n bits in the received text.

We leave it as an exercise to show that this scheme is semantically secure.

10.4.3 Derandomization

The existence of pseudorandom generators implies subexponential deterministic algorithms for
BPP: this is usually referred to as derandomization of BPP. (In this case, the derandomization
is only partial since it results in a subexponential deterministic algorithm. Stronger complexity
assumptions imply a full derandomization of BPP, as we will see in Chapter 16.)

THEOREM 10.17
If for every ¢ > 1 there is a pseudorandom generator that is secure against circuits of size n®, then
BPP C N.-(DTIME(2").

PROOF: Let us fix an € > 0 and show that BPP C DTIME(2"™).

Suppose that M is a BPP machine running in n* time. We can build another probabilistic
machine M’ that takes n® random bits, streches them to n* bits using the pseudorandom generator
and then simulates M using this n* bits as a random string. Obviously, M’ can be simulated by
going over all binary strings n¢, running M’ on each of them, and taking the majority vote.

It remains to prove that M and M’ accept the same language. Suppose otherwise. Then there
exists an infinite sequence of inputs x1,...,T,,... on which M distinguishes a truly random string
from a pseudorandom string with a high probability, because for M and M’ to produce different
results, the probability of acceptance should drop from 2/3 to below 1/2. Hence we can build a
distinguisher similar to the one described in the previous theorem by hardwiring these inputs into
a circuit family. Wl

The above theorem shows that the existence of hard problems implies that we can reduce the
randomness requirement of algorithms. This “hardness versus randomness” tradeoff is studied more
deeply in Chapter 16.

REMARK 10.18
There is an interesting connection to discrepancy theory, a field of mathematics. Let S be a set of
subsets of {0,1}". Subset A C {0,1}" has discrepancy € with respect to S if for every s € S,

snAl A
5] 2n

Our earlier result that BPP C P/poly showed the existence of polynomial-size sets A that have
low discrepancy for all sets defined by polynomial-time Turing machines (we only described dis-
crepancy for the universe {0,1}" but one can define it for all input sizes using limsup). The goal
of derandomization is to explicitly construct such sets; see Chapter 16.

pl10.16 (202) 10.4. APPLICATIONS

10.4.4 Tossing coins over the phone and bit commitment

How can two parties A and B toss a fair random coin over the phone? (Many cryptographic
protocols require this basic primitive.) If only one of them actually tosses a coin, there is nothing
to prevent him from lying about the result. The following fix suggests itself: both players toss a
coin and they take the XOR as the shared coin. Even if B does not trust A to use a fair coin, he
knows that as long as his bit is random, the XOR is also random. Unfortunately, this idea also
does not work because the player who reveals his bit first is at a disadvantage: the other player
could just “adjust” his answer to get the desired final coin toss.

This problem is addressed by the following scheme, which assumes that A and B are polynomial
time turing machines that cannot invert one-way permutations. The protocol itself is called bit
commitment. First, A chooses two strings x4 and r4 of length n and sends a message (f,(x4),74),
where f, is a one-way permutation. This way, A commits the string x4 without revealing it. Now
B selects a random bit b and conveys it. Then A reveals x4 and they agree to use the XOR of b
and (x4 ®ra) as their coin toss. Note that B can verify that 4 is the same as in the first message
by applying f,, therefore A cannot change her mind after learning B’s bit. On the other hand, by
the Goldreich—Levin theorem, B cannot predict x4 ® r4 from A’s first message, so this scheme is
secure.

10.4.5 Secure multiparty computations

This concerns a vast generalization of the setting in Section 10.4.4. There are k parties and the i¢th
party holds a string z; € {0,1}". They wish to compute f(z1,z2,...,z;) where f:{0, 1}"k —{0,1}
is a polynomial-time computable function known to all of them. (The setting in Section 10.4.4 is
a subcase whereby each x; is a bit —randomly chosen as it happens—and f is XOR.) Clearly,
the parties can just exchange their inputs (suitably encrypted if need be so that unauthorized
eavesdroppers learn nothing) and then each of them can compute f on his/her own. However, this
leads to all of them knowing each other’s input, which may not be desirable in many situations.
For instance, we may wish to compute statistics (such as the average) on the combination of several
medical databases that are held by different hospitals. Strict privacy and nondisclosure laws may
forbid hospitals from sharing information about individual patients. (The original example Yao
gave in introducing the problem was of k£ people who wish to compute the average of their salaries
without revealing their salaries to each other.)

We say that a multiparty protocol for computing f is secure if at the end no party learns
anything new apart from the value of f(x1,x9,...,2x). The formal definition is inspired by the
definition of a pseudorandom generator, and states that for each ¢, the bits received by party ¢
during the protocol should be computationally indistinguishable from completely random bits?.

It is completely nonobvious why such protocols must exist. Yao [Yao86] proved existence for
k = 2 and Goldreich, Micali, Wigderson [GMW8T7] proved existence for general k. We will not

3Returning to our medical database example, we see that the hospitals can indeed compute statistics on their
combined databases without revealing any information to each other —at least any information that can be extracted
feasibly. Nevetheless, it is unclear if current privacy laws allow hospitals to perform such secure multiparty protocols
using patient data— an example of the law lagging behind scientific progress.

10.5. RECENT DEVELOPMENTS p10.17 (203)

describe this protocol in any detail here except to mention that it involves “scrambling” the circuit
that computes f.

10.4.6 Lowerbounds for machine learning

In machine learning the goal is to learn a succinct function f:{0,1}" — {0,1} from a sequence
of type (x1, f(z1)), (2, f(z2)),..., where the z;’s are randomly-chosen inputs. Clearly, this is
impossible in general since a random function has no succinct description. But suppose f has a
succinct description, e.g. as a small circuit. Can we learn f in that case?

The existence of pseudorandom functions implies that even though a function may be polynomial-
time computable, there is no way to learn it from examples in polynomial time. In fact it is possible
to extend this impossibility result (though we do not attempt it) to more restricted function families
such as NC! (see Kearns and Valiant [KV94]).

10.5 Recent developments

The earliest cryptosystems were designed using the SUBSET SUM problem. They were all shown to
be insecure by the early 1980s. In the last few years, interest in such problems —and also the related
problems of computing approximate solutions to the shortest and nearest lattice vector problems—
has revived, thanks to a one-way function described in Ajtai [Ajt96], and a public-key cryptosystem
described in Ajtai and Dwork [AD97] (and improved on since then by other researchers). These
constructions are secure on most instances iff they are secure on worst-case instances. (The idea
used is a variant of random self-reducibility.)

Also, there has been a lot of exploration of the exact notion of security that one needs for various
cryptographic tasks. For instance, the notion of semantic security in Section 10.4.2 may seem quite
strong, but researchers subsequently realized that it leaves open the possibility of some other kinds
of attacks, including chosen ciphertext attacks, or attacks based upon concurrent execution of
several copies of the protocol. Achieving security against such exotic attacks calls for many ideas,
most notably zero knowledge (a brief introduction to this concept appears in Section ?7?).

Chapter notes and history

In the 1940s, Shannon speculated about topics reminiscent of complexity-based cryptography. The
first concrete proposal was made by Diffie and Hellman [DH76], though their cryptosystem was later
broken. The invention of the RSA cryptosystem (named after its inventors Ron Rivest, Adi Shamir,
and Len Adleman) [RSAT78] brought enormous attention to this topic. In 1981 Shamir [Sha83]
suggested the idea of replacing a one-time pad by a pseudorandom string. He also exhibited a weak
pseudorandom generator assuming the average-case intractability of the RSA function. The more
famous papers of Blum and Micali [BM84] and then Yao [Yao82] laid the intellectual foundations
of private-key cryptography. (The hybrid argument used by Yao is a stronger version of one in
an earlier important manuscript of Goldwasser and Micali [GMS84] that proposed probabilistic
encryption schemes.) The construction of pseudorandom functions in Section 10.4.1 is due to
Goldreich, Goldwasser, and Micali [GGMS86]. The question about tossing coins over a telephone

p10.18 (204) 10.5. RECENT DEVELOPMENTS

was raised in an influential paper of Blum [Blu82]. Today complexity-based cryptography is a vast
field with several dedicated conferences. Goldreich [Gol04]’s two-volume book gives a definitive
account.

A scholarly exposition of number theoretic algorithms (including generating random primes
and factoring integers) appears in Victor Shoup’s recent book [?] and the book of Bach and Shal-
lit [BS96].

Theorem 10.13 and its very technical proof is in Hastad et al. [HILL99] (the relevant conference
publications are a decade older).

Our proof of the Goldreich-Levin theorem is usually attributed to Rackoff (unpublished).

Exercises

§1 Show that if P = NP then one-way functions and pseudorandom generators do not exist.

§2 (Requires just a little number theory). Prove that if some algorithm inverts the Rabin func-
tion f,(z) = 2% (mod m) on a 1/poly(logm) fraction of inputs then we can factor m in
poly(logm) time.

‘w onpou ,s3001 axenbs; § sey
;2 wayy, -stoqumu owtid ore b‘d oxoym bd = w esoddng :gurpy

§3 Show that if f is a one-way permutation then so is f* (namely, f(f(f(---(f(z))))) where f
is applied k times) where k = n¢ for some fixed ¢ > 0.

§4 Assuming one-way functions exist, show that the above fails for one-way functions.

*AeM-0UI0
10U ST 3[:/’ 9IoUM UOIOUN] ARM-BUO © USISOP 0} 9ARY NOA :JUTH

§5 Suppose a € GF(2)™ is an unknown vector. Let ri,ra,...,7, € GF(2)" be randomly
chosen, and a ® r; revealed to us for all ¢ = 1,2,..., m. Describe a deterministic algorithm
to reconstruct a from this information, and show that the probability (over the choice of the
r;’s) is at least 1/4 that it works.

"0I9ZUOU ST JURUTULINOP UTRYIOD B JRT[) MOTS 0} PIOU NOK JUTE]

This shows that the “trick” in Goldreich-Levin’s proof is necessary.

§6 Suppose somebody holds an unknown n-bit vector a. Whenever you present a randomly
chosen subset of indices S C {1,...,n}, then with probability at least 1/2 + ¢, she tells you
the parity of the all the bits in a indexed by S. Describe a guessing strategy that allows you
to guess a (an n bit string!) with probability at least ()¢ for some constant ¢ > 0.

§7 Suppose g:{0,1}" — {0,1}"*! is any pseudorandom generator. Then use g to describe a
pseudorandom generator that stretches n bits to n* for any constant k& > 1.

88 Show the correctness of the pseudorandom function generator in Section 10.4.1.

10.5. RECENT DEVELOPMENTS p10.19 (205)
TWILIOZ[R SUTYSINSUIYSIP S} A POPIU oIe A9() ISASULYM

Ap oy uo pouSisse oq Ued YN AU} ,g ISLI] B Oy} P[NoM SI}
— oW} JO peaye pAUSISSE ¢ 0O} PodUl J0U Op S[A]e[WOopuel oY}
1e1} 9J0N 'sSuLI)s wopuel A[o19[duIod Aq 9913 o1} JO S[OAS] Y ISIY
o) uo s[oqe] oY) sede[dol YOIYM JUSWINGIR PLIGAY ® 9s)) :JUTE]

§9 Formalize the definition of semantic security and show that the encryption scheme in Sec-
tion 10.4.2 is semantically secure.
01ns sTy)
SoOp AUA\ swyjIod[e own-rerwoud[od Aq o[qeySINSUIISIPUl dIe
suonjdAoue 1oy) fi ‘x sired oFessow [[€ 10] 18I MOUS ISIL] SJUIE]

p10.20 (206) 10.5. RECENT DEVELOPMENTS

Part 11

Lowerbounds for Concrete
Computational Models

p10.21 (207)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

DRAFT

p10.23 (209)

In the next few chapters the topic will be concrete complexity, the study of lowerbounds on
models of computation such as decision trees, communication games, circuits, etc. Algorithms or
devices considered in this lecture take inputs of a fixed size n, and we study the complexity of these
devices as a function of n.

pl10.1 (210)

Web draft 2007-01-08 21:59

Chapter 11

Decision Trees

A decision tree is a model of computation used to study the number of bits of an input that
need to be examined in order to compute some function on this input. Consider a function f :
{0,1}" — {0,1}. A decision tree for f is a tree for which each node is labelled with some z;, and
has two outgoing edges, labelled 0 and 1. Each tree leaf is labelled with an output value 0 or 1.
The computation on input x = z1x2...x, proceeds at each node by inspecting the input bit x;
indicated by the node’s label. If x; = 1 the computation continues in the subtree reached by taking
the 1-edge. The 0-edge is taken if the bit is 0. Thus input z follows a path through the tree. The
output value at the leaf is f(x). An example of a simple decision tree for the majority function is
given in Figure 11.1

Figure unavailable in pdf file.

Figure 11.1: A decision tree for computing the majority function Maj(z1,x2,x3) on three bits. Outputs 1 if at
least two input bits are 1, else outputs 0.

Recall the use of decision trees in the proof of the lower bound for comparison-based sorting
algorithms. That study can be recast in the above framework by thinking of the input —which
consisted of n numbers — as consisting of (Z) bits, each giving the outcome of a pairwise comparison
between two numbers.

We can now define two useful decision tree metrics.

DEFINITION 11.1
The cost of tree ¢ on input x, cost(t,z), is the number of bits of examined by t¢.

DEFINITION 11.2
The decision tree complexity of function f, D(f), is defined as follows, where T below refers to
the set of decision trees that decide f.
D = min max cost(t,z 1
(f) teT ze{0,1}" () ()
The decision tree complexity of a function is the number of bits examined by the most efficient
decision tree on the worst case input to that tree. We are now ready to consider several examples.

pll.2 (211)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pll.3 (212)

ExXAMPLE 11.3

(Graph connectivity) Given a graph G as input, in adjacency matrix form, we would like to know
how many bits of the adjacency matrix a decision tree algorithm might have to inspect in order to
determine whether G is connected. We have the following result.

THEOREM 11.4

Let f be a function that computes the connectivity of input graphs with m vertices. Then D(f) =
(3):

The idea of the proof of this theorem is to imagine an adversary that constructs a graph, edge by
edge, in response to the queries of a decision tree. For every decision tree that decides connectivity,
the strategy implicitly produces an input graph which requires the decision tree to inspect each of
the (Tg) possible edges in a graph of m vertices.

Adversary Strategy:
Whenever the decision tree algorithm asks about edge e;,
answer “no” unless this would force the graph to be disconnected.

After i queries, let N; be the set of edges for which the adversary has replied “no”, Y; the set
of edges for which the adversary has replied “yes”. and FE; the set of edges not yet queried. The
adversary’s strategy maintains the invariant that Y; is a disconnected forest for i < (Tg’) and Y;UFE;
is connected. This ensures that the decision tree will not know whether the graph is connected
until it queries every edge.

ExaMPLE 11.5

(OR Function) Let f(x1,x2,...2,) = i, 2;. Here we can use an adversary argument to show
that D(f) = n. For any decision tree query of an input bit x;, the adversary responds that z;
equals 0 for the first n — 1 queries. Since f is the OR function, the decision tree will be in suspense
until the value of the nth bit is revealed. Thus D(f) is n.

ExAMPLE 11.6
Consider the AND-OR function, with n = 2¥. We define f;, as follows.

fk—l(fﬁl, .. .3321@—1,1) VAN fk_1($2k—1, .. l‘zk) if k is even
fk(xl,...,a:n) = fk,l(.’I]l,...l'Qk—l_l) \/fkfl(xzkfl,....fzk) if K> 1 and is odd (2)
€Ty ifk=1

A diagram of a circuit that computes the AND-OR function is shown in Figure 11.2. It is left as
an exercise to prove, using induction, that D(f;) = 2*.

11.1. CERTIFICATE COMPLEXITY pll.4 (213)

Figure unavailable in pdf file.

Figure 11.2: A circuit showing the computation of the AND-OR, function. The circuit has k layers of alternating
gates, where n = 2F.

11.1 Certificate Complexity

We now introduce the notion of certificate complexity, which, in a manner analogous to decision
tree complexity above, tells us the minimum amount of information needed to be convinced of the
value of a function f on input x.

DEFINITION 11.7

Consider a function f:{0,1}" — {0,1}. If f(z) = 0, then a O-certificate for z is a sequence of
bits in x that proves f(z) = 0. If f(x) = 1, then a 1-certificate is a sequence of bits in x that
proves f(z) = 1.

DEFINITION 11.8

The certificate complexity C(f) of f is defined as follows.

C(f) = max {number of bits in the smallest 0- or 1- certificate for x} (3)

xinput

ExAMPLE 11.9

If f is a function that decides connectivity of a graph, a O-certificate for an input must prove that
some cut in the graph has no edges, hence it has to contain all the possible edges of a cut of the
graph. When these edges do not exist, the graph is disconnected. Similarly, a 1-certificate is the
edges of a spanning tree. Thus for those inputs that represent a connected graph, the minimum
size of a 1-certificate is the number of edges in a spanning tree, n — 1. For those that represent a
disconnected graph, a 0 certificate is the set of edges in a cut. The size of a O-certificate is at most
(n/2)? = n?/4, and there are graphs (such as the graph consisting of two disjoint cliques of size
n/2) in which no smaller O-certificate exists. Thus C(f) = n?/4.

ExAMPLE 11.10

We show that the certificate complexity of the AND-OR function f; of Example 11.6 is 2[%/21,
Recall that f is defined using a circuit of k layers. Each layer contains only OR-gates or only
AND-gates, and the layers have alternative gate types. The bottom layer receives the bits of input
x as input and the single top layer gate outputs the answer fix(x). If f(x) = 1, we can construct
a 1-certificate as follows. For every AND-gate in the tree of gates we have to prove that both its
children evaluate to 1, whereas for every OR-gate we only need to prove that some child evaluates
to 1. Thus the 1-certificate is a subtree in which the AND-gates have two children but the OR gates
only have one each. Thus the subtree only needs to involve 2/%/2 input bits. If f(x) = 0, a similar

pll.5 (214) 11.1. CERTIFICATE COMPLEXITY

argument applies, but the role of OR~gates and AND-gates, and values 1 and 0 are reversed. The
result is that the certificate complexity of f;, is 2/%/2] or about V.

The following is a rough way to think about these concepts in analogy to Turing machine
complexity as we have studied it.

low decision tree complexity < P (4)
low 1-certificate complexity < NP (5)
low O-certificate complexity <~ coNP (6)

The following result shows, however, that the analogy may not be exact since in the decision tree
world, P = NP N coNP. It should be noted that the result is tight, for example for the AND-OR
function.

THEOREM 11.11
For function f, D(f) < C(f)?.

PROOF: Let Sy, S1 be the set of minimal O-certificates and 1-certificates, respectively, for f. Let
k= C(f), so each certificate has at most k bits.

REMARK 11.12

Note that every O-certificate must share a bit position with every 1-certificate, and furthermore,
assign this bit differently. If this were not the case, then it would be possible for both a 0-certificate
and 1-certificate to be asserted at the same time, which is impossible.

The following decision tree algorithm then determines the value of f in at most k? queries.

Algorithm: Repeat until the value of f is determined: Choose a remaining 0-certificate from Sy
and query all the bits in it. If the bits are the values that prove the f to be 0, then stop. Otherwise,
we can prune the set of remaining certificates as follows. Since all 1-certificates must intersect the
chosen 0-certificate, for any ¢; € S1, one bit in ¢; must have been queried here. Eliminate ¢; from
consideration if the certifying value of ¢; at at location is different from the actual value found.
Otherwise, we only need to consider the remaining & — 1 bits of ¢;.

This algorithm can repeat at most k times. For each iteration, the unfixed lengths of the
uneliminated 1-certificates decreases by one. This is because once some values of the input have
been fixed due to queries, for any O-certificate, it remains true that all 1-certificates must intersect
it in at least one location that has not been fixed, otherwise it would be possible for both a 0-
certificate and a 1-certificate to be asserted. With at most k£ queries for at most k iterations, a
total of k2 queries is used. W

11.2. RANDOMIZED DECISION TREES pll.6 (215)

11.2 Randomized Decision Trees

There are two equivalent ways to look at randomized decision trees. We can consider decision trees
in which the branch taken at each node is determined by the query value and by a random coin
flip. We can also consider probability distributions over deterministic decision trees. The analysis
that follows uses the latter model.

We will call P a probability distribution over a set of decision trees 7 that compute a particular
function. P(t) is then the probability that tree t is chosen from the distribution. For a particular
input z, then, we define ¢(P,x) = >, 7 P(t)cost(t,z). c(P,x) is thus the expected number of
queries a tree chosen from 7 will make on input x. We can then characterize how well randomized
decision trees can operate on a particular problem.

DEFINITION 11.13
The randomized decision tree complexity, R(f), of f, is defined as follows.

R(f) = Hgn max c(P,x) (7)

The randomized decision tree complexity thus expresses how well the best possible probability
distribution of trees will do against the worst possible input for a particular probability distribution
of trees. We can observe immediately that R(f) > C(f). This is because C(f) is a minimum value
of cost(t,x). Since R(f) is just an expected value for a particular probability distribution of these
cost values, the minimum such value can be no greater than the expected value.

ExAaMmPLE 11.14

Consider the majority function, f = Maj(x1,xe,x3). It is straightforward to see that D(f) = 3.
We show that R(f) < 8/3. Let P be a uniform distribution over the (six) ways of ordering the
queries of the three input bits. Now if all three bits are the same, then regardless of the order
chosen, the decision tree will produce the correct answer after two queries. For such z, ¢(P,x) = 2.
If two of the bits are the same and the third is different, then there is a 1/3 probability that the
chosen decision tree will choose the two similar bits to query first, and thus a 1/3 probability that
the cost will be 2. There thus remains a 2/3 probability that all three bits will need to be inspected.
For such z, then, ¢(P,z) = 8/3. Therefore, R(f) is at most 8/3.

How can we prove lowerbounds on randomized complexity? For this we need another concept.

11.3 Lowerbounds on Randomized Complexity

NEEDS CLEANUP NOW

To prove lowerbounds on randomized complexity, it suffices by Yao’s Lemma (see Section 11.6)
to prove lowerbounds on distributional complexity. Where randomized complexity explores distribu-
tions over the space of decision trees for a problem, distributional complexity considers probability
distributions on inputs. It is under such considerations that we can speak of “average case analysis.”

pl1.7 (216) 11.3. LOWERBOUNDS ON RANDOMIZED COMPLEXITY

Let D be a probability distribution over the space of input strings of length n. Then, if A is
a deterministic algorithm, such as a decision tree, for a function, then we define the distributional
complexity of A on a function f with inputs distributed according to D as the expected cost for
algorithm A to compute f, where the expectation is over the distribution of inputs.

DEFINITION 11.15
The distributional complexity d(A,D) of algorithm A given inputs distributed according to D
is defined as:

d(A, D)=) D(x)cost(A,z) = Egeplcost(A, z)] (8)

znput
From this we can characterize distributional complexity as a function of a single function f
itself.
DEFINITION 11.16
The distributional decision tree complexity, A(f) of function f is defined as:
A(f) = mgxmjn d(A,D) 9)

Where A above runs over the set of decision trees that are deciders for f.

So the distributional decision tree complexity measures the expected efficiency of the most
efficient decision tree algorithm works given the worst case distribution of inputs.
The following theorem follows from Yao’s lemma.

THEOREM 11.17

R(f) = A(f)-

So in order to find a lower bound on some randomized algorithm, it suffices to find a lower
bound on A(f). Such a lower bound can be found by postulating an input distribution D and
seeing whether every algorithm has expected cost at least equal to the desired lower bound.

EXAMPLE 11.18

We return to considering the majority function, and we seek to find a lower bound on A(f).
Consider a distribution over inputs such that inputs in which all three bits match, namely 000
and 111, occur with probability 0. All other inputs occur with probability 1/6. For any decision
tree, that is, for any order in which the three bits are examined, there is exactly a 1/3 probability
that the first two bits examined will be the same value, and thus there is a 1/3 probability that
the cost is 2. There is then a 2/3 probability that the cost is 3. Thus the overall expected cost
for this distribution is 8/3. This implies that A(f) > 8/3 and in turn that R(f) > 8/3. So

A(f) = R(f) = 8/3.

11.4. SOME TECHNIQUES FOR DECISION TREE LOWERBOUNDS pl1.8 (217)

11.4 Some techniques for decision tree lowerbounds

DEFINITION 11.19 (SENSITIVITY)
If £:{0,1}" — {0,1} is a function and = € {0,1}" then the sensitivity of f on z, denoted s,(f),
is the number of bit positions i such that f(z) # f(x'), where 2 is x with its ith bit flipped. The
sensitivity of f, denoted s(f), is max, {sz(f)}.

The block sensitivity of f on x, denoted bs,(f), is the maximum number b such that there are
disjoint blocks of bit positions Bi,a, ..., By such that f(x) # f(2%) where 25 is 2 with all its bits
flipped in block B;. The block sensitivity of f denoted bs(f) is max, {bs,(f)}.

It is conjectured that there is a constant ¢ (as low as 2) such that bs(f) = O(s(f)) for all f but
this is wide open. The following easy observation is left as an exercise.

LEMMA 11.20
For any function, s(f) < bs(f) < D(f).

THEOREM 11.21 (NISAN)

C(f) < s(f)bs(f).

PROOF: For any input « € {0,1}" we describe a certificate for = of size s(f)bs(f). This certificate
is obtained by considering the largest number of disjoint blocks of variables By, Bs,..., B that
achieve b = bs,(f) < bs(f). We claim that setting these variables according to x constitutes a
certificate for x.

Suppose not, and let 2’ be an input that is consistent with the above certificate. Let By,11 be
a block of variables such that 2’ = 2%+1. Then B,,; must be disjoint from By, Bo,...B,, which
contradicts b = bs,(f).

Note that each of By, Ba,..., By has size at most s(f) by definition of s(f), and hence the size
of the certificate we have exhibited is at most s(f)bs(f). B

Recent work on decision tree lowerbounds has used polynomial representations of boolean func-
tions. Recall that a multilinear polynomial is a polynomial whose degree in each variable is 1.

DEFINITION 11.22
An n-variate polynomial p(x1,xa,...,2,) represents f: {0,1}" — {0,1} if p(z) = f(z) for all
xz € {0,1}".

The degree of f, denoted deg(f), is the degree of the multilinear polynomial that represents f.

(The exercises ask you to show that the multilinear polynomial representation is unique, so deg(f)
is well-defined.)

ExaAMPLE 11.23
The AND of n variables 1, x2,..., 2, is represented by the multilinear polynomial []! ; z; and
OR is represented by 1 — [, (1 — ;).

pl1.9 (218) 11.5. COMPARISON TREES AND SORTING LOWERBOUNDS

The degree of AND and OR is n, and so is their decision tree complexity. There is a similar
connection for other problems too, but it is not as tight. The first part of the next theorem is an
easy exercise; the second part is nontrivial.

THEOREM 11.24
1. deg(f) < D(f).

2. (Nisan-Smolensky) D(f) < deg(f)?bs(f) < O(deg(f)*).

11.5 Comparison trees and sorting lowerbounds

TO BE WRITTEN

11.6 Yao’s MinMax Lemma

This section presents Yao’s minmax lemma, which is used in a variety of settings to prove lower-
bounds on randomized algorithms. Therefore we present it in a very general setting.

Let X be a finite set of inputs and A be a finite set of algorithms that solve some computational
problem on these inputs. For z € X', a € A, we denote by cost(A, z) the cost incurred by algorithm
A on input z. A randomized algorithm is a probability distribution R on A. The cost of R on
input x, denoted cost(R, z), is Facr[cost(A, z)]. The randomized complezity of the problem is

rr%n max cost(R, x). (10)

Let D be a distribution on inputs. For any deterministic algorithm A, the cost incurred by it

on D, denoted cost(A, D), is Eyep|cost(A, x)]. The distributional complezity of the problem is
max min cost(A4, D). (11)
D AecA

Yao’s Lemma says that these two quantitities are the same. It is easily derived from von Neu-
mann’s minmax theorem for zero-sum games, or with a little more work, from linear programming
duality.

Yao’s lemma is typically used to lowerbound randomized complexity. To do so, one defines
(using some insight and some luck) a suitable distribution D on the inputs. Then one proves that
every deterministic algorithm incurs high cost, say C, on this distribution. By Yao’s Lemma, it
follows that the randomized complexity then is at least C.

Exercises

§1 Suppose f is any function that depends on all its bits; in other words, for each bit position 4
there is an input x such that f(z) # f(2%). Show that s(f) = Q(logn).

§2 Consider an f defined as follows. The n-bit input is partitioned into |y/n]| blocks of size
about y/n. The function is 1 iff there is at least one block in which two consecutive bits are 1
and the remaining bits in the block are 0. Estimate s(f),bs(f), C(f), D(f) for this function.

11.6. YAO’S MINMAX LEMMA p11.10 (219)

§3 Show that there is a unique multilinear polynomial that represents f:{0,1}" — {0,1}. Use
this fact to find the multilinear representation of the PARITY of n variables.

§4 Show that deg(f) < D(f).

Chapter notes and history

The result that the decision tree complexity of connectivity and many other problems is (g’) has
motivated the following conjecture (atributed variously to Anderaa, Karp, Yao):

Every monotone graph property has D(-) = (g)

Here “monotone” means that adding edges to the graph cannot make it go from having the
property to not having the property (e.g., connectivity). “Graph property” means that the property
does not depend upon the vertex indices (e.g., the property that vertex 1 and vertex 2 have an
edge between them). This conjecture is known to be true up to a O(1) factor; the proof uses
topology and is excellently described in Du and Ko [DKO00]. A more ambitious conjecture is that
even the randomized decision tree complexity of monotone graph properties is (n?) but here the
best lowerbound is close to n*/3.

The polynomial method for decision tree lowerbounds is surveyed in Buhrman and de Wolf [BAW02].
The method can be used to lowerbound randomized decision tree complexity (and more recently,
quantum decision tree complexity) but then one needs to consider polynomials that approzimately
represent the function.

pll.11 (220) 11.6. YAO’S MINMAX LEMMA

Chapter 12

Communication Complexity

Communication complexity concerns the following scenario. There are two players with unlimited
computational power, each of whom holds an n bit input, say z and y. Neither knows the other’s
input, and they wish to collaboratively compute f(x,y) where function f:{0,1}" x{0,1}" — {0,1}
is known to both. Furthermore, they had foreseen this situation (e.g., one of the parties could be
a spacecraft and the other could be the base station on earth), so they had already —before they
knew their inputs x,y— agreed upon a protocol for communication'. The cost of this protocol is
the number of bits communicated by the players for the worst-case choice of x, y.

Researchers have studied many modifications of the above basic scenario, including randomized
protocols, nondeterministic protocols, average-case protocols (where x, y are assumed to come from
a distribution), multiparty protocols, etc. Truly, this is a self-contained mini-world within com-
plexity theory. Furthermore, lowerbounds on communication complexity have uses in a variety of
areas, including lowerbounds for parallel and VLSI computation, circuit lowerbounds, polyhedral
theory, data structure lowerbounds, etc. We give a very rudimentary introduction to this area; an
excellent and detailed treatment can be found in the book by Kushilevitz and Nisan [KN97].

12.1 Definition

Now we formalize the informal description of communication complexity given above.
A t-round communication protocol for f is a sequence of function pairs (S, C1), (S2,C2), ..., (St, Ct), (f1, f2).

The input of S; is the communication pattern of the first ¢ — 1 rounds and the output is from {1, 2},
indicating which player will communicate in the ith round. The input of C; is the input string of
this selected player as well as the communication pattern of the first ¢ — 1 rounds. The output of
C; is the bit that this player will communicate in the ith round. Finally, fi, fo are 0/1-valued func-
tions that the players apply at the end of the protocol to their inputs as well as the communication
pattern in the ¢ rounds in order to compute the output. These two outputs must be f(z,y). The

Do not confuse this situation with information theory, where an algorithm is given messages that have to be
transmitted over a noisy channel, and the goal is to transmit them robustly while minimizing the amount of com-
munication. In communication complexity the channel is not noisy and the players determine what messages to
send.

pl2.1 (221)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pl2.2 (222) 12.2. LOWERBOUND METHODS

communication complexity of f is

C(f)= min max {Number of bits exchanged by P on z,y.}
protocols P,y

Notice, C(f) < n+1 since the trivial protocol is for one player to communicate his entire input,
whereupon the second player computes f(x,y) and communicates that single bit to the first. Can
they manage with less communication?

EXAMPLE 12.1 (PARITY)

Suppose the function f(z,y) is the parity of all the bits in z,y. We claim that C(f) = 2. Clearly,
C(f) > 2 since the function depends nontrivially on each input, so each player must transmit at
least one bit. Next, C'(f) < 2 since it suffices for each player to transmit the parity of all the bits
in his possession; then both know the parity of all the bits.

REMARK 12.2

Sometimes students ask whether a player can communicate by not saying anything? (After all,
they have three options: send a 0, or 1, or not say anything in that round.) We can regard such
protocols as communicating with a ternary, not binary, alphabet, and analyze them analogously.

12.2 Lowerbound methods

Now we discuss methods for proving lowerbounds on communication complexity. As a running
example in this chapter, we will use the equality function:

1 ife=y
EQ(z,y) =
Q=y) {0 otherwise
We will see that C(EQ) > n.

12.2.1 Fooling set

We show C(EQ) > n. For contradiction’s sake, suppose a protocol exists whose complexity is
at most n — 1. Then there are only 2" ! communication patterns possible between the players.
Consider the set of all 2" pairs (x,z). Using the pigeonhole principle we conclude there exist two
pairs (z,z) and (2/,2’) on which the communication pattern is the same. Of course, thus far we
have nothing to object to, since the answers EQ(x, z) and EQ(2’, z’) on both pairs are 1. However,
now imagine giving one player x and the other player 2’ as inputs. A moment’s thought shows
that the communication pattern will be the same as the one on (z,z) and (2, 2). (Formally, this
can be shown by induction. If player 1 communicates a bit in the first round, then clearly this bit
is the same whether his input is x or /. If player 2 communicates in the 2nd round, then his bit
must also be the same on both inputs since he receives the same bit from player 1. And so on.)

12.2. LOWERBOUND METHODS p12.3 (223)

Hence the player’s answer on (z,) must agree with their answer on (z,z"). But then the protocol
must be incorrect, since EQ(z,z’) = 0 # EQ(z,).
The lowerbound argument above is called a fooling set argument. It is formalized as follows.

DEFINITION 12.3
A fooling set for f:{0,1}" x {0,1}"" — {0,1} is a set S C {0,1}" x {0,1}" and a value b € {0,1}
such that:

1. For every (z,y) € S, f(z,y) =b.
2. For every two distinct pairs (z1,y1), (z2,y2) € S, either f(x1,y2) # b or f(x2,y1) # b.

LEMMA 12.4
If f has a fooling set with m pairs then C(f) > logy m.

EXAMPLE 12.5 (DISJOINTNESS)

Let z,y be interpreted as characteristic vectors of subsets of {1,2,...,n}. Let DISJ(z,y) = 1 if
these two subsets are disjoint, otherwise DISJ(x,y) = 0. Then C'(DISJ) > n since the following 2"
pairs constitute a fooling set:

S={(4,A4): AC{1,2,...,n}}.

12.2.2 The tiling lowerbound

The tiling lowerbound takes a more global view of f. Consider the matrix of f, denoted M (f),
which is a 2" x 2" matrix whose (z,y)’th entry is f(z,y). See Figure 12.1. We visualize the

Figure unavailable in pdf file.

Figure 12.1: Matrix M(f) for the equality function when the inputs to the players have 3 bits. The numbers in the
matrix are values of f.

communication protocol in terms of this matrix. A combinatorial rectangle (or just rectangle) in
the matrix is a submatrix corresponding to A x B where A C {0,1}", B C {0,1}". If the protocol
begins with the first player sending a bit, then M (f) partitions into two rectangles of the type
Ap x {0,1}", A1 x B™, where Ay is the subset of strings for which the first player communicates
bit b. Notice, Ag U A1 = {0,1}". If the next bit is sent by the second player, then each of the two
rectangles above is further partitioned into two smaller rectangles depending upon what this bit
was. If the protocol continues for k steps, the matrix gets partitioned into 2% rectangles. Note that
each rectangle in the partition corresponds to a subset of input pairs for which the communication
sequence thus far has been identical. (See Figure 12.2 for an example.)

pl2.4 (224) 12.2. LOWERBOUND METHODS

Figure unavailable in pdf file.

Figure 12.2: Two-way communication matrix after two steps. The large number labels are the concatenation of
the bit sent by the first player with the bit sent by the second player.

If the protocol stops, then the value of f is determined within each rectangle, and thus must be
the same for all pairs x,y in that rectangle. Thus the set of all communication patterns must lead
to a partition of the matrix into monochromatic rectangles. (A rectangle A x B is monochromatic
if for all z in A and y in B, f(z,y) is the same.)

DEFINITION 12.6
A monochromatic tiling of M (f) is a partition of M(f) into disjoint monochromatic rectangles.
We denote by x(f) the minimum number of rectangles in any monochromatic tiling of M(f).

The following theorem is immediate from our discussion above.
THEOREM 12.7
If f has communication complexity C' then it has a monochromatic tiling with at most 2 rectangles.
Consequently, C' > logy x(f).

The following observation shows that the tiling bound subsumes the fooling set bound.
LEMMA 12.8
If f has a fooling set with m pairs, then x(f) > m.

PRrROOF: If (z1,y1) and (x2,y2) are two of the pairs in the fooling set, then they cannot be in a

monochromatic rectangle since not all of (x1,1), (x2,¥y2), (21,y2), (z2,y1) have the same f value.
|

12.2.3 Rank lowerbound

Now we introduce an algebraic method to lowerbound x(f) (and hence communication complexity).
Recall the high school notion of rank of a square matrix: it is the size of the largest subset of
rows/colums that are independent. The following is another definition.

DEFINITION 12.9

If a matrix has entries from a field F' then the rank of an n x n matrix M is the minimum value
of [such that M can be expressed as

l
M = Z aiBia
=1

where «; € F'\ {0} and each B; is an n x n matrix of rank 1.

Note that 0,1 are elements of every field, so we can compute the rank over any field we like. The
choice of field can be crucial; see Problem 5 in the exercises.

The following theorem is trivial, since each monochromatic rectangle can be viewed (by filling
out entries outside the rectangle with 0’s) as a matrix of rank at most 1 .

THEOREM 12.10
For every function f, x(f) > rank(M(f)).

12.2. LOWERBOUND METHODS p12.5 (225)

12.2.4 Discrepancy
The discrepancy of a rectangle A x B in M (f) is

Jon [number of 1’s in A x B — number of 0’s in A x B|. (1)

The discrepancy of the matrix M(f), denote Disc(f), is the largest discrepancy among all
rectangles. The following Lemma relates it to x(f).

LEMMA 12.11

1
x(f) > Disc(f)’

PROOF: For a monochromatic rectangle, the discrepancy is its size divided by 2%". The total
number of entries in the matrix is 22”. The bound follows. W

ExXAMPLE 12.12

Lemma 12.11 can be very loose. For the EQ() function, the discrepancy is at least 1 —27" (namely,
the discrepancy of the entire matrix), which would only give a lowerbound of 2 for x(f). However,
x(f) is at least 2", as already noted.

Now we describe a method to upperbound the discrepancy using eigenvalues.

LEMMA 12.13 (EIGENVALUE BOUND)
For any matrix M, the discrepancy of a rectangle A x B is at most Apas(M)+/|A]|B|/22", where
Amaz (M) is the magnitude of the largest eigenvalue of M.

PROOF: Let 14,1p € R™ denote the characteristic vectors of A, B. Then [la|, = /> ;c41%? =

VA

The discrepancy of the rectangle A x B is

1

1 1
2Tn1£MlB § QTn)\ma:Jc(M) ‘1£13| S ﬁAmam(M) V |A| |B‘

explain this.

EXAMPLE 12.14

The mod 2 inner product function defined as f(x,y) = (z-y)2 = >, z;¥;(mod2) has been encoun-
tered a few times in this book. To bound its discrepancy, we consider the matrix 2M (f) — 1. This
transformation makes the range of the function {—1, 1} and will be useful again later. Let this new

pl2.6 (226) 12.2. LOWERBOUND METHODS

matrix be denoted N. It is easily checked that every two distinct rows (columns) of N are orthog-
onal, every row has £, norm 2%/2, and that N7 = N. Thus we conclude that N2 = 2"] where I is
the unit matrix. Hence every eigenvalue is either +2"/2 or —2"/2 and thus Lemma 12.13 implies
that the discrepancy of a rectangle A x B is at most 2"/2,/]A||B]| and the overall discrepancy is
at most 23"/2 (since |A|,|B| < 2").

A technique for upperbounding the discrepancy

Now we describe an upperbound technique for the discrepancy that will later be useful in the
multiparty setting (Section 12.3). For ease of notation, in this section we change the range of f to
{—1,1} by replacing 1’s in M(f) with —1’s and replacing 0’s with 1’s. Note that now

Disc(f):rﬂan% S fab)].

a€A,beB

DEFINITION 12.15

E(f) = Eay az,b1,2 [Hi:l,? Hj:1,2 f(as, bj)} :
Note that £(f) can be computed, like the rank, in polynomial time given the M(f) as input.
LEmmA 12.16

Disc(f) < E(f)*.

PROOF: The proof follows in two steps.

CrLam 1: For every function h:{0,1}" x {0,1}" — {1, -1}, E(h) > (Eau[f(a,b)])*.
We will use the Cauchy-Schwartz inequality, specifically, the version according to which E[zQ] >
(E[2])? for every random variable z.

E(h) = Ea a0, | Epy b H H h(ai>bj) (2)

i=1,2 j=1,2

= Euy 0z | (Bo[h(ar, b)(az,)])’] (3)
> (Bay a0, [Ep[h(a1,b)h(ag,b)]])*> (Cauchy Schwartz) (4)
> (Eqp[h(a, b)])4. (repeating prev. two steps) (5)

CLAIM 2: For every function f there is a function h such that E(f) = E(h) and Eg4plh(a,b)] >
Disc(f).

12.2. LOWERBOUND METHODS p12.7 (227)

First, we note that for every two functions g1, g2:{0,1}" — {—1,1}, if we define h = f o g; 0 go
as

h(a> b) = f(aa b)gl (a)g2(b)
then £(f) = £(h). The reason is that for all a1, as, b1, ba,
IT I 2(aib)) = g1(a1)’g1(a2)*g2(01)*g2(02)* T T f(airby)

i=1,2j=1,1 i=1,2 j=1,2

and the square of any value of g1, g2 is 1.

Now we prove Claim 2 using the probabilistic method. Define two random functions g1, gs :
{0,1}" — {—1,1} as follows:

1 ifac A
gi(a) = :
ra Tq € {—1,1} is randomly chosen

1 ifbeB
g92(b) = :
sy sp € {—1,1} is randomly chosen

Let h = f o g1 o g2, and therefore £(h) = £(f). Furthermore

Eg,.92 [Eap[h(a,0)]] = Eap [Eg, g, (a,b)g1(a)g2(b)]] (6)
= Y fla) (7)

a€AbeEB
= Disc(f) (8)

where the second line follows from the fact that Eg, [g1(a)] = Eg,[g2(b)] =0 for a ¢ A and b &€ B.
Thus in particular there exist g1, g2 such that |E,[h(a,b)]| > Disc(f). W

12.2.5 Comparison of the lowerbound methods

As already noted, discrepancy upperbounds imply lowerbounds on x(f). Of the other three meth-
ods, the tiling argument is the strongest, since it subsumes the other two. The rank method is the
weakest, since the rank lowerbound always implies a tiling lowerbound and a fooling set lowerbound
(the latter follows from Problem 3 in the exercises).

Also, we can separate the power of these lowerbound arguments. For instance, we know functions
for which there is a significant gap between log x(f) and log rank(M (f)). However, the following
conjecture (we only state one form of it) says that all three methods (except discrepancy, which as
already noted can be arbitrarily far from x(f)) give the same bound up to a polynomial factor.

CONJECTURE 12.17 (LOG RANK CONJECTURE)
There is a constant ¢ > 1 such that C(f) = O(log(rank(M(f)))¢) for all f and all input sizes n.

pl2.8 (228) 12.3. MULTIPARTY COMMUNICATION COMPLEXITY

12.3 Multiparty communication complexity

There is more than one way to generalize communication complexity to a multiplayer setting. The
most interesting model is the “number on the forehead” model often encountered in math puzzles
that involve people in a room, each person having a bit on their head which everybody else can
see but they cannot. More formally, there is some function f:({0,1}")* — {0,1}, and the input
is (z1,22,...,x,) where each z; € {0,1}". The ith player can see all the x; such that j # i. As
in the 2-player case, the k players have an agreed-upon protocol for communication, and all this
communication is posted on a “public blackboard”. At the end of the protocol all parties must
know f(x1,...,zk).

EXAMPLE 12.18
Consider computing the function

n
fa1, w2, w3) = @D maj(w1s, w2, v3;)

i=1
in the 3-party model where x1,xz9,2z3 are n bit strings. The communication complexity of this
function is 3: each player counts the number of i’s such that she can determine the majority of
15, T9;, T3; by examining the bits available to her. She writes the parity of this number on the
blackboard, and the final answer is the parity of the players’ bits. This protocol is correct because
the majority for each row is known by either 1 or 3 players, and both are odd numbers.

EXAMPLE 12.19 (GENERALIZED INNER PRODUCT)
The generalized inner product function GIPy, maps nk bits to 1 bit as follows

n k
f(:l}l,...,l'k):@/\l’ij. (9)

i=1 j=1

Notice, for £ = 2 this reduces to the mod 2 inner product of Example 12.14.

In the 2-party model we introduced the notion of a monochromatic rectangle in order to prove
lower bounds. For the k-party case we will use cylinder intersections. A cylinder in dimen-
sion i is a subset S of the inputs such that if (z1,...,2;) € S then for all 2} we have that
(@1, T, X, Tig1, . ..,) € S also. A cylinder intersection is ﬂ§:1Ti where T; is a cylinder in
dimension <.

As noted in the 2-party case, a communication protocol can be viewed as a way of partitioning
the matrix M(f). Here M(f) is a k-dimensional cube, and player i’s communication does not
depend upon x;. Thus we conclude that if f has a multiparty protocol that communicates ¢ bits,
then its matrix has a tiling using at most 2¢ monochromatic cylinder intersections.

12.3. MULTIPARTY COMMUNICATION COMPLEXITY pl12.9 (229)

LEMMA 12.20
If every partition of M(f) into monochromatic cylinder intersections requires at least R cylinder
intersections, then the k-party communication complexity isat least log, R.

Discrepancy-based lowerbound

In this section, we will assume as in our earlier discussion of discrepancy that the range of the
function f is {—1,1}. We define the k-party discrepancy of f by analogy to the 2-party case

Disc(f) = gpmax| 3 flavaz,.)],
(a1,a2,...,ar)ET
where T ranges over all cylinder intersections.
To upperbound the discrepancy we introduce the k-party analogue of £(f). Let a cube be a
set D in {0, 1}nk of 2% points of the form {a11,a21} x {a12,a22} x -+ x {a1 k, a2}, where each
aij € {0, 1}”.

E(f)=Ep

I f<a>] |

acD

Notice that the definition of £() for the 2-party case is recovered when k = 2. The next lemma
is also an easy generalization.

LEMMA 12.21

Disc(f) < (£())"/*".

PROOF: The proof is analogous to Lemma 12.16 and left as an exercise. The only difference is that
instead of defining 2 random functions we need to define k random functions g1, g2, g : {0, 1}"’“ —
{-=1,1}, where g; depends on every one of the k coordinates except the ith. W

Now we can prove a lowerbound for the Generalized Inner Product function. Note that since
we changed the range to {—1,1} it is now defined as

GIPy (21,2, ..., xp) = (—1)%izn [li<i @ij(mod2), (10)

THEOREM 12.22
The function GIPy, ,, has k-party communication complexity Q(n/ 8¥) as n grows larger.

PrOOF: We use induction on k. For k > 1 let By be defined using 31 = 0 and Fr11 = % We
claim that

E(GIPy,) < .

p12.10 (230) 12.4. PROBABILISTIC COMMUNICATION COMPLEXITY

Assuming truth for £ — 1 we prove for k. A random cube D in {0, 1}”k is picked by picking
a11, a1 € {0,1}" and then picking a random cube D’ in {0,1}#~D",

E(GIPy,) = Eayyas |Epy 11 GIP, (@) (11)

ae{au,azl}XD/

The proof proceeds by considering the number of coordinates where strings a1; and as; are identical.
Examining the expression for GI P, in (10) we see that these coordinates contribute nothing once
we multiply all the terms in the cube, since their contributions get squared and thus become 1.
The coordinates that contribute are

TO BE COMPLETED M

12.4 Probabilistic Communication Complexity

Will define the model, give the protocol for EQ, and describe the discrepancy-based lowerbound.

12.5 Overview of other communication models
We outline some of the alternative settings in which communication complexity has been studied.

Nondeterministic protocols: These are defined by analogy to NP. In a nondeterministic pro-
tocol, the players are both provided an additional third input z (“nondeterministic guess”).
Apart from this guess, the protocol is deterministic. The cost incurred on z,y is

min {|z] + number of bits exchanged by protocol when guess is z} .
4

The nondeterministic communication complexity of f is the minimum k such that there is a
nondeterministic protocol whose cost for all input pairs is at most k.

In general, one can consider communication protocols analogous to NP, coNP, PH etc.

Randomized protocols: These are defined by analogy to RP, BPP. The players are provided
with an additional input r that is chosen uniformly at random from m-bit strings for some
m. Randomization can significantly reduce the need for communication. For instance we
can use fingerprinting with random primes (explored in Chapter 7), to compute the equality
function by exchanging O(logn) bits: the players just pick a random prime p of O(logn) bits
and exchange x (mod p) and y (mod p).

Average case protocols: Just as we can study average-case complexity in the Turing machine
model, we can study communication complexity when the inputs are chosen from a distribu-
tion D. This is defined as

Cp(f) = protlglcié}s PZ Pr[(x,y) € D] x {Number of bits exchanged by P on z,y.}
’y

12.6. APPLICATIONS OF COMMUNICATION COMPLEXITY pl2.11 (231)

Computing a non boolean function: Here the function’s output is not just {0,1} but an m-bit
number for some m. We discuss one example in the exercises.

Asymmetric communication: The “cost” of communication is asymmetric: there is some B
such that it costs the first player B times as much to transmit a bit than it does the second
player. The goal is to minimize the total cost.

Multiparty settings: The most obvious generalization to multiparty settings is whereby f has k
arguments x1, To, . . ., ¥ and player i gets x;. At the end all players must know f(z1, zo, ..., xg).
This is not as interesting as the so-called “number of the forehead” where player ¢ can see all
of the input except for x;. We discuss it in Section 77 together with some applications.

Computing a relation: There is a relation R C {0,1}" x {0,1}" x {1,2,...,m} and given z,y €
B™ the players seek to agree on any b € {1,2,...,m} such that (z,y,b) € R. See section ?7.

These and many other settings are discussed in [KN97].

12.6 Applications of communication complexity

We briefly discussed parallel computation in Chapter 6. Yao [Yao79] invented communication com-
plexity as a way to lowerbound the running time of parallel computers for certain tasks. The idea is
that the input is distributed among many processors, and if we partition these processors into two
halves, we may lowerbound the computation time by considering the amount of communication
that must necessarily happen between the two halves. A similar idea is used to prove time/space
lowerbounds for VLSI circuits. For instance, in a VLSI chip that is an m x m grid, if the communi-
cation complexity for a function is greater than ¢, then the time required to compute it is at least
c/m.

Communication complexity is also useful in time-space lowerbounds for Turing machines (see
Problem 1 in exercises), and circuit lowerbounds (see Chapter 13).

Data structures such as heaps, sorted arrays, lists etc. are basic objects in algorithm design.
Often, algorithm designers wish to determine if the data structure they have designed is the best
possible. Communication complexity lowerbounds can be used to establish such results. See [KN97].

Yannakakis [Yan91] has shown how to use communication complexity lowerbounds to prove
lowerbounds on the size of polytopes representing NP-complete problems. Solving the open prob-
lem mentioned in Problem 8 in the exercises would prove a lowerbound for the polytope representing
vertex cover.

Exercises

§1 If S(n) < n, show that a space S(n) TM takes at least Q(n/S(n)) steps to decide the language
{z#x: 2 € {0,1}"}.

§2 Show that the high school definition of rank (the size of the largest set of independent rows
or columns) is equivalent to that in Definition 12.9.

pl2.12 (232) 12.6. APPLICATIONS OF COMMUNICATION COMPLEXITY

§3
§4

§5

$6

§7

§8

§9

§10

§11

§12

Give a fooling set argument that proves that C'(f) > [logrank(M(f))].
Show that C(f)rank(M(f) + 1.

Consider z,y as vectors over GF(2)" and let f(z,y) be their inner product mod 2. Prove
that the communication complexity is n.
"XLIJeUI T-[[€ o[}

ST f o1aUMm , — (f)JAg X1IRW o1} JO URI 9} PUNOQISMOT JUTE

What field should you use to compute the rank? Does it matter?

Let f:{0,1}" x {0,1}" — {0,1} be such that all rows of M(f) are distinct. Show that
C(f) > logn.

“YURI 9} PUNOGIOMOT JUTE]
(Aho, Ullman, Yannakakis) Show that C(f) = O(log? x(f)).

‘pogeoruntuuod 1038 s31q ((f)X So1)() eseyd yore ut
pue ‘soseyd ((f)X So1) sey [0o0401d ot], ‘ur sor| ared-jndur Io1)
se13ue)oar |(f)X] oyl Jo YoTym ouTuLIelap 0f A1y s1oheld o], :JUIE]

For any graph G with n vertices, consider the following communication problem: Player 1
receives a clique C' in G, and Player 2 receives an independent set I. They have to com-
municate in order to determine |C' N I|. (Note that this number is either 0 or 1.) Prove an
O(log2 n) upperbound on the communication complexity.

Can you improve your upperbound or prove a lower bound better than Q(logn)? (Open
question)

Prove Lemma 12.21 using the hint given there.

(Karchmer-Wigderson) Consider the following problem about computing a relation. Associate
the following communication problem with any function f:{0,1}" — {0,1}. Player 1 gets
any input z such that f(z) = 0 and player 2 gets any input y such that f(y) = 1. They have
to communicate in order to determine a bit position ¢ such that z; # y;.

Show that the communication complexity of this problem is exactly the minixmum depth of

any circuit that computes f. (The maximum fanin of each gate is 2.)

Use the previous question to show that computing the parity of n bits requires depth at least
2logn.

Show that the following computational problem is in EXP: given the matrix M(f) of a
boolean function, and a number K, decide if C(f) < K.

(Open since Yao [Yao79]) Can you show this problem is complete for some complexity class?

12.6. APPLICATIONS OF COMMUNICATION COMPLEXITY pl12.13 (233)

Chapter notes and history

Communication complexity was first defined by Yao [Yao79]. Other early papers that founded the
field were Papadimitriou and Sipser [PS84], Mehlhorn and Schmidt [MS82] (who introduced the
rank lowerbound) and Aho, Ullman and Yannakakis [AUYS83].

The original log rank conjecture was that C(f) = O(rank(M(f))) but this was disproved by
Raz and Spieker [RS95].

The book by Nisan and Kushilevitz [KN97] is highly recommended.

pl2.14 (234) 12.6. APPLICATIONS OF COMMUNICATION COMPLEXITY

Chapter 13

Circuit lowerbounds

Complezity theory’s Waterloo

We believe that NP does not have polynomial-sized circuits. We’ve seen that if true, this
implies that NP # P. In the 1970s and 1980s, many researchers came to believe that the route
to resolving P versus NP should go via circuit lowerbounds, since circuits seem easier to reason
about than Turing machines. The success in this endeavor was mixed.

Progress on general circuits has been almost nonexistent: a lowerbound of n is trivial for any
function that depends on all its input bits. We are unable to prove even a superlinear circuit
lowerbound for any NP problem— the best we can do after years of effort is 4.5n — o(n).

To make life (comparatively) easier, researchers focussed on restricted circuit classes, and were
successful in proving some decent lowerbounds. We prove some of the major results of this area and
indicate where researchers are currently stuck. In Chapter 22 we’ll explain some of the inherent
obstacles that need to be overcome to make further progress.

13.1 AC' and Hastad’s Switching Lemma

As we saw in Chapter 6, ACY is the class of languages computable by circuit families of constant
depth, polynomial size, and whose gates have unbounded fanin. (Constant depth circuits with
fanin 2 can only compute functions depending on a constant number of input bits.) The burning
question in the late 1970s was whether problems like Clique and TSP have ACP circuits. However,
in 1981, Furst, Saxe and Sipser and independently, Ajtai, proved a lowerbound for a much simpler
function:

THEOREM 13.1 ([?, ?])
Let @ be the parity function. That is, for every x € {0,1}", @(x1,...,2n) = > iy x; (mod 2).
Then @ ¢ ACP.

Often courses in digital logic design teach students how to do “circuit minimization” using
Karnaugh maps. Note that circuits talked about in those courses are depth 2 circuits, i.e. CNF or
DNF. Indeed, it is easy to show (using for example the Karnaugh map technique studied in logic

pl3.1 (235)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pl13.2 (236) 13.1. AC° AND HASTAD’S SWITCHING LEMMA

design) that the parity function requires exponentially many gates if the depth is two. However,
those simple ideas do not seem to generalize to even depth 3 circuits.

The main tool in the proof of Theorem 13.1 is the concept of random restrictions. Let f be a
function computable by a depth d circuit and suppose that we choose at random a vast majority
(i.e., n — n® for some constant € > 0 depending on d) of the input variables and assign to each such
variable either 0 or 1 at random. We’ll prove that with positive probability, the function f subject
to this restriction is constant (i.e., either always zero or always one). Since the parity function
cannot be made a constant by fixing values to a subset of the variables, it follows that it cannot be
computed by a constant depth circuit.

13.1.1 The switching lemma

Now we prove the main lemma about how a circuit simplifies under a random restriction. A k-DNF
(resp. k-CNF) formula is an OR of AND’s (resp. AND or OR’s) where each AND (resp. OR)
involves at most k variables.

LEMMA 13.2 (HASTAD’S SWITCHING LEMMA [HAS86))
Suppose f is expressible as a k-DNF, and let p denote a random restriction that assigns random
values to t randomly selected input bits. Then for every s > 2.

(1)

n

100 S/2
Pr,[f|, is not expressible as s-CNF' | < <(nt)k>

where f|, denotes the function f restricted to the partial assignment p.

We'll typically use this lemma with &, s constant and ¢ &~ n — /n in which case the guaranteed
bound on the probability will be n~¢ for some constant c. Note that by applying the lemma to the
function —f, we can get the same result with the terms DNF and CNF interchanged.

Proving Theorem 13.1 from Lemma 13.2. Now we show how Hastad’s lemma implies that
parity is not in AC°. We start with any AC? circuit and assume that the circuit has been simplified
as follows (the simplifications are straightforward to do and are left as Exercises 1 and 2): (a) All
fanouts are 1; the circuit is a tree (b) All not gates to the input level of the circuit; equivalently,
the circuit has 2n input wires, with the last n of them being the negations of the first n (c) V and
A gates alternate —at worst this assumption doubles the depth of the circuit (d) The bottom level
has A gates of fanin 1.

We randomly restrict more and more variables, where each step with high probability will reduce
the depth of the circuit by 1 and will keep the bottom level at a constant fanin. Specifically, letting
n; stand for the number of unrestricted variables after step ¢, we restrict n; — /n; variables at step
i+ 1. Since ng = n, we have n; = n'/?". Let n® denote an upper bound on the number of gates in
the circuit and let k; = 1062°. We’ll show that with high probability, after the i*” restriction we’re
left with a depth-d — i circuit with at most &% fanin in the bottom level. Indeed, suppose that the

bottom level contains A gates and the level above it contains V gates. The function each such Vv
k10 >ki+1 /2

W ; Wthh

gate computes is a k;-DNF and hence by Lemma 13.2, with probability 1 — (

13.1. AC° AND HASTAD’S SWITCHING LEMMA pl13.3 (237)

is at least 1 — 1/(10n°) for large enough n, the function such a gate computes will be expressible
as a k;+1-CNF. We can then merge this CNF with the A-gate above it, reducing the depth of the
circuit by one (see Figures 13.1 and 13.2). The symmetric reasoning applies in the case the bottom
level consists of V gates— in this case we use the lemma to transform the k;-CNF of the level
above it into a k;,1-DNF. Note that we apply the lemma at most once per each of the at most n®
gates of the original circuit. By the union bound, with probability 9/10, if we continue this process
for d — 2 steps, we'll get a depth two circuit with fanin k& = k;_» at bottom level (i.e., a k-CNF
or k-DNF formula). If we then choose to restrict each variable with probability half (i.e., restrict
about half of the variables to a random value), this circuit will be reduced to a constant function
with probability at least 27*. Since the parity function is not constant under any restriction of less
than n variables, this proves Theorem 13.1. B

Figure unavailable in pdf file.

Figure 13.1: Circuit before Hastad switching transformation.
Figure unavailable in pdf file.

Figure 13.2: Circuit after Hastad switching transformation. Notice that the new layer of A gates can be collapsed
with the single A parent gate, to reduce the number of levels by one.

13.1.2 Proof of the switching lemma (Lemma 13.2)

Now we prove the Switching Lemma. The original proof was more complicated; this one is due
to Razborov. Let f be expressible as a k-DNF on n variables. Let ¢ be as in the lemma and let
R: denote the set of all restrictions to ¢ variables (note we can assume ¢ > n/2). We have that
IR¢| = (})2". Let K, denote the set of restrictions p such that f|, is not a s-CNF. We need to
bound |K;s|/|R¢| by the right hand side of (1) to prove the lemma. We’ll do that by showing a
one-to-one function mapping K; s into the set Z x .S where Z is the set of restrictions of at least ¢t +s
variables (i.e. Z = Upy>¢1sRy) and S is some set of size 32k This will prove the lemma since at he

!

range t' > n/2, (Z) R~ (#)n and hence Z will be of size bounded by roughly n2° (@)S IRy

n
We leave verifying the exact bound as Exercise 3.

Mapping K; s into Z x S. Let p € K; s be a restriction fixing ¢ variables such that f|, is not an
s-CNF. We need to map p in a one-to-one way into some restriction p* of at least ¢ + s variables,
and some additional element in a set S of size at most 325

Special case: each term has at most one “live” variable. To get some intuition for the
proof, consider first the case that for each term ¢ in the k-DNF formula for f, p either fixed t to
the value 0 or left a single unassigned variable in ¢, in which case we say that t's value is ? (p can’t
fix a term to the value 1 since we assume f|, is not constant). We denote by z1,...,zs denote the

pl3.4 (238) 13.1. AC° AND HASTAD’S SWITCHING LEMMA

first s such unassigned variables, according to some canonical ordering of the terms for the k-DNF
formula of f (there are more than s since otherwise f|, would be expressible as an s-CNF). For
each such variable xz;, let term; be the 7-valued term in which x; appears. Let R; be the operation
of setting z; to the value that ensures term; is true. We’ll map p to 71 = R1Ro--- Rsp. That is,
apply Rs to p, then apply Ri_1 to p, ---, then apply R; to p. The crucial insight is that given 71,
one can deduce term;: this is the first term that is true in f|;. One might think that the second
term that is true in f|, is termg but that’s not necessarily the case, since the variable z; may have
appeared several times, and so setting it to R; may have set other terms to true (it could not have
set other terms to false, since this would imply that f|, includes an OR of z; and —x;, and hence
is the constant one function). We thus supply as part of the mapping a string w; € {0, 1,x}* that
tells us the assignment of the k£ variables of term; in 70 = Ry - - Rsp. Given that information we
can “undo” R; and move from 7 to 7. Now in 7o, termsy is the first satisfied term. Continuing
on this way we see that from 7; (which is an assignment of at least ¢ + s variables) and strings
wi, - .., Ws that are defined as above, we can recover p, implying that we have a one-to-one mapping
that takes p into an assignment of at least ¢ + s variables and a sequence in {0, 1, }**.

The general case. We now consider the general case, where some terms might have more than
one unassigned variable in them. We let term; be the first ?-valued term in f| p and let z1 be the
first unassigned variable in term;. Once again, we have an operation R; that will make term; true,
although this time we think of R; as assigning to all the k variables in term; the unique value that
makes the term true. We also have an operation L; assigning a value to x1 such that f|,, cannot
be expressed by an s — 1-CNF. Indeed, if for both possible assignments to x1 we get an s — 1-CNF
then f|, is an s-CNF. We note that it’s not necessarily the case that ;s value under L p is different
from its value under Rpp, but it is the case that term;’s value is either ? or FALSE under Lip (since
otherwise f|r,, would be constant). We let termy be the first 7-valued term in f|r,, (note that
termp > term;) and let x9 be the first unassigned variable in terms. Once again, we have an
operation Ry such that terms is the first true term in f|R2L1p and operation Lo such that f|L2L1p
is not a s — 2-CNF. Continuing in this way we come up with operations L4, ..., Ls, R1,..., Rs such
that if we let p; be the assignment L; - -- Lip (with pg = p) then for 1 < i < s:

e term; is the first 7-valued term in f|,,_,.

e term; is the first true-valued term in f|g,, ;.

L; agrees with p;_1 on all variables assigned a value by p;_1.

e R; agrees with p; on all variables assigned a value by p;.

For 1 < i < s, define 7; to be R;R;11--- Rsps, and define 7511 = ps. We have that term; is
the first true term in f|,,: indeed, all the operations in 7; do not change variables assigned values
by pi;—1 and there term; is the first ?-valued term. Thus 7; cannot make any earlier term true.
However, since the last operation applied is R;, term; is true in f|,.

Let z1,...,25 and wy,...,ws be 2s strings in {0,1,x}* defined as follows: z; describes the
values assigned to the k variables appearing in term; by p;—1 and w; describes the value assigned to
term;’s variables by 7;41. Clearly, from term;, z; and the assignment p; one can compute p;_1 and

13.2. CIRCUITS WITH “COUNTERS”:ACC pl13.5 (239)

from term;, w; and the assignment 7; one can compute 7;41. We’ll map p to 7 and the sequence
Z1y...52s, W1, ..., Ws. Note that 71 does assign values to at least s variables not assigned by p, and
that from 71 we can find term; (as this is the first true term in f|;) and then using w; recover
79 and continue in this way until we recover the original assignment p. Thus this mapping is a
one-to-one map from Ty ¢ to Z x {0,1,%}%**. A

13.2 Circuits With “Counters”:ACC

One way to extend the AC? lowerbounds of the previous section was to define a more general class
of circuits. What if we allow more general gates? The simplest example is a parity gate. Clearly,
an ACC circuit provided with parity gates can can compute the parity function. But are there
still other functions that it cannot compute? Razborov proved the first such lowerbound using his
Method of Approximations. Smolensky later extended this work and clarified this method for the
circuit class considered here.

Normally we think of a modular computation as working with numbers rather than bit, but it
is sufficient to consider modular gates whose output is always 0/1.

DEFINITION 13.3 (MODULAR GATES)
For any integer m, the MOD,, gate outputs 0 if the sum of its inputs is 0 modulo m, and 1
otherwise.

DEFINITION 13.4 (ACC)
For integers my, ma, ..., my > 1 we say a language L is in ACC°[my,mao, ..., my] if there exists a
circuit family {C),} with constant depth and polynomial size (and unbounded fan-in) consisting of
A, V, mand MOD,,,,...,MOD,,, gates accepting L.

The class ACCY contains every language that is in ACC®(mq,ma, ..., my) for some k > 0 and
mi,ma,...,mg > 1.

Good lowerbounds are known only when the circuit has one kind of modular gate.

THEOREM 13.5 (RAZBOROV,SMOLENSKY)
For distinct primes p and g, the function MOD),, is not in ACC (q).

We exhibit the main idea of this result by proving that the parity function cannot be computed
by an ACC°(3) circuit.
PROOF: The proof proceeds in two steps.

Step 1. In the first step, we show (using induction on h) that for any depth A MODs circuit on
n inputs and size S, there is a polynomial of degree (2l)h which agrees with the circuit on
1 — §/2! fraction of the inputs. If our circuit C' has depth d then we set 2/ = n'/24 to obtain

1/2

a degree y/n polynomial that agrees with C on 1 — S/2" /2 fraction of inputs.

Step 2 We show that no polynomial of degree \/n agrees with M O D5 on more than 49/50 fraction
of inputs.

pl3.6 (240) 13.2. CIRCUITS WITH “COUNTERS”:ACC

Together, the two steps imply that S > gn'/2/2 /50 for any depth d circuit computing M OD,,
thus proving the theorem. Now we give details.
Step 1. Consider a node g in the circuit at a depth h . (The input is assumed to have depth 0.)
If g(x1,--- ,x,) is the function computed at this node, we desire a polynomial g(x1,--- ,x,) over
GF(3) with degree (21)", such that g(x1,...,7,) = §(z1,...,2,) for “most” x1,...,z, € {0,1}.
We will also ensure that on every input in {0,1}" C GF(3), polynomial g takes a value in {0, 1}.
This is without loss of generality since we can just square the polynomial. (Recall that the elements
of GF(3) are 0,—1,1 and 02 =0, 12 =1 and (-1)? = 1.)

We construct the approximator polynomial by induction. When A = 0 the “gate” is an input
wire x;, which is exactly represented by the degree 1 polynomial z;. Suppose we have constructed
approximators for all nodes up to height h — 1 and ¢ is a gate at height h.

1. If g is a NOT gate, then ¢ = —f; for some other gate f; that is at height h — 1 or less.
The inductive hypothesis gives an approximator fl for fi. Then we use g = 1 — fl as the
approximator polynomial for g; this has the same degree as fl. Whenever fl = f1 then g = g,
so we introduced no new error.

2. If g is a MO D3 gate with inputs f1, fo, ..., fx, we use the approximation § = (Zi‘c:o ﬁ)Q The
degree increases to at most 2 x (20)"~1 < (21)". Since 02 = 0 and (—1)? = 1, we introduced
10 New error.

3. If g is an AND or an OR gate, we need to be more careful. Suppose g = /\f:ofi- The naive
approach would be to replace g with the polynomial II;c; fz For an OR gate g = \/é“:0 fi De
Morgan’s law gives a similar naive approximator 1 — [[..;(1 — f‘l) Unfortunately, both of
these multiply the degree by k, the fanin of the gate, which could greatly exceed 2I.

The correct solution involves introducing some error. We give the solution for OR; De Mor-
gan’s law allows AND gates to be handled similarly.

If g = V¥_, fi, then g = 1 if and only if at least one of the f; = 1. Furthermore, by the random
subsum principle (see Section 7?7 in Appendix A) if any of the f; = 1, then the sum (over
GF(3)) of a random subset of {f;} is nonzero with probability at least 1/2.

Randomly pick [subsets Sy,---,5; of {1,...,k}. Compute the [polynomials (ZjESi fj)z,
each of which has degree at most twice that of the largest input polynomial. Compute
the OR of these [terms using the naive approach. We get a polynomial of degree at most
21 x (21)"~1 = (20)". For any =, the probability over the choice of subsets that this polynomial
differs from OR(fiyons fk) is at most % So, by the probabilistic method, there ezists a choice
for the [subsets such that the probability over the choice of x that this polynomial differs from
OR(fl, SRR fk) is at most % We use this choice of the subsets to construct the approximator.

Applying the above procedure for each gate gives an approximator for the output gate of degree
(21)d where d is depth of the entire circuit. Each operation of replacing the gate by its approximator
polynomial introduces error on at most 1/2! fraction of all inputs, so the overall fraction of erroneous
inputs for the approximator is at most S/2'. (Note that errors at different gates may affect each
other. Error introduced at one gate may be cancelled out by errors at another gate higher up. We

13.2. CIRCUITS WITH “COUNTERS”:ACC pl3.7 (241)

are being pessimistic in applying the union bound to upperbound the probability that any of the
approximator polynomials anywhere in the circuit miscomputes.)
Step 2. Suppose that a polynomial f agrees with the M ODsy function for all inputs in a set
G’ C 0,1". If the degree of f is bounded by /i, then we show |G'| < (33)2".

Consider the change of variables y; = 1+ 2; (mod 3). (Thus 0 — 1 and 1 — —1.) Then, G’
becomes some subset G of {—1,1}", and f becomes some other polynomial, say g(y1,92,---,Yn),
which still has degree y/n. Moreover,

1 = H?:lyi = -1

. (2)
0 = Hi:lyi =1

MOD2($1,ZB2,. . .,xn) = {

Thus g(y1,v2,---,Yn), a degree y/n polynomial, agrees with II?" ;y; on G. This is decidedly odd,

and we show that any such G must be small. Specifically, let Fg be the set of all functions
49\on
S:G — {0,1,—1}. Clearly, |Fg| = 3!6/, and we will show |Fg| < 3(3)2", whence Step 2 follows.

LEMMA 13.6
For every S € Fg, there exists a polynomial gg which is a sum of monomials aj [[;c;y; where
|I| <5 4+ +/n such that gs(x) = S(x) for all z € G.

PROOF: Let S : GF(3)" — GF(3) be any function which agrees with S on G. Then S can be
written as a polynomial in the variables y;. However, we are only interested in its values on
(Y1,92,---,yn) € {—1,1}", when y? = 1 and so every monomial IL;c;y;* has, without loss of
generality, r; < 1. Thus Sisa polynomial of degree at most n. Now consider any of its monomial
terms Il;cry; of degree |I| > n/2. We can rewrite it as

Wicrys = I villlic 7yis (3)

which takes the same values as g(y1,%2, ..., yn)ILcfy; over {—1,1}". Thus every monomial in S
has degree at most § + /n. B

To conclude, we bound the number of polynomials whose every monomial with a degree at most
% ++/n. Clearly this number is #polynomials < g##monomials 51 q

#monomials < ‘{Ng {1---n}||N| < g—%—\/ﬁ (4)
<> () o)
i§g+\/ﬁ

Using knowledge of the tails of a binomial distribution (or alternatively, direct calculation),

49
< —on 6

pl3.8 (242) 13.3. LOWERBOUNDS FOR MONOTONE CIRCUITS

13.3 Lowerbounds for monotone circuits

A Boolean circuit is monotone if it contains only AND and OR gates, and no NOT gates. Such a
circuit can only compute monotone functions, defined as follows.

DEFINITION 13.7
For z,y € {0,1}", we denote z < y if every bit that is 1 in z is also 1 in y. A function f:{0,1}" —
{0,1} is monotone if f(z) < f(y) for every z < y.

REMARK 13.8
An alternative characterization is that f is monotone if for every input x, changing a bit in x from
0 to 1 cannot change the value of the function from 1 to 0.

It is easy to check that every monotone circuit computes a monotone function, and every mono-
tone function can be computed by a (sufficiently large) monotone circuit. CLIQUE is a monotone
function since adding an edge to the graph cannot destroy any clique that existed in it. In this
section we show that the CLIQUE function can not be computed by polynomial (and in fact even
subexponential) sized monotone circuits:

THEOREM 13.9 ([RAz85B, ABS8T])
Denote by CLIQUEy,, : {0,1} 2) {0,1} be the function that on input an adjacency matrix of an
n-vertex graph G outputs 1 iff G contains a k-vertex clique.

There exists some constant € > 0 such that for every k < n'/4, there’s no monotone circuit of
size less than 2¢VF that computes CLIQUEy, ,,.

We believe CLIQUE does not have polynomial-size circuits even allowing NOT gates (i.e., that
NP ¢ P/poly). In fact, a seemingly plausible approach to proving this might be to show that
for every monotone function f, the monotone circuit complexity of f is polynomially related to
the general (non-monotone) circuit complexity. Alas, this conjecture was refuted by Razborov
([Raz85al, see also [Tar88]).

13.3.1 Proving Theorem 13.9
Clique Indicators

To get some intuition why this theorem might be true, lets show that CLIQUE,, ,, can’t be computed
(or even approximated) by subexponential monotone circuits of a very special form. For every

S C [n], let Cg denote the function on {0, 1}(3) that outputs 1 on a graph G iff the set S is a clique
in G. We call Cg the clique indicator of S. Note that CLIQUE, = ng[n],w\:k Cs. We'll now

prove that CLIQUEy ;,, can’t be computed by an OR of less than nVk/20 clique indicators.

Let Y be the following distribution on n-vertex graphs: choose a set K C [n] with |K| = k at
random, and output the graph that has a clique on K and no other edges. Let N/ be the following
distribution on n-vertex graphs: choose a function ¢ : [n| — [k — 1] at random, and place an edge
between u and v iff ¢(u) # ¢(v). With probability one, CLIQUE,, (¥) = 1 and CLIQUE,, x(N) = 0.
The fact that CLIQUE,, , requires an OR of at least nVk/20 clique indicators follows immediately
from the following lemma:

13.3. LOWERBOUNDS FOR MONOTONE CIRCUITS p13.9 (243)

LEMMA 13.10
Let n be sufficiently large, k < n'/* and S C [n]. Then either Pr[Cs(N) = 1] > 0.99 or Pr[C5()) =
1] < n—VEk/20

PROOF: Let ¢ = vk —1/10. If |S| < ¢ then by the birthday bound, we expect a random f : S —
[k — 1] to have less than 0.01 collisions and hence by Markov the probability f is one to one is at
least 0.99. This implies that Pr[Cg(N) = 1] > 0.99.

If |S| > ¢ then Pr[Cg()) = 1] is equal to the probability that S C K for a random K C [n]
of size k. This probability is equal to (Z:ﬁ) / (Z) which is at most (k— \/lchl /10) / (Z) which, by the

. . . . L .
formula for the binomial coefficients, is less than (%) <n 07 < n—Vk/20 (for sufficiently large
n). A

Approximation by clique indicators.

Together with Lemma 13.10, the following lemma implies Theorem 13.9:

LEMMA 13.11

Let C' be a monotone circuit of size s. Let { = \/E/lO. Then, there exist sets Si,...,Sy, with
m < nVk/20 such that

PrGeRy[\/ Cs,(G) > C(G)] >0.9 (7)

Prge, N[\/ Cs,(G) < C(G)] >0.9 (8)

(9)

PROOF: Set £ = Vk/10, p = 10v/klogn and m = (p — 1)%/. Note that m < nV*/20 We can think
of the circuit C' as the sequence of s monotone functions fi, ..., fs from {0, 1}(3) to {0,1} where

each function f; is either the AND or OR of two functions fy, fpr for k', k" < k or is the value
of an input variable x,, for u,v € [n] (ie., fr = Cyy.}). The function that C' computes is fs.
We'll show a sequence of functions fi, ..., fs such that each function fj, is (1) an OR of at most m
clique indicators Cg,, ..., Cg,, with |S;| < £ and (2) f, approximates f; in the sense of (7) and (8).
We call a function fj, satisfying (1) an (¢, m)-function. The result will follow by considering the
function fi.

We construct the functions f1, ..., fs by induction. For 1 < k < s, if f is an input variable then
we let fk = fr. If fr = fiV frr then we let fk/ |_|f~k// and if fi = fir A fir then we let fk/ |_|f~k//, where
the operations LI, M will be defined below. We’ll prove that for every f,g : {0, 1}(3) —{0,1} (a) if
f and g are (m, £)-functions then so is f Ll g (resp. f1g) and (b) Prge,y[fUg (G) < fUg (G)] <
1/(108) (resp. Praeylf (G) < fry (G)] < 1/(108)) and Proewlfiy (G) > fg (@] < 1/(108)
(resp. Prge,y[fMg (G) < fNg (G)] < 1/(10S)). The lemma will then follow by showing using
the union bound that with probability > 0.9 the equations of Condition (b) hold for all fi, ..., fs.
We'll now describe the two operations L, M. Condition (a) will follow from the definition of the
operations, while Condition (b) will require a proof.

p13.10 (244) 13.3. LOWERBOUNDS FOR MONOTONE CIRCUITS

The operation flig. Let f,g be two (m,{)-functions: that is f = \/[Z; Cs, and g = \/7_, Cr,
(if f or g is the OR of less than m clique indicators we can add duplicate sets to make the number
m). Consider the function h = Cz, U---UCg, where Z; = S; and Z,1; =T for 1 <i,j < m.
The function A is not an (m,¢)-function since it is the OR of 2m clique indicators. We make it
into an (m, ¢)-function in the following way: as long as there are more than m distinct sets, find
p subsets Zj,, ..., Z;, that are in a sunflower formation. That is, there exists a set Z C [n] such
that for every 1 < j,j' <p, Z;; N Z; j = Z. Replace the functions Cziyneees CZI.p in the function h
with the function Cz. Once we obtain an (m, ¢)-function b’ we define f Ll g to be h'. We won’t get
stuck because of the following lemma (whose proof we defer):

LEMMA 13.12 (SUNFLOWER LEMMA [ERG60])
Let Z be a collection of distinct sets each of cardinality at most £. If |Z| > (p — 1)%4! then there
exist p sets Z1,...,Z, € Z and set Z such that Z; N Z; = Z for every 1 <1,j < p.

The operation f1g. Let f,g be two (m,()-functions: that is f = /I, Cg, and g =V, Cr;.
Let h be the function V1§i,j§m Cs,ur;- We perform the following steps on h: (1) Discard any
function Cz for |Z| > ¢. (2) Reduce the number of functions to m by applying the sunflower
lemma as above.

Proving Condition (b). To complete the proof of the lemma, we prove the following four
equations:

e Preegy(fug (G) < fug (G)] <1/(105).
If ZC Zy,...,Zp then for every i, Cz (G) implies that Cz(G) and hence the operation f Ll g
can’t introduce any “false negatives”.

* Proepn[fUg (G) > fUg (G)] < 1/(105).

We can introduce a “false positive” on a graph G only if when we replace the clique indicators
for a sunflower Z1,..., Z, with the clique indicator for the common intersection 7, it is the
case that Cz(G) holds even though Cz, (G) is false for every i. Recall that we choose G €r N
by choosing a random function ¢ : [n] — [k — 1] and adding an edge for every two vertices u, v
with ¢(u) # ¢(v). Thus, we get a false positive if ¢ is one-to-one on Z (we denote this event
by B) but not one-to-one on Z; for every 1 < i < p (we denote these events by Aj,...,A,).
We’ll show that the intersection of B and Ay,..., A, happens with probability at most 277
which (by the choice of p) is less than 1/(10m?s). Since we apply the reduction step at most
m times the equation will follow.

Since ¢ < vk — 1/10, for every i, Pr[A;|B] < 1/2 (the probability that there’ll be a collision
on the at most £ elements of Z;\ Z is less than half). Conditioned on B, the events A1, ..., 4,

are independent, since they depend on the values of ¢ on disjoint sets, and hence we have
that Pr[A; A--- A A, AB) < Pr[A; A--- NAp|B] = [, Pr[4,|B] < 27P.

e Pree,ylfNy (G) < fng (G)] < 1/(105).

By the distributive law fNg = \/i,j(csi N Cz;). A graph G in the support of) consists of a
clique over some set K. For such a graph Cg,NCr; holds iff S;, T; C K and thus Cg,NCr, holds

13.4. CIRCUIT COMPLEXITY: THE FRONTIER pl3.11 (245)

iff Cg,ur; holds. We can introduce a false negative when we discard functions of the form Cz

for |Z| > ¢, but by Lemma 13.10, for such sets Z, Pr[Cz(Y) = 1] < n=vVk/20 < 1/(10sm?).
The equation follows since we discard at most m? such sets.

* Proe,n[fMg (G) > fNg (G)] < 1/(105).
Since Cgyr implies both Cg and Cp, we can’t introduce false positives by moving from fNg to
\/i, j Cs,ur;- We can’t introduce false positives by discarding functions from the OR. Thus, the
only place where we can introduce false positives is where we replace the clique indicators of
a sunflower with the clique indicator of the common intersection. We bound this probability
in the same way as this was done for the LI operator.

Proof of the sunflower lemma (Lemma 13.12). The proof is by induction on ¢. The case
¢ = 1 is trivial since distinct sets of size 1 must be disjoint. For £ > 1 let M be a maximal
subcollection of Z containing only disjoint sets. Because of M’s maximality for every Z € Z there
exists © € UM = Uprem M such that z € Z. If M| > p we're done, since such a collection is
already a sunflower. Otherwise, since | U M| < (p — 1)¢ by averaging there’s an z € UM that
appears in at least a m fraction of the sets in Z. Let Z1,..., Zx be the sets containing z, and
note that k > (p — 1)/~1(¢ — 1)I. Thus, by induction there are p sets among the ¢ — 1-sized sets
Zi\{x}, -+, Z \ {z} that form a sunflower, adding back = we get the desired sunflower among the
original sets. Note that the statement (and proof) assume nothing about the size of the universe

the sets in Z live in. A

13.4 Circuit complexity: The frontier

Now we sketch the “frontier” of circuit lowerbounds, namely, the dividing line between what we
can prove and what we cannot. Along the way we also define multi-party communication, since it
may prove useful for proving some new circuit lowerbounds.

13.4.1 Circuit lowerbounds using diagonalization

We already mentioned that the best lowerbound on circuit size for an NP problem is 4.5n — o(n).
For PH better lowerbounds are known: one of the exercises in Chapter 6 asked you to show that
some for every k > 0, some language in PH (in fact in %) requires circuits of size Q(n*). The
latter lowerbound uses diagonalization, and one imagines that classes “higher up” than PH should
have even harder languages.

Frontier 1: Does NEXP have languages that require super-polynomial size circuits?

If we go a little above NEXP, we can actually prove a super-polynomial lowerbound: we know
that MAgxp SZ P /poly where MAEgxp is the set of languages accepted by a one round proof with
an all powerful prover and an exponential time probabilistic verifier. This follows from the fact

pl13.12 (246) 13.4. CIRCUIT COMPLEXITY: THE FRONTIER

Figure unavailable in pdf file.

Figure 13.3: The depth 2 circuit with a symmetric output gate from Theorem 13.13.

that if MAgxp C P/poly then in particular PSPACE C P /poly. However, by IP = PSPACE
(Theorem 8.17) we have that in this case PSPACE = MA (the prover can send in one round the
circuit for computing the prover strategy in the interactive proof). However, by simple padding this
implies that M Agxp equals the class of languages in exponential space, which can be directly shown
to not contain P /poly using diagonalization. Interestingly, this lower bound does not relativize (i.e.,
there’s an oracle under which MANgxp C P/poly [BFT98]).

13.4.2 Status of ACC versus P

The result that PARITY is not in AC? separates NC! from AC. The next logical step would be
to separate ACCP from NC'. Less ambitiously, we would like to show even a function in P or NP
that is not in ACCP.

The Razborov-Smolenksy method seems to fail when we allow the circuit even two types of
modular gates, say M ODy and MODs. In fact if we allow the bounded depth circuit modular
gates that do arithmetic mod ¢, when ¢ is not a prime —a prime power, to be exact— we reach
the limits of our knowledge. (The exercises ask you to figure out why the proof of Theorem 13.5
does not seem to apply when the modulus is a composite number.) To give one example, it it is
consistent with current knowledge that the majority of n bits can be computed by linear size circuits
of constant depth consisting entirely of M ODg gates. The problem seems to be that low-degree
polynomials modulo m where m is composite are surprisingly expressive [BBR94].

Frontier 2: Show Clique is not in ACC(6).
Or even less ambitiously:
Frontier 2.1: Exhibit a language in NEXP that is not in ACCY(6).

It is worth noting that thus far we are talking about nonuniform circuits (to which Theorem 13.5
also applies). Stronger lower bounds are known for uniform circuits: Allender and Gore [AG94]
have shown that a decision version of the Permanent (and hence the Permanent itself) requires
exponential size “Dlogtime-uniform” ACC" circuits. (A circuit family {C,} is Dlogtime uniform
if there exists a deterministic Turing machine M that given a triple (n, g, h) determines in linear
time —i.e., O(logn) time when g, h < poly(n)— what types of gates g and h are and whether g is
h’s parent in C),.)

But going back to nonuniform ACC?, we wish to mention an alternative representation of
ACC? circuits that may be useful in further lowerbounds. Let a symmetric gate be a gate whose
output depends only on the number of inputs that are 1. For example, majority and mod gates
are symmetric. Yao has shown that ACC? circuits can be simplified to give an equivalent depth 2
circuits with a symmetric gate at the output (figure ?7). Beigel and Tarui subsequently improved
Yao’s result:

13.4. CIRCUIT COMPLEXITY: THE FRONTIER pl13.13 (247)

THEOREM 13.13 (YAO [YA090], BEIGEL AND TARrRUI [BT94])
If f € ACC then f can be computed by a depth 2 circuit C with a symmetric gate with

quasipolynomial (i.e., glog" ") fan-in at the output level and V gates with polylogarithmic fan-in at
the input level.

We will revisit this theorem below in Section 13.5.1.

13.4.3 Linear Circuits With Logarithmic Depth

When we restrict circuits to have bounded fanin we necessarily need to allow them to have non-
constant (in fact, Q(logn)) depth to have any reasonable power. With this in mind, the simplest
interesting circuit class seems to be one of circuits wth linear size and logarithmic depth.

Frontier 3: Find an explicit function that cannot be computed by circuits of linear size and
logarithmic depth.

(Note that by counting one can easily show that some function on n bits requires superpoly-
nomial size circuits and hence bounded fan-in circuits with more than logarithmic depth; see the
exercises on the chapter on circuits. Hence we want to show this for an explicit function, e.g.
CLIQUE.)

Valiant thought about this problem in the ’70s. His initial candidates for lowerbounds boiled
down to showing that a certain graph called a superconcentrator needed to have superlinear size.
He failed to prove thisand instead ended up proving that such superconcentrators do exist!

Another sideproduct of Valiant’s investigations was the following important lemma concerning
depth-reduction for such circuits.

LEMMA 13.14 (VALIANT)
In any circuit with m edges and depth d, there are km/logd edges whose removal leaves a circuit
with depth at most d/2"1.

This lemma can be applied as follows. Suppose we have a circuit C of depth clogn with n
inputs {z1,...,2,} and n outputs {y1,...,y,}, and suppose 2* ~ c/e where ¢ > 0 is arbitrarily
small. Removing O(n/loglogn) edges from C' then results in a circuit with depth at most elogn.
But then, since C' has bounded fan-in, we must have that each output ¥; is connected to at most
2¢logm — n€ inputs. So each output y; in C is completely determined by n¢ inputs and the values
of the omitted edges. So we have a “dense” encoding for the function f;(x1,...,z,) = y;. We do
not expect this to be the case for any reasonably difficult function.

13.4.4 Branching Programs

Just as circuits are used to investigate time requirements of Turing Machines, branching programs
are used to investigate space complexity.

A branching program on n input variables x1, o, ..., x, is a directed acyclic graph all of whose
nodes of nonzero outdegree are labeled with a variable z;. It has two nodes of outdegree zero that
are labeled with an output value, ACCEPT or REJECT. The edges are labeled by 0 or 1. One of
the nodes is designated the start node. A setting of the input variables determines a way to walk

pl3.14 (248) 13.5. APPROACHES USING COMMUNICATION COMPLEXITY

on the directed graph from the start node to an output node. At any step, if the current node has
label z;, then we take an edge going out of the node whose label agrees with the value of z;. The
branching program is deterministic if every nonoutput node has exactly one 0 edge and one 1 edge
leaving it. Otherwise it is nondeterministic. The size of the branching program is the number of
nodes in it. The branching program complexity of a language is defined analogously with circuit
complexity. Sometimes one may also require the branching program to be leveled, whereby nodes
are arranged into a sequence of levels with edges going only from one level to the next. Then the
width is the size of the largest level.

THEOREM 13.15
If S(n) > logn and L € SPACE(S(n)) then L has branching program complexity at most ¢%™
for some constant ¢ > 1.

PROOF: Essentially mimics our proof of Theorem‘?? that SPACE(S(n)) € DTIME(20(5(),
The nodes of the branching program correspond to the configurations of the space-bounded TM,

and it is labeled with variable x; if the configuration shows the TM reading the ¢th bit in the input.
|

Of course, a similar theorem is true about NDTMs and nondeterministic branching program
complexity.

Frontier 4: Describe a problem in P (or even NP) that requires branching programs of size greater
than n'*¢ for some constant € > 0.

There is some evidence that branching programs are more powerful than one may imagine. For
instance, branching programs of constant width (reminiscent of a TM with O(1) bits of memory)
seem inherently weak. Thus the next result is unexpected.

THEOREM 13.16 (BARRINGTON [?])
A language has polynomial size, width 5 branching programs iff it is in NC!.

13.5 Approaches using communication complexity

Here we outline a concrete approach (rather, a setting) in which better lowerbounds may lead to a
resolution of some of the questions above. It relates to generalizations of communication complexity
introduced earlier. Mostly we will use multiparty communication complexity, though Section 13.5.4
will use communication complexity of a relation.

13.5.1 Connection to ACC° Circuits

Suppose f(x1,...,x) has a depth-2 circuit with a symmetric gate with fan-in N at the output and
A gates with fan-in k& — 1 at the input level (figure 2). The claim is that f’s k-party communication
complexity is at most klog N. (This observation is due to Razborov and Wigderson [RW93]). To
see the claim, first partition the A gates amongst the players. Each bit is not known to exactly one
player, so the input bits of each A gate are known to at least one player; assign the gate to such a
player with the lowest index. Players then broadcast how many of their gates output 1. Since this
number has at most log N bits, the claim follows.

13.5. APPROACHES USING COMMUNICATION COMPLEXITY pl13.15 (249)

Figure unavailable in pdf file.

Figure 13.4: If f is computed by the above circuit, then f has a k-party protocol of complexity klog N.

Our hope is to employ this connection with communication complexity in conjunction with
Theorem 13.13 to obtain lower bounds on ACC? circuits. For example, note that the function in
Example ?? above cannot have k < logn/4. However, this is not enough to obtain a lower bound
on ACCYV circuits since we need to show that & is not polylogarithmic to employ Theorem 13.13.
Thus a strengthening of the Babai Nisan Szegedy lowerbound to ©(n/poly(k)) for say the CLIQUE
function would close Frontier 2.

13.5.2 Connection to Linear Size Logarithmic Depth Circuits

Suppose that f : {0,1}" x {0,1}!°e” — {0,1}" has bounded fan-in circuits of linear size and
logarithmic depth. If f(z,7,7) denotes the ith bit of f(z,7), then Valiant’s Lemma implies that
f(x,j,7) has a simultaneous 3-party protocol—that is, a protocol where all parties speak only once
and write simultaneously on the blackboard (i.e., non-adaptively)—where,

e (x,j) player sends n/loglogn bits;
e (x,1) player sends n° bits; and
e (i,7) player sends O(logn) bits.

So, if we can show that a function does not have such a protocol, then we would have a lower bound
for the function on linear size logarithmic depth circuits with bounded fan-in.

Conjecture: The function f(z,j,i) = zjg, where j @ i is the bitwise xor, is conjectured to be
hard, i.e., f should not have a compact representation.

13.5.3 Connection to branching programs

The notion of multiparty communication complexity (at least the “number on the forehead” model
discussed here) was invented by Chandra Furst and Lipton [?] for proving lowerbounds on branching
programs, especially constant-width branching programs discussed in Section 77?7

13.5.4 Karchmer-Wigderson communication games and depth lowerbounds

The result that PARITY is not in ACY separates NC! from AC°. The next step would be to
separate NC? from NC!. (Of course, ignoring for the moment the issue of separating ACC? from
NC!.) Karchmer and Wigderson [KW90] described how communication complexity can be used
to prove lowerbounds on the minimum depth required to compute a function. They showed the
following result about monotone circuits, which we will not prove this result.

THEOREM 13.17

Detecting whether a graph has a perfect matching is impossible with monotone circuits of depth
O(logn)

p13.16 (250) 13.5. APPROACHES USING COMMUNICATION COMPLEXITY

However, we do describe the basic Karchmer-Wigderson game used to prove the above result,
since it is relevant for nonmonotone circuits as well. For a function f:{0,1}" — {0,1} this game
is defined as follows.

There are two players, ZERO and ONE. Player ZERO receives an input x such that f(x) =0
and Player ONE receives an input y such that f(y) = 1. They communicate bits to each other,
until they can agree on an i € {1,2,...,n} such that x; # y;.

The mechanism of communication is defined similarly as in Chapter 12; there is a protocol that
the players agree on in advance before receiving the input. Note that the key difference from the
scenario in Chapter 12 is that the final answer is not a single bit, and furthermore, the final answer
is not unique (the number of acceptable answers is equal to the number of bits that x,y differ on).
Sometimes this is described as computing a relation. The relation in this case consists of all triples
(z,y,1) such that f(z) =0, f(y) =1 and z; # v;.

We define Ckw (f) as the communication complexity of the above game; namely, the maximum
overallz € f71(0),y € f71(1) of the number of bits exchanged in computing an answer for x,y. The
next theorem shows that this parameter has a suprising alternative characterization. It assumes
that circuits don’t have NOT gates and instead the NOT gates are pushed down to the inputs
using De Morgan’s law. (In other words, the inputs may be viewed as z1, z2, ..., Tn, T1, T2, .., Tp.)
Furthermore, AND and OR gates have fanin 2. (None of these assumptions is crucial and affects
the theorem only marginally.)

THEOREM 13.18 ([KW90])
Cxw(f) is exactly the minimum depth among all circuits that compute f.

PROOF: First, we show that if there is a circuit C of depth K that computes f then Crw(f) < K.
Each player has a copy of C, and evaluates this circuit on the input given to him. Of course, it
ealuates to 0 for Player ZERO and to 1 for Player ONE. Suppose the top gate is an OR. Then
at least one of the two incoming wires to this gate must be 1, and in the first round, Player ONE
sends one bit communicating which of these wires it was. Note that this wire is 0 for Player ZERO.
In the next round the players focus on the gate that produced the value on this wire. (If the top
gate is an AND on the other hand, then in the first round Player ZERO speaks, conveying which
of the two incoming wires was 0. This wire will be 1 for Player ONE.) This goes on and the players
go deeper down the circuit, always maintaining the invariant that the current gate has value 1 for
Player ONE and 0 for Player ZERO. Finally, after at most K steps they arrive at an input bit.
According to the invariant being maintained, this bit must be 1 for Player ONE and 0 for Player
ZERQO. Thus they both know an index ¢ that is a valid answer.

For the reverse direction, we have to show that if Cxw (f) = K then there is a circuit of depth
at most K that computes f. We prove a more general result. For any two disjoint nonempty
subsets A C f~1(0) and B C f~%(1), let Cxw(A, B) be the communication complexity of the
Karchmer-Wigderson game when z always lies in A and y in B. We show that there is a circuit
of depth Ckw (A, B) that outputs 0 on every input from A and 1 on every input from B. Such a
circuit is called a distinguisher for sets A, B. The proof is by induction on K = Ckw (A, B). The
base case K = 0 is trivial since this means the players do not have to communicate at all to agree
on an answer, say ¢. Hence z; # y; for all z € A,y € B, which implies that either (a) z; = 0 for

13.5. APPROACHES USING COMMUNICATION COMPLEXITY pl13.17 (251)

every x € A and y; = 0 for every y € B or (b) x; = 1 for every x € A and y; = 1 for every y € B.
In case (a) we can use the depth 0 circuit z; and in case (b) we can use the circuit 7; to distinguish
A, B.

For the inductive step, suppose Cxw (A, B) = K, and at the first round Player ZERO speaks.
Then A is the disjoint union of two sets Ay, A1 where Ay is the set of inputs in A for which Player
ZERO sends bit b. Then Cgw(Ap, B) < K — 1 for each b, and the inductive hypothesis gives a
circuit Cy of depth at most K — 1 that distinguishes Ay, B. We claim that Cy A C; distinguishes
A, B (note that it has depth at most K). The reason is that Cy(y) = C1(y) = 1 for every y € B
whereas for every € A, Co(z) A Ci(x) = 0 since if z € A then Cy(z) =0. B

Thus we have the following frontier.
Frontier 5: Show that some function f in P (or even NEXP!) has Cxw (f) = Q(lognloglogn).

Karchmer, Raz, and Wigderson [KRW95] describe a candidate function that may work. It uses
the fact a function on k bits has a truth table of size 2¥, and that most functions on k bits are hard
(e.g., require circuit size Q(2¥/k), circuit depth Q(k), etc.). They define the function by assuming
that part of the n-bit input encodes a very hard function, and this hard function is applied to the
remaining input in a “tree” fashion.

For any function g:{0,1}* — {0,1} and s > 1 define ¢°%:{0,1}*" — {0,1} as follows. If s = 1
then ¢°° = g. Otherwise express the input z € {0, 1}ks as r1raxs - - - x, where each x; € {0, 1}""871
and define

S (ziay - ap) = 9(90(8—1)(x1)90(s—1)(x2) .. .gO(s—l) (25)).

Clearly, if g can be computed in depth d then ¢g°® can be computed in depth sd. Furthermore, if
one fails to see how one could reduce the depth for an arbitrary function.

Now we describe the KRW candidate function f:{0,1}" — {0,1}. Let k = [log §] and s be
the largest integer such that k¥ < n/2 (thus s = @(blgoign).) For any n-bit input z, let g, be the
function whose truth table is the first 2¥ bits of . Let x| be the string of the last k® bits of z.
Then

f(x) = g5°(x2).

According to our earlier intuition, when the first 2% bits of = represent a really hard function —as
log? n
loglogn) '

they must for many choices of the input— then ¢2°(x|2) should require depth Q(sk) = Q(
Of course, proving this seems difficult.

This type of complexity questions, whereby we are asking whether s instances of a problem are
s times as hard as a single instance, are called direct sum questions. Similar questions have been
studied in a variety of computational models, and sometimes counterintuitive results have been
proven for them. One example is that by a counting argument there exists an n x n matrix A over
{0,1}, such that the smallest circuit computing the linear function v — Av for v € {0,1}" is of
size Q(n?). However, computing this function on n instances v1, ..., v, can be done significantly
faster than n3 steps using fast matrix multiplication [Str69] (the current record is roughly O(n*3%)
[CWI0)).

pl13.18 (252) 13.5. APPROACHES USING COMMUNICATION COMPLEXITY

Chapter notes and history

Shannon defined circuit complexity, including monotone circuit complexity, in 1949. The topic was
studied in Russia since the 1950s. (See Trakhtenbrot [Tra84] for some references.) Savage [Sav72]
was the first to observe the close relationship between time required to decide a language on a
TM and its circuit complexity, and to suggest circuit lowerbounds as a way to separate complexity
classes. A burst of results in the 1980s, such as the separation of P from AC" [FSS84, Ajt83]
and Razborov’s separation of monotone NP from monotone P /poly [Raz85b] raised hopes that a
resolution of P versus NP might be near. These hopes were dashed by Razborov himself [Raz89]
when he showed that his method of approximations was unlikely to apply to nonmonotone circuits.
Later Razborov and Rudich [RR97] formalized what they called natural proofs to show that all
lines of attack considered up to that point were unlikely to work. (See Chapter 22.)

Our presentation in Sections 13.2 and 13.3 closely follows that in Boppana and Sipser’s excellent
survey of circuit complexity [BS90], which is still useful and current 15 years later. (It omits
discussion of lowerbounds on algebraic circuits; see [Raz04] for a recent result.)

Hastad’s switching lemma [Has86] is a stronger form of results from[FSS84, Ajt83, Yao85].
The Razborov-Smolensky method of using approximator polynomials is from [Raz87], strength-
ened in[Smo87]. Valiant’s observations about superlinear circuit lowerbounds are from a 1975
paper [Val75] and an unpublished manuscript—Ilack of progress on this basic problem gets more
embarrassing by the day!.

The 4.5n — o(n) lowerbound on general circuits is from Lachish-Raz [LRO1].

Exercises

§1 Suppose that f is computable by an AC 0 circuit C' of depth d and size S. Prove that f is
computable by an AC 0 circuit C” of size 10S and depth d that does not contain NOT gates
but instead has n additional inputs that are negations of the original n inputs.

‘uoryedou
$I1 sonduwod Jey) UIM) © $108 JINOID P[O 9Y) Ul 993 (oo :JUIE]

§2 Suppose that f is computable by an AC 0 circuit C' of depth d and size S. Prove that f is
computable by an AC0 C’ circuit of size (105)? and depth d where each gate has fanout 1.

k
§3 Prove that for t > n/2, (tik) < (Z’) (%) . Use this to complete the proof of Lemma 13.2
(Section 13.1.2).

§4 Show that ACC° C NC!.

§5 Identify reasons why the Razborov-Smolensky method does not work when the circuit has
modm gates, where m is a composite number.

§6 Show that representing the OR of n variables x1,xs,...,x, exactly with a polynomial over
GF(q) where ¢ is prime requires degree exactly n.

13.5. APPROACHES USING COMMUNICATION COMPLEXITY pl13.19 (253)

§7 The Karchmer-Wigderson game can be used to prove upperbounds, and not just lowerbounds.
Show using this game that PARITY and MAJORITY are in NC!.

§8 Show that if a language is computed by a polynomial-size branching program of width 5 then
it is in NC.

§9 Prove Valiant’s Lemma (Lemma 13.14).

‘Toqer remdod
1sea] J1[) 03 FUIPUOdSIILIOD SOFPS d) dAOWSI PUR & ‘N JO S[OA] O}
07 UOAIS SIOqUINU 9Y) e SUINOO[A(93po SIY) [oqer] ‘@ Wey) [oAd]
IoMO[B 9B SINOD0 M USY} 93pd Ue SI a4 «+— 7 JI ey} yons ‘ydeid
PO[oAS] ® Ojul powang o o ued ydeisd orpAoe poolp y U

p13.20 (254) 13.5. APPROACHES USING COMMUNICATION COMPLEXITY

Chapter 14

Algebraic computation models

The Turing machine model captures computations on bits (equivalently, integers), but it does not
always capture the spirit of algorithms which operate on, say the real numbers R or complex num-
bers C. Such algorithms arise in a variety of applications such as numerical analysis, computational
geometry, robotics, and symbolic algebra. A simple example is Newton’s method for finding roots
of a given real-valued function function f. It iteratively produces a sequence of candidate solutions
xg,T1,T2,- .., € R where x;41 = 2; — f(x;)/f'(x;). Under appropriate conditions this sequence can
be shown to converge to a root of f.

Of course, a perfectly defensible position to take is that even the behavior of such algorithms
should be studied using TMs, since they will be run on real-life computers, which represent real
numbers using finite precision. In this chapter though, we take a different approach and study
models which do allow arithmetic operations on real numbers (or numbers from fields other than
R). Such an idealized model may not be implementable, strictly speaking, but it provides a useful
approximation to the asymptotic behavior as computers are allowed to use more and more precision
in their computations. Furthermore, one may be able to prove nontrivial lowerbounds for these
models using techniques from well-developed areas of mathematics such as algebraic geometry and
topology. (By contrast, boolean circuit lowerbounds have proven very difficult.)

However, coming up with a meaningful, well-behaved model of algebraic computation is not an
easy task, as the following example suggests.

EXAMPLE 14.1 (PITFALLS AWAITING DESIGNERS OF SUCH MODELS)

A real number can encode infinite amount of information. For example, a single real number is
enough to encode the answer to every instance of SAT (or any other language, in general). Thus,
a model that can store any real number with infinite precision may not be realistic. Shamir has
shown how to factor any integer n in poly(logn) time on a computer that can do real arithmetic
with arbitrary precision.

The usual way to avoid this pitfall is to restrict the algorithms’ ability to access individual
bits (e.g., the machine may require more than polynomial time to extract a particular digit from

pl4.1 (255)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pl4.2 (256) 14.1. ALGEBRAIC CIRCUITS

a real number). Or, sometimes (as in case of Algebraic Computation Trees) it is OK to consider
unrealistically powerful models since the goal is to prove nontrivial lowerbounds —say, superlinear
or quadratic— rather than arbitrary polynomial lowerbounds. After all, lowerbounds for unrealis-
tically powerful models will apply to more realistic (and weaker) models as well.

This chapter is a sketchy introduction to algebraic complexity. It introduces three algebraic
computation models: algebraic circuits, algebraic computation trees, and algebraic Turing Ma-
chines. The algebraic TM is closely related to the standard Turing Machine model and allows
us to study similar questions for arbitrary fields — including decidability and complexity—that
we earlier studied for strings over {0, 1}. We introduce an undecidable problem (namely, deciding
membership in the Mandelbrot set) and and an NP-complete problem (decision version of Hilbert’s
Nullstellensatz) in this model.

14.1 Algebraic circuits

An algebraic circuit over a field F' is defined by analogy with a boolean circuit. It consists of a
directed acyclic graph. The leaves are called input nodes and labeled x1, xo, ..., x,, except these
take values in a field F' rather than boolean variables. There are also special input nodes, labeled
with the constants 1 and —1 (which are field elements). Each internal node, called a gate, is labeled
with one of the arithmetic operations {+,x} rather than with the boolean operations V, A, = used
in boolean circuits. There is only output node. We restrict indegree of each gate to 2. The size of
the circuit is the number of gates in it. One can also consider algebraic circuits that allow division
(=) at the gates. One can also study circuits that have access to “constants” other than 1; though
typically one assumes that this set is fixed and independent of the input size n. Finally, as in the
boolean case, if each gate has outdegree 1, we call it an arithmetic formula.

A gate’s operation consists of performing the operation it is labeled with on the numbers present
on the incoming wires, and then passing this output to all its outgoing wires. After each gate has
performed its operation, an output appears on the circuit’s lone output node. Thus the circuit may
be viewed as a computing a function f(x1,zo,...,x,) of the input variables, and simple induction
shows that this output function is a (multivariate) polynomial in x1, xa, ..., x,. If we allow gates to
also be labeled with the division operation (denoted “+”) then the function is a rational function
of x1,...,x,, in other words, functions of the type fi(z1,z2,...,2,)/f2(x1,...,2,) where fi, fo
are polynomials. Of course, if the inputs come from a field such as R, then rational functions can
be used to approximate —via Taylor series expansion —all “smooth” real-valued functions.

As usual, we are interested in the asymptotic size (as a function of n) of the smallest family
of algebraic circuits that computes a family of polynomials {f,} where f, is a polynomial in n
variables. The exercises ask you to show that circuits over GF'(2) (with no +) are equivalent to
boolean circuits, and the same is true for circuits over any finite field. So the case when F' is infinite
is usually of greatest interest.

EXAMPLE 14.2

The discrete fourier transform of a vector a = (ag, ai, ..., a,—1) where a; € C is vector M -a, where
M is a fixed n x n matrix whose (4, j) entry is w” where w is an nth root of 1 (in other words, a
complex number satisfying w™ = 1).

14.1. ALGEBRAIC CIRCUITS p14.3 (257)

Interpreting the trivial algorithm for matrix-vector product as an arithmetic circuit, one obtains
an algebraic formula of size O(n?). Using the famous fast fourier transform algorithm, one can
obtain a smaller circuit (or formula??; CHECK) of size O(nlogn).

STATUS OF LOWERBOUNDS??

EXAMPLE 14.3
The determinant of an n x n matrix X = (Xj;) is

det(X) = Z Hmia(i), (1)

o€Sy i=1

where S, is the set of all n! permutations on {1,2,...,n}. This can be computed using the familiar
Gaussian elimination algorithm. Interpreting the algorithm as a circuit one obtains an arithmetic
circuit of size O(n?). Using the NC? algorithm for Gaussian elimination, one obtains an arithmetic

log? n)

formula of size 2°(. No matching lowerbounds are known for either upperbound.

The previous example is a good illustration of how the polynomial defining a function may have
exponentially many terms —in this case n!—but nevertheless be computable with a polynomial-size
circuit (as well as a subexponential-size formula).

By contrast, no polynomial-size algebraic circuit is conjectured to exist for the permanent
function, which at first sight seems is very similar to the determinant but as we saw in Section 77,
is #P-complete.

n
permanent(X) = Z (—1)397) H Tio (i) (2)
oESy i=1
The determinant and permanent functions also play a vital role in the world of algebraic circuits,
since they are complete problems for two important classes. To give the definition, we need the
notion of degree of a multivariate polynomial, namely, the minimum d such that each monomial
term []; xfi satisfies), d; < d. A family of polynomials in x1,x2,..., 2, is poly-bounded if the
degree is at most O(n¢) for some constant ¢ > 0.
DEFINITION 14.4 (AlgP)
The class AlgP is the class of polynomials of polynomial degree that are computable by arithmetic
formulae (using no +) of polynomial size.

DEFINITION 14.5 (ALGNP)
AlgNP is the class of polynomials of polynomial degree that are definable as

flz1,2,. .., xpn) = Z gn(T1,22,. .., Ty, €ntl, - oy Em),
ecf0,1}m "

where g, € AlgP and m is polynomial in n.

pl4.4 (258) 14.2. ALGEBRAIC COMPUTATION TREES

DEFINITION 14.6 (PROJECTION REDUCTION)
A function f(x1,...,zy) is a projection of a function g(y1,y2,...,ym) if there is a mapping o from

{y1,92, -, ym} to {0,1, 21, z2,..., 2y} such that f(x1,29,...,2) = g(c(¥1),0(2)s-..,0(Ym)).
We say that f is projection-reducible to g if f is a projection of g.

THEOREM 14.7 (VALIANT)
Every polynomial on n variables that is computable by a circuit of size u is projection reducible to
the Determinant function (over the same field) on u + 2 variables.

Every function in AIgNP is projection reducible to the Permanent function (over the same

field).

14.2 Algebraic Computation Trees

An algebraic computation tree is reminiscent of a boolean decision tree (Chapter ?7) but it computes
a boolean-valued function f:R™ — {0,1}. Consider for example the ELEMENT DISTINCTNESS
problem of deciding, given n numbers 1, xs,...,z,, whether any two of them are the same. To
study it in the decision tree model, we might study it by thinking of the input as a matrix of size n?
where the (4, j) entry indicates whether or or not z; > x; or x; = z; or x; < x;. But one can also
study it as a problem whose input is a vector of n real numbers. Consider the trivial algorithm in
either viewpoint: sort the numbers in O(nlogn) time and then check if any two adjacent numbers
in the sorted order are the same. Is this trivial algorithm actually optimal? This question is
still open, but one can prove optimality with respect to a more restricted class of algorithms that
includes the above trivial algorithm.

Recall that comparison-based sorting algorithms only ask questions of the type “Is x; > x;77,
which is the same as asking whether x; —2; > 0. The left hand side term of this last inequality is a
linear function. Other algorithms may use more complicated functions. In this section we consider
a model called Algebraic Computation Trees, where we examine the effect of allowing a) the use of
any polynomial function and b) the introduction of new variables together with the ability to ask
questions about them.

DEFINITION 14.8 (ALGEBRAIC COMPUTATION TREE)

An Algebraic Computation Tree is a way to represent a function f:R"™ — {0,1} by showing how
to compute f(x1,x2,...,x,) for any input vector (x1,xa,...,x,). It is a complete binary tree that
describes where each of the nodes has one of the following types:

e Leaf labeled “Accept” or “Reject”.

e Computation node v labeled with y,, where y, = 9, o y and y,,y, are either one of
{z1,z2,...,2,} or the labels of ancestor nodes and the operator o is in {+, —, X, +, \[}

e Branch node with out-degree 2. The branch that is taken depends on the evaluation of some
condition of the type vy, = 0 or y, > 0 or y, < 0 where y, is either one of {1, x2,...,z,} or
the labels of an ancestor node in the tree.

14.2. ALGEBRAIC COMPUTATION TREES pld.5 (259)

Figure unavailable in pdf file.

Figure 14.1: An Algebraic Computation Tree

Figure unavailable in pdf file.

Figure 14.2: A computation path p of length d defines a set of constraints over the n input variables z; and d
additional variables y;, which correspond to the nodes on p.

The computation on any input (z1,z2,. .., z,) follows a single path the root to a leaf, evaluating
functions at internal nodes (including branch nodes) in the obvious way. The complexity of the
computation on the path is measured using the following costs (which reflect real-life costs to some
degree):

e |, — are free.
® X,+,,/ are charged unit cost.

The depth of the tree is the maximum cost of any path in it.

A fragment of an algebraic decision tree is shown in figure 14.1. The following examples illustrate
some of the languages (over real numbers) whose complexity we want to study.

EXAMPLE 14.9

[Element Distinctness Problem] Given n numbers x1, z2, . .., x, we need to determine whether they
are all distinct. This is equivalent to the question whether [[, .. (z; — z;) # 0. As indicated earlier,
this can be computed by a tree of depth O(nlogn) whose internal nodes only compute functions
of the type x; — x;.

EXAMPLE 14.10
[Real number version of SUBSET SUM]| Given a set of n real numbers X = {x,z9,...,2,} we ask
whether there is a subset S C X such that Zies z; = 1.

Of course, a tree of depth d could have 2¢ nodes, so a small depth decision tree does not always
guarantee an efficient algorithm. This is why the following theorem (which we do not prove) does
not have any implication for P versus NP.

THEOREM 14.11
The real number version of SUBSET SUM can be solved using an algebraic computation tree of depth

o(n°).

pl4.6 (260) 14.2. ALGEBRAIC COMPUTATION TREES

This theorem suggests that Algebraic Computation Trees are best used to investigate lower-
bounds such as n log n or n?. To prove lowerbounds for a function f, we will use the topology of the
sets f~1(1) and f~1(0), specifically, the number of connected components. In fact, we will think of
any function f:R™ — R as being defined by a subset W C R", where W = f~1(1).

DEFINITION 14.12
Let W C R™. The algebraic computation tree complexity of W is

cwW)= min {depth of C'}
computation
trees C for W

DEFINITION 14.13 (CONNECTED COMPONENTS)
A set S C R" is connected if for all z,y € S there is path p that connects x and y and lies entirely
in S. For S C R™ we define #(S) to be the number of connected components of S.

THEOREM 14.14
Let W = {(z1,...,zn)|[L;2; (xi — x;) # 0}. Then,

#(W) > nl

PROOF: For each permutation o let

W, = {(l‘l,. . .,l’n) ’ To(1) < To2) < ... < xa(n)}.

That is, let W, be the set of n-tuples (z1,...,x,) to which o gives order. It suffices to prove for
all o/ # o that the sets W, and W, are not connected.

For any two distinct permutations o and ¢’, there exist two distinct 7, j with 1 < 4,5 < n, such
that o71(i) < o71(j) but o71(i) > o~1(j). Thus, in W, we have X; — X; > 0 while in W,/ we
have X; — X; > 0. Consider any path from W, to W,.. Since X; — X; has different signs at the
endpoints, the intermediate value principle says that somewhere along the path this term must
become 0. Definition 14.13 then implies that W, and W, cannot be connected. B

The connection between the two parameters we have defined thus far is the following theo-
rem, whose proof will use a fundamental theorem of topology. It also implies, using our obser-
vation above, that the algebraic computation tree complexity of ELEMENT DISTINCTNESS is
Q(log(n!)) = Q(nlogn).

THEOREM 14.15 (BEN-OR)

C(W) = 0 log (max {#(W), #(R" = W)}) —n)

This theorem is proved in two steps. First, we try to identify the property of functions with
low decision tree complexity: they can be defined using a “few” systems of equations.

14.2. ALGEBRAIC COMPUTATION TREES p14.7 (261)
LEMMA 14.16

If f:R™ — {0, 1} has a decision tree of depth d then f~1(1) (and also f~%(0)) is a union of at most
24 sets C1,Co, . .., where C; is the set of solutions to some algebraic system of up to d equations
of the type

pi(ylv"'aydaxh'"axn) [><]07

where p; for i < d is a degree 2 polynomial, > is in {<,>,=,#}, and y1,...,yq are new variables.
(Rabinovitch’s Trick) Additionally, we may assume without loss of generality (at the cost of
doubling the number of y;’s) that there are no # constraints in this system of equations.

PROOF: The tree has 2¢ leaves, so it suffices to associate a set with each leaf. This is simply the set

of (x1,xa,...,x,) that end up at that leaf. Associate variables yi,ys,...,yqs with the d tree nodes

appearing along the path from root to that leaf. For each tree nodes associate an equation with it

in the obvious way (see figure 14.2). For example, if the node computes y, = y,, + ¥y, then it implies

the constraint y,y, — ¥, = 0. Thus any (21,22, ..., z,) that end up at the leaf is a vector with an

associated value of y1, 9, ...,yq such that the combined vector is a solution to these d equations.
To replace the “#” constraints with “=” constraints we take a constraint like

pi(yl; .. aym) 7& 07

introduce a new variable z; and impose the constraint

Q’i(yla cee 7ym72i) =1- zipi(yla o Jy’m) = 0.

(This transformation holds for all fields.) Notice, the maximum degree of the constraint remains
2, because the trick is used only for the branch y, # 0 which is converted to 1 — z,y, = 0.
|

REMARK 14.17
We find Rabinovitch’s trick useful also in Section 14.3.2 where we prove a completeness result for
Hilbert’s Nullstellensatz.

Another version of the trick is to add the constraint

P2(Y1,- - Ym) > 0,

which doubles the degree and does not hold for all fields (e.g., the complex numbers).

Thus we need some result about the number of connected components of the set of solutions to
an algebraic system. The following is a central result in mathematics.
THEOREM 14.18 (SIMPLE CONSEQUENCE OF MILNOR-THOM)
If S C R™ is defined by degree d constraints with m equalities and h inequalities then
#(S) < d(2d — 1)+t

REMARK 14.19
Note that the above upperbound is independent of m.

pld.8 (262) 14.3. THE BLUM-SHUB-SMALE MODEL

Figure unavailable in pdf file.

Figure 14.3: Projection can merge but not add connected components

Now we can prove Ben-Or’s Theorem.

PROOF: (Theorem 14.15) Suppose that the depth of a computation tree for W is d, so that there
are at most 27 leaves. We will use the fact that if S C R™ and S| is the set of points in S with
their n — k coordinates removed (projection on the first k coordinates) then #(S|;) < #(95) (figure
14.3).

For every leaf there is a set of degree 2 constraints. So, consider a leaf £ and the corresponding
constraints Cy, which are in variables x1,...,%n,¥1,...,yq. Let Wy C R™ be the subset of inputs
that reach ¢ and S; C R™*9 the set of points that satisfy the constraints C;. Note that W, = Cy|,,
i.e., Wy is the projection of Cy onto the first n coordinates. So, the number of connected components
in Wy is upperbounded by #(Cs). By Theorem 14.18 #(C;) < 2 - 374~ < 3n+d, Therefore the
total number of connected components is at most 24379, so d > log(#(W)) — O(n). By repeating
the same argument for R” — W we have that d > log(#(R" — W)) — O(n). &

14.3 The Blum-Shub-Smale Model

Blum, Shub and Smale introduced Turing Machines that compute over some arbitrary field K (e.g.,
K =R, C,Z3). This is a generalization of the standard Turing Machine model which operates over
the ring Zs. Each cell can hold an element of K, Initially, all but a finite number of cells are “blank.”
In our standard model of the TM, the computation and branch operations can be executed in the
same step. Here we perform these operations separately. So we divide the set of states into the
following three categories:

e Shift state: move the head to the left or to the right of the current position.
e Branch state: if the content of the current cell is a then goto state g; else goto state go.

e Computation state: replace the contents of the current cell with a new value. The machine
has a hardwired function f and the new contents of the cell become a <« f(a). In the standard
model for rings, f is a polynomial over K, while for fields f is a rational function p/q where
P, q are polynomials in K[z] and ¢ # 0. In either case, f can be represented using a constant
number of elements of K.

e The machine has a single “register” onto which it can copy the contents of the cell currently
under the head. This register’s contents can be used in the computation.

In the next section we define some complexity classes related to the BSS model. As usual, the
time and space complexity of these Turing Machines is defined with respect to the input size, which
is the number of cells occupied by the input.

14.3. THE BLUM-SHUB-SMALE MODEL pl4.9 (263)

REMARK 14.20
The following examples show that some modifications of the BSS model can increase significantly
the power of an algebraic Turing Machine.

e If we allow the branch states to check, for arbitrary real number a, whether a > 0 (in
other words, with arbitrary precision) the model becomes unrealistic because it can decide
problems that are undecidable on the normal Turing machine. In particular, such a machine
can compute P /poly in polynomial time; see Exercises. (Recall that we showed that P /poly
contains undecidable languages.) If a language is in P /poly we can represent its circuit family
by a single real number hardwired into the Turing machine (specifically, as the coefficient of
of some polynomial p(z) belonging to a state). The individual bits of this coefficient can be
accessed by dividing by 2, so the machine can extract the polynomial length encoding of each
circuit. Without this ability we can prove that the individual bits cannot be accessed.

e If we allow rounding (computation of |z]) then it is possible to factor integers in polynomial
time, using some ideas of Shamir. (See exercises.)

Even without these modifications, the BSS model seems more powerful than real-world com-
puters: Consider the execution of the operation x « z? for n times. Since we allow each cell to
store a real number, the Turing machine can compute and store in one cell (without overflow) the
number 22" in n steps.

14.3.1 Complexity Classes over the Complex Numbers

Now we define the corresponding to P and NP complexity classes over C:

DEFINITION 14.21 (Pc,NP()

P is the set of languages that can be decided by a Turing Machine over C in polynomial time.
NPc is the set of languages L for which there exists a language Ly in P¢, such that an input x is
in L iff there exists a string (y1,...,%nc) in C™ such that (z,y) is in Lo.

The following definition is a restriction on the inputs of a TM over C. These classes are useful
because they help us understand the relation between algebraic and binary complexity classes.

DEFINITION 14.22 (0-1-NP()

0-1-NP¢c = {L N {0, 1}* | Le Npc}

¢

Note that the input for an NP¢ machine is binary but the nondeterministic
consist of complex numbers. Trivially, 3SAT is in 0-1-NP¢: even though the “witness” consists of
a string of complex numbers, the machine first checks if they are all 0 or 1 using equality checks.
Having verified that the guess represents a boolean assignment to the variables, the machine con-
tinues as a normal Turing Machine to verify that the assignment satisfies the formula.

‘witness” may

It is known that 0-1-NP¢c € PSPACE. In 1997 Koiran proved that if one assumes the Riemann
hypothesis, then 0-1-NPc € AM]2]. Recall that AM][2] is BP - NP so Koiran’s result suggests
that 0-1-NP¢ may not be much bigger than NP.

pl4.10 (264) 14.3. THE BLUM-SHUB-SMALE MODEL

Figure unavailable in pdf file.

Figure 14.4: Tableau of Turing Machine configurations

14.3.2 Hilbert’s Nullstellensatz

The language HN is defined as the decision version of Hilbert’s Nullstellensatz over C. The input
consists of m polynomials p; of degree d over x1,...,x,. The output is “yes” iff the polynomials
have a common root ai,...,a,. Note that this problem is general enough to include SAT. We
illustrate that by the following example:

zVyVze (1—z)(1—y)(1—2)=0.

Next we use this fact to prove that the language 0-1-HN¢ (where the polynomials have 0-1 coeffi-
cients) is complete for 0-1-NP¢.

THEOREM 14.23 (BSS)
0-1-HN¢ is complete for 0-1-NP¢.

PROOF: (Sketch) It is straightforward to verify that 0-1-HN¢ is in 0-1-NP¢. To prove the hard-
ness part we imitate the proof of the Cook-Levin theorem; we create a computation tableau and
show that the verification is in 0-1-HNc.

To that end, consider the usual computation tableau of a Turing Machine over C and as in the
case of the standard Turing Machines express the fact that the tableau is valid by verifying all the
2 x 3 windows, i.e., it is sufficient to perform local checks (Figure 14.4). Reasoning as in the case of
algebraic computation trees (see Lemma 14.16) we can express these local checks with polynomial
constraints of bounded degree. The computation states ¢ < ¢(a,b)/r(a,b) are easily handled by
setting p(c) = q(a,b) — cr(a,b). For the branch states p(a,b) # 0 we can use Rabinovitch’s trick
to convert them to equality checks ¢(a,b, z) = 0. Thus the degree of our constraints depends upon
the degree of the polynomials hardwired into the machine. Also, the polynomial constraints use
real coefficients (involving real numbers hardwired into the machine). Converting these polynomial
constraints to use only 0 and 1 as coeflicients requires work. The idea is to show that the real
numbers hardwired into the machine have no effect since the input is a binary string. We omit this
mathematical argument here. B

14.3.3 Decidability Questions: Mandelbrot Set

Since the Blum-Shub-Smale model is more powerful than the ordinary Turing Machine, it makes
sense to revisit decidability questions. In this section we show that some problems do indeed remain
undecidable. We study the decidability of the Mandelbrot set with respect to Turing Machines over
C. Roger Penrose had raised this question in his meditation regarding artificial intelligence.

14.3. THE BLUM-SHUB-SMALE MODEL pl4.11 (265)

DEFINITION 14.24 (MANDELBROT SET DECISION PROBLEM)
Let Po(Z) = Z% + C. Then, the Mandelbrot set is defined as

M = {C'| the sequence Px(0), Po(Pc(0)), Po(Po(Po(0))) ... is bounded }.

Note that the complement of M is recognizable if we allow inequality constraints. This is
because the sequence is unbounded iff some number P(’fw(()) has complex magnitude greater than 2
for some k (exercise!) and this can be detected in finite time. However, detecting that Pg(O) is
bounded for every k seems harder. Indeed, we have:

THEOREM 14.25
M is undecidable by a machine over C.

PROOF: (Sketch) The proof uses the topology of the Mandelbrot set. Let M be any TM over the
complex numbers that supposedly decides this set. Consider T steps of the computation of this
TM. Reasoning as in Theorem 14.23 and in our theorems about algebraic computation trees, we
conclude that the sets of inputs accepted in 1" steps is a finite union of semialgebraic sets (i.e., sets
defined using solutions to a system of polynomial equations). Hence the language accepted by M
is a countable union of semi-algebraic sets, which implies that its Hausdorft dimension is 1. But it
is known Mandelbrot set has Hausdorff dimension 2, hence M cannot decide it. W

Exercises

§1 Show that if field F' is finite then arithmetic circuits have exactly the same power —up to
constant factors—as boolean circuits.

§2 Equivalence of circuits of depth d to straight line programs of size exp(d). (Lecture 19 in
Madhu’s notes.)

§3 Bauer-Strassen lemma?

84 If function computed in time T on algebraic TM then it has algebraic computation tree of
depth O(d).

§5 Prove that if we give the BSS model (over R) the power to test “a > 07” with arbitrary preci-
sion, then all of P /poly can be decided in polynomial time. (Hint: the machine’s “program”
can contain a constant number of arbitrary real numbers.)

§6 Shamir’s trick?

Chapter notes and history

NEEDS A LOT
General reference on algebraic complexity

pl4.12 (266) 14.3. THE BLUM-SHUB-SMALE MODEL

P. Brgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory, Springer-Verlag,
1997.

Best reference on BSS model

Blum Cucker Shub Smale.

Algebraic P and NP from Valiant 81 and Skyum-Valiant’86.

Roger Penrose: emperor’s new mind.

Mandelbrot : fractals.

Part 111

Advanced topics

pl14.13 (267)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

DRAFT

Chapter 15

Average Case Complexity: Levin’s
Theory

NEEDS MORE WORK

Our study of complexity — NP-completeness, #P-completeness etc.— thus far only concerned
worst-case complexity. However, algorithms designers have tried to design efficient algorithms for
NP-hard problems that work for “many” or “most” instances. This motivates a study of the
difficulty of the “average” instance. Let us first examine the issues at an intuitive level, so we may
be better prepared for the elements of the theory we will develop.

Many average case algorithms are targeted at graph problems in random graphs. One can define
random graphs in many ways: the simplest one generates a graph on n vertices randomly by picking
each potential edge with probability 1/2. (This method ends up assigning equal probability to every
n-vertex graph.) On such rand om graphs, many NP-complete problems are easy. 3-COLOR can
be solved in linear time with high probability (exercise). CLIQUE and INDEPENDENT SET can
be solved in n21°8™ time (exercise) which is only a little more than polynomial and much less than
2¢" the running time of the best algorithms on worst-case instances.

However, other NP-complete problems appear to require exponential time even on average. One
example is SUBSET SUM: we pick n integers aj, ag, ..., a, randomly from [1,2"], pick a random
subset S of {1,...,n}, and produce b = >, ga;. We do not know of any efficient average-case
algorithm that, given the a;’s and b, finds S. Surprisingly, efficient algorithms do exist if the a;’s are
picked randomly from the slightly larger interval [1, gnlog? "]. This illustrates an important point,
namely, that average-case complexity is sensitive to the choice of the input distribution.

The above discussion suggests that even though NP-complete problems are essentially equiva-
lent with respect to worst case complexity, they may differ vastly in their average case complexity.
Can we nevertheless identify some problems that remain “complete” even for the average case; in
other words, are at least as hard as every other average-case NP problem?

This chapter covers Levin’s theory of average-case complexity. We will formalize the notion
of “distributional problems,” introduce a working definition of “algorithms that are efficient on

!This chapter written with Luca Trevisan

pl5.1 (269)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

rect??

pl5.2 (270) 15.1. DISTRIBUTIONAL PROBLEMS

NoTE 15.1 (IMPAGLIAZZO’S POSSIBLE WORLDS)
At the moment we don’t know if the best algorithm for 3SAT runs in time

O(n) or 222(n) [yt there are also many other qualitative open questions about
the hardness of problems in NP. Russell Impagliazzo characterized a central
goal of complexity theory as the question of finding out which of the following
possible worlds is the world we live in:

Algorithmica.
Heuristica.
Pessiland.

Minicrypt.

average,” and define a reduction that preserves efficient average-case solvability. We will also
exhibit an NP-complete problem that is complete with respect to such reductions. However, we
cannot yet prove the completeness of natural distributional problems such as SUBSET SUM or one
of the number theoretic problems described in the chapter on cryptography.

15.1 Distributional Problems

In our intuitive discussion of average case problems, we first fixed an input size n and then considered
the average running time of the algorithm when inputs of size n are chosen from a distribution. At
the back of our mind, we knew that complexity has to be measured asymptotically as a function of
n. To formalize this intuitive discussion, we will define distributions on all (infinitely many) inputs.

DEFINITION 15.2 (DISTRIBUTIONAL PROBLEM)
A distributional problem is a pair (L, D), where L is a decision problem and D is a distribution
over the set {0,1}" of possible inputs.

EXAMPLE 15.3
We can define the “uniform distribution” to be one that assigns an input = € {0, 1}* the probability

_ b
EIEar W

We call this “uniform” because it assigns equal probabilities to all strings with the same length.
It is a valid distribution because the probabilities sum to 1:

Pr [z]

15.1. DISTRIBUTIONAL PROBLEMS pl5.3 (271)

> 2 |m|—22" 2 (2)

ze{0,1}" n>0 7’L + 1

\(1+!:v|

Here is another distribution; the probabilities sum to 1 since En21 # = 72/6.

Ed
Prla] = ﬂﬁi if 2] > 1 (3)

2 1,12
|z

To pick a string from these distributions, we can first an input length n with the appropriate
probability (for the distribution in (2), we pick n with probability 6/72n?) and then pick x uniformly
from inputs of length n. This uniform distribution corresponds to the intuitive approach to average
case complexity discussed in the introduction. However, the full generality of Definition 15.2 will
be useful later when we study nonuniform input distributions.

15.1.1 Formalizations of “real-life distributions.”

Real-life problem instances arise out of the world around us (images that have to be understood,
a building that has to be navigated by a robot, etc.), and the world does not spend a lot of
time tailoring instances to be hard for our algorithm —arguably, the world is indifferent to our
algorithm. One may formalize this indifference in terms of computational effort, by hypothesizing
that the instances are produced by an efficient algorithm. We can formalize this in two ways.

Polynomial time computable distributions. Such distributions have an associated determin-
istic polynomial time machine that, given input x, can compute the cumulative probability

up(x), where
=Y Py ¢

y<z

Here Prp[y] denotes the probability assigned to string y and y < x means y either precedes x
in lexicographic order or is equal to x. Denoting the lexicographic predecessor of x by x — 1,
we have

Pria] = pp(z) — pp(z - 1), ()

which shows that if pp is computable in polynomial time, then so is Prp[z]. The uniform
distributions in (1) and (1) are polynomial time computable, as are many other distributions
that are defined using explicit formulae.

Polynomial time samplable distributions. These distributions have an associated probabilis-
tic polynomial time machine that can produce samples from the distribution. In other words,
it outputs x with probability Prp[z]. The expected running time is polynomial in the length
of the output |z|.

Many such samplable distributions are now known, and the sampling algorithm often uses
Monte Carlo Markov Chain (MCMC) techniques.

pl5.4 (272) 15.2. DISTNP AND ITS COMPLETE PROBLEMS

If a distribution is polynomial time computable then we can efficiently produce samples from
it. (Exercise.) However, if P # P#P there are polynomial time samplable distributions (including
some very interesting ones) that are not polynomial time computable. (See exercises.)

In this lecture, we will restrict attention to distributional problems involving a polynomial time
computable distribution. This may appear to a serious limitation, but with some work the results
of this chapter can be generalized to samplable distributions.

15.2 DistNP and its complete problems

The following complexity class is at the heart of our study of average case complexity.

dist NP = {(L, D) : L € NP, D polynomial-time computable} . (6)

Since the same NP language may have different complexity behavior with respect to two different
input distributions (SUBSET SUM was cited earlier as an example), the definition wisely treats the
two as distinct computational problems. Note that every problem mentioned in the introduction
to the chapter is in dist NP.

Now we need to define the average-case analogue of P.

15.2.1 Polynomial-Time on Average

Now we define what it means for a deterministic algorithm A to solve a distributional problem
(L, D) in polynomial time on average. The definition should be robust to simple changes in model
of computation or representation. If we migrate the algorithm to a slower machine that has a
quadratic slowdown (so t steps now take t? time), then polynomial-time algorithms should not
suddenly turn into exponential-time algorithms. (This migration to a slower machine is not merely
hypothetical, but also one way to look at a reduction.) As we will see, some intuitively appealing
definitions do not have this robustness property.

Denote by ¢(z) the running time of A on input z. First, note that D is a distribution on all
possible inputs. The most intuitive choice of saying that A is efficient if

E[t(z)] is small

is problematic because the expectation could be infinite even if A runs in worst-case polynomial
time.

Next, we could try to define A to be polynomial provided that for some constant ¢ and for every
sufficiently large n,

Eft(z)] |z[= n] <n°

This has two problems. First, it ignores the possibility that there could be input lengths on
which A takes a long time, but that are generated with very low probability under D. In such
cases A may still be regarded as efficient, but the definition ignores this possibility. Second, and

15.2. DISTNP AND ITS COMPLETE PROBLEMS pl5.5 (273)

more seriously, the definition is not robust to changes in computational model. To give an example,
suppose D is the uniform distribution and t(xg) = 2" for just one input z(of size n For every other
input of size n, t(z) = n. Then E[t(x) | |z| = n] < n+ 1. However, changing to a model with a
quadratic slowdown will square all running times, and E[(t(z))? | |z| = n] > 2".

We could try to define A to be polynomial if there is a ¢ > 0 such that

E [t(@] —0(1),

||

but this is also not robust. (Verify this!)
We now come to a satisfying definition.

DEFINITION 15.4 (POLYNOMIAL ON AVERAGE AND DIST P)
A problem (L, D) € dist NP is said to be in dist P if there is an algorithm A for L that satisfies
for some constants c, ¢y

E[t(l’)l/c

’1"] = C1, (7)

where t(z) is the running time of A on input z.

Notice that P C dist P: if a language can be decided deterministically in time t(x) = O(]z|%),
then t(x)'/¢ = O(|z|) and the expectation in (7) converges regardless of the distribution. Second,
the definition is robust to changes in computational models: if the running times get squared, we
just multiply ¢ by 2 and the expectation in (7) again converges.

We also point out an additional interesting property of the definition: there is a high probability
that the algorithm runs in polynomial time. For, if

¢ (iL')l/C B
E[’.ZU|] = (1, (8)
then we have)
t(x)/€ c
Prlt(z) = k- 2] = Pr[(a):| >ple < kll/c (9)

where the last claim follows by Markov’s inequality. Thus by increasing k we may reduce this
probability as much as required.

15.2.2 Reductions

Now we define reductions. Realize that we think of instances as being generated according to a
distribution. Defining a mapping on strings (e.g., a reduction) gives rise to a new distribution on
strings. The next definition formalizes this observation.

DEFINITION 15.5
If f is a function mapping strings to strings and D is a distribution then the distribution f o D is
one that assigns to string y the probability > . F(a)=y PTD [x]

1S proof.

pl5.6 (274) 15.2. DISTNP AND ITS COMPLETE PROBLEMS

DEFINITION 15.6 (REDUCTION)
A distributional problem (L, D;) reduces to a distributional problem (Lg, D) (denoted (L1, D1) <
(La,Dy)) if there is a polynomial-time computable function f and an € > 0 such that:

1. zely 1fff(x) € Lo.
2. For every z, |f(z)| = Q(|x]).
3. There are constants c, ¢; such that for every string y,

P < CPr(y). Dominati
fogl(y)_01\y| Dg(y) (Domination)

The first condition is standard for many-to-one reductions, ensuring that a decision algorithm
for Lo easily converts into a decision algorithm for Li. The second condition is a technical one,
needed later. All interesting reductions we know of satisfy this condition. Next, we motivate the
third condition, which says that Dy “dominates” (up to a polynomial factor) the distribution foD;
obtained by applying f on Dj.

Realize that the goal of the definition is to ensure that “if (L, D;) is hard, then so is (Lg, D2)”
(or equivalently, the contrapositive “if (Lg,Ds) is easy, then so is (L1,D;).”) Thus if an algorithm
Ay is efficient for problem (L, Ds), then the following algorithm ought to be efficient for problem
(L1,D1): on input x obtained from distribution D;, compute f(z) and then run algorithm Ay on
f(z). A priori, one cannot rule out the possibility that that Ag is very slow on some inputs, which
are unlikely to be sampled according to distribution Do but which show up with high probability
when we sample x according to D; and then consider f(z). The domination condition helps rule
out this possibility.

In fact we have the following result, whose non-trivial proof we omit.

THEOREM 15.7
If (L1,D1) < (L2, Ds) and (Lg,Dy) has an algorithm that is polynomial on average, then (L1, D)
also has an algorithm that is polynomial on average.

Of course, Theorem 15.7 is useful only if we can find reductions between interesting problems.
Now we show that this is the case: we exhibit a problem (albeit an artificial one) that is complete
for dist NP. Let the inputs have the form <M,$, 1t 1l>, where M is an encoding of a Turing
machine and 1 is a sequence of ¢ ones. Then we define the following “universal” problem U.

e Decide whether there exists a string y such that |y| < [and M (z,y) accepts in at most ¢
steps.

Since part of the input is in unary, we need to modify our definition of a “uniform” distribution
to the following.

. B 1 1 1
o (<M’x’1 ’ll>) M| (M| + 1) 2M 2] (j2| + 1) 2=l (D) (E+T+1)

(10)

15.2. DISTNP AND ITS COMPLETE PROBLEMS pl5.7 (275)

This distribution is polynomial-time computable (exercise).

THEOREM 15.8 (LEVIN)
(U, D) is complete for dist NP, where D is the uniform ditribution.

The proof requires the following lemma, which shows that for polynomial-time computable dis-
tributions, we can apply a simple transformation on the inputs such that the resulting distribution
has no “peaks” (i.e., no input has too high a probability).

LEMMA 15.9 (PEAK ELIMINATION)
Suppose D is a polynomial-time computable distribution over x. Then there is a polynomial-time
computable function g such that

1. g is injective: g (x) = g (2) iff x = z.
2. |g(x)| < fal + 1.
3. For every string y, Prgop(y) < 2~ lyl+1

PROOF: For any string x such that Prp(z) > 271, define h(z) to be the largest common prefix
of binary representations of up(z), up(z —1). Then h is polynomial-time computatable since
pp(x) — pp(z — 1) = Prp(z) > 27171, which implies that pup(z) and pp(z — 1) must differ in the
somewhere in the first |z| bits. Thus |h(z)| < logl/Prp (x) < |z|. Furthermore, h is injective
because only two binary strings s; and ss can have the longest common prefix z; a third string s3
sharing z as a prefix must have a longer prefix with either s; or so.

Now define o

1 —|T
o(2) = {fh H Pro (2) < 2 (1)

(z) otherwise

Clearly, ¢ is injective and satisfies |g(x)| < |z| + 1. We now show that g o D does not give
probability more than 2-*1 to any string y. If y is not g(z) for any z, this is trivially true since
Prgop(y) = 0.

If y = Oz, where Prp (z) < 2717, then Pryop(y) < 2-1¥+1 and we also have nothing to prove.

Finally, if y = g(z) = 1h(x) where Prp (z) > 271%I, then as already noted, |h(z)| < log1/Prp(x)
and so Pryop(y) = Prp(z) < 27+,

Thus the Lemma has been proved. B

Now we are ready to prove Theorem 15.8.

PROOF: (Theorem 15.8) At first sight the proof may seem trivial since U is just the “universal”
decision problem for nondeterministic machines, and every NP language trivially reduces to it.
However, we also need to worry about the input distributions and enforce the domination condition
as required by Definition 15.6.

Let (L,D;) € dist NP. Let M be a proof-checker for language L that runs in time n€; in
other words, x € L iff there is a witness y of length |y| = |z|® such that M (z,y) = Accept. (For
notational ease we drop the big-O notation in this proof.) In order to define a reduction from L to

pl5.8 (276) 15.2. DISTNP AND ITS COMPLETE PROBLEMS

U, the first idea would be to map input x for L to <M, z, 1121° 1‘1’|C>. However, this may violate

the domination condition because the uniform distribution assigns a probability 2~1*! /poly(|z|) to
(M, z, 1|x|c) whereas x may have much higher probability under D;. Clearly, this difficulty arises
only if the distribution Dy has a “peak” at x, so we see an opportunity to use Lemma 15.9, which
gives us an injective mapping ¢ such that goD; has no “peaks” and g is computable say in n? time
for some fixed constant d.

The reduction is as follows: map x to (M, g(x), 11#1*Hlel, 1|x‘c+|w‘d>. Here M’ is a modification
of M that expects as input a string z and a witness (z,y) of length |z| + |z|°. Given (z,x,y) where
y = |#|°, M’ checks in |z|* time if g(x) = z. If so, it simulates M on (,y) and outputs its answer.
If g(x) # 2z then M’ rejects.

To check the domination condition, note that y = (M’, g(x), 11#I°+lel 1121+121) has probability

Py 9—12'| 9-lg()] 1

ry) = . .

D (M) (IM'| 1) g(@)| (Jg(x)| +1) (2] + 22| + |z|D (2] + 2 |z|¢ + |z + 1)
2= I1M’| 1

.9=9(z)
= (5 1) s 1

under the uniform distribution whereas

Pr(x) < 2—g(x)+l <G ‘x’2(c+d+1) Pr(y) :
D D
if we allow the constant G to absorb the term 2™l |M’| (|M’| +1). Thus the domination condition
is satisfied.

Notice, we rely crucially on the fact that 2/M'I|M’| (|M’] + 1) is a constant once we fix the
language L; of course, this constant will usually be quite large for typical NP languages, and this
would be a consideration in practice. B

15.2.3 Proofs using the simpler definitions

In the setting of one-way functions and in the study of the average-case complexity of the permanent
and of problems in EXP (with applications to pseudorandomness), we normally interpret “average
case hardness” in the following way: that an algorithm of limited running time will fail to solve
the problem on a noticeable fraction of the input. Conversely, we would interpret average-case
tractability as the existence of an algorithm that solves the problem in polynomial time, except on
a negligible fraction of inputs. This leads to the following formal definition.

DEFINITION 15.10 (HEURISTIC POLYNOMIAL TIME)
We say that an algorithm A is a heuristic polynomial time algorithm for a distributional problem
(L,) if A always runs in polynomial time and for every polynomial p

Y H@p(l) =0)

z:A(z)#xL(z)

15.2. DISTNP AND ITS COMPLETE PROBLEMS pl5.9 (277)

In other words, a polynomial time algorithm for a distributional problem is a heuristic if the
algorithm fails on a negligible fraction of inputs, that is, a subset of inputs whose probability
mass is bounded even if multiplied by a polynomial in the input length. It might also make sense
to consider a definition in which A is always correct, although it does not necessarily work in
polynomial time, and that A is heuristic polynomial time if there is a polynomial ¢ such that for
every polynomial p, }_ g p(x)p(|lz]) = O(1), where S, is the set of inputs = such that A(x)
takes more than ¢(|z|) time. Our definition is only more general, because from an algorithm A as
before one can obtain an algorithm A satisfying Definition 15.10 by adding a clock that stops the
computation after ¢(|z|) steps.

The definition of heuristic polynomial time is incomparable with the definition of average poly-
nomial time. For example, an algorithm could take time 2" on a fraction 1/n!°8™ of the inputs of
length n, and time n? on the remaining inputs, and thus be a heuristic polynomial time algorithm
with respect to the uniform distribution, while not beign average polynomial time with respect
to the uniform distribution. On the other hand, consider an algorithm such that for every input
length n, and for 1 < k < 2"/2 there is a fraction about 1/k? of the inputs of length n on which
the algorithm takes time ©(kn). Then this algorithm satisfies the definition of average polynomial
time under the uniform distribution, but if we impose a polynomial clock there will be an inverse
polynomial fraction of inputs of each length on which the algorithm fails, and so the definition of
heuristic polynomial time cannot be met.

It is easy to see that heuristic polynomial time is preserved under reductions.

THEOREM 15.11
If (Ly, p1) < (Lo, u2) and (La, p2) admits a heuristic polynomial time algorithm, then (L1, 1) also
admits a heuristic polynomial time algorithm.

PROOF: Let Ay be the algorithm for (Ls, u2), let f be the function realizing the reduction, and let
p be the polynomial witnessing the domination property of the reduction. Let ¢ and € be such that
for every z we have |z| < ¢|f(x)|'/.

Then we define the algorithm A; than on input « outputs A2(f(z)). Clearly this is a polynomial
time algorithm, and whenever As is correct on f(x), then A; is correct on z. We need to show that
for every polynomial ¢

> p(z)g(lz]) = O(1)
z:Aa(f(x))#xLy (f(2))
and the left-hand side can be rewritten as

> > dh@)a(lz)

y:A2(Y)#EX Ly (y) T f (2)=y

> wh (z)q(c - 1ylM))

y:A2(Y)#X L, (v) 21 f(2)=y

(
(y)p(lyl)d (Jy])

IN

IN

15
y:A2(Y)#XL, (Y)
= 0(1)

p15.10 (278) 15.3. EXISTENCE OF COMPLETE PROBLEMS

where the last step uses the fact that Ay is a polynomial heuristic for (Lo, u2) and in the second-
to-last step we introduce the polynomial ¢’(n) defined as ¢(c - n'/€)
|

15.3 Existence of Complete Problems

We now show that there exists a problem (albeit an artificial one) complete for dist NP. Let the
inputs have the form <M x, 1t 1l>, where M is an encoding of a Turing machine and 1% is a sequence
of t ones. Then we define the following “universal” problem U.

e Decide whether there exists a string y such that |y| < [and M (x,y) accepts in at most ¢
steps.

That U is NP-complete follows directly from the definition. Recall the definition of NP: we
say that L € NP if there exists a machine M running in ¢ = poly (|z|) steps such that x € L iff
there exists a y with y = poly (|z|) such that M (z,y) accepts. Thus, to reduce L to U we need
only map = onto R (z) = <M, x, 1, 1l> where t and [are sufficiently large bounds.

15.4 Polynomial-Time Samplability

DEFINITION 15.12 (SAMPLABLE DISTRIBUTIONS)
We say that a distribution p is polynomial-time samplable if there exists a probabilistic algorithm
A, taking no input, that outputs x with probability p/ (x) and runs in poly (|x|) time.

Any polynomial-time computable distribution is also polynomial-time samplable, provided that
for all x,

pt () > 27 Pl or pur (2) = 0. (13)

For a polynomial-time computable p satisfying the above property, we can indeed construct a
sampler A that first chooses a real number 7 uniformly at random from [0, 1], to poly (|x|) bits of
precision, and then uses binary search to find the first = such that p (z) > r.

On the other hand, under reasonable assumptions, there are efficiently samplable distributios
1 that are not efficiently computable.

In addition to dist NP, we can look at the class

(NP, P-samplable) = {(L,) : L € NP, pu polynomial-time samplable} . (14)

A result due to Impagliazzo and Levin states that if (L, u) is dist NP-complete, then (L, u) is
also complete for the class (NP, P-samplable).

15.4.

POLYNOMIAL-TIME SAMPLABILITY pl5.11 (279)

This means that the completeness result established in the previous section extends to the class
of NP problems with samplable distributions.

Exercises

§1

§2

§3

§4

§5

$6

Describe an algorithm that decides 3-colorability on almost all graphs in linear expected time.

"SOOIIDA § UO
ydeis ojo[duroo e urejuoo jou 10339q ydeis o[qrio[0d-¢ Y JUIH

2logn

Describe an algorithm that decides CLIQUE on almost all graphs in n time.

'Z/Zakg(fi) 1S0W e ST Y ey}
0w 9718 Jo onbr ® sey YdeIS WOpURI ® Jey} 90URYD O], :JUIE]

Show that if a distribution is polynomial-time computable, then it is polynomial-time sam-
pleable.

‘goaees Areurq :JUIE]

Show that if P#P = P then there is a polynomial time samplable distribution that is not
polynomial time computable.

Show that the function g defined in Lemma 15.9 (Peak Elimination) is efficiently invertible
. . e . . o) .
in the following sense: if y = g(z), then given y we can reconstruct x in |z| time.

Show that if one-way functions exist, then dist NP ¢ dist P.

Chapter notes and history

Suppose P # NP and yet dist NP C dist P. This would mean that generating hard instances of NP
problems requires superpolynomial computations. Cryptography is thus impractical. Also, it seems to imply

that everyday instances of NP-complete problems would also be easily solvable. Such instances arise from

the world around us —we want to understand an image, or removing the obstacles in the path of a robot—

and it is hard to imagine how the inanimate world would do the huge amounts of computation necessary to

generate a hard instance.

pl5.12 (280) 15.4. POLYNOMIAL-TIME SAMPLABILITY

Chapter 16

Derandomization, Expanders and
Extractors

“God does not play dice with the universe”
Albert Einstein

“Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”
John von Neumann, quoted by Knuth 1981

“How hard could it be to find hay in a haystack?”
Howard Karloff

The concept of a randomized algorithm, though widespread, has both a philosophical and a
practical difficulty associated with it.

The philosophical difficulty is best represented by Einstein’s famous quote above. Do random
events (such as the unbiased coin flip assumed in our definition of a randomized turing machine)
truly exist in the world, or is the world deterministic? The practical difficulty has to do with
actually generating random bits, assuming they exist. A randomized algorithm running on a
modern computer could need billions of random bits each second. Even if the world contains some
randomness —say, the ups and downs of the stock market — it may not have enough randomness to
provide billions of uncorrelated random bits every second in the tiny space inside a microprocessor.
Current computing environments rely on shortcuts such as taking a small “fairly random looking”
bit sequence—e.g., interval between the programmer’s keystrokes measured in microseconds—and
applying a deterministic generator to turn them into a longer sequence of “sort of random looking”
bits. Some recent devices try to use quantum phenomena. But for all of them it is unclear how
random and uncorrelated those bits really are.

pl16.1 (281)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pl16.2 (282)

Such philosophical and practical difficulties look deterring; the philosophical aspect alone has
been on the philosophers’ table for centuries. The results in the current chapter may be viewed as
complexity theory’s contribution to these questions.

The first contribution concerns the place of randomness in our world. We indicated in Chap-
ter 7 that randomization seems to help us design more efficient algorithms. A surprising conclusion
in this chapter is this could be a mirage to some extent. If certain plausible complexity-theoretic
conjectures are true (e.g., that certain problems can not be solved by subexponential-sized circuits)
then every probabilistic algorithm can be simulated deterministically with only a polynomial slow-
down. In other words, randomized algorithms can be derandomized and BPP = P. Nisan and
Wigderson [NW94] named this research area Hardness versus Randomness since the existence of
hard problems is shown to imply derandomization. Section 16.3 shows that the converse is also
true to a certain extent: ability to derandomize implies circuit lowerbounds (thus, hardness) for
concrete problems. Thus the Hardness <~ Randomness connection is very real.

Is such a connection of any use at present, given that we have no idea how to prove circuit
lowerbounds? Actually, yes. Just as in cryptography, we can use conjectured hard problems in
the derandomization instead of provable hard problems, and end up with a win-win situation: if
the conjectured hard problem is truly hard then the derandomization will be successful; and if the
derandomization fails then it will lead us to an algorithm for the conjectured hard problem.

The second contribution of complexity theory concerns another practical question: how can we
run randomized algorithms given only an imperfect source of randomness? We show the existence
of randomness extractors: efficient algorithms to extract (uncorrelated, unbiased) random bits
from any weakly random device.Their analysis is unconditional and uses no unproven assumptions.
Below, we will give a precise definition of the properties that such a weakly random device needs
to have. We do not resolve the question of whether such weakly random devices exist; this is
presumably a subject for physics (or philosophy).

A central result in both areas is Nisan and Wigderson’s beautiful construction of a certain
pseudorandom generator. This generator is tailor-made for derandomization and has somewhat
different properties than the secure pseudorandom generators we encountered in Chapter 10.

Another result in the chapter is a (unconditional) derandomization of randomized logspace
computations, albeit at the cost of some increase in the space requirement.

EXAMPLE 16.1 (POLYNOMIAL IDENTITY TESTING)
One example for an algorithm that we would like to derandomize is the algorithm described in
Section 7.2.2 for testing if a given polynomial (represented in the form of an arithmetic zero) is
the identically zero polynomial. If p is an n-variable nonzero polynomial of total degree d over a
large enough finite field F (|F| > 10d will do) then most of the vectors u € F" will satisfy p(u) # 0
(see Lemma A.25. Therefore, checking whether p = 0 can be done by simply choosing a random
u € F" and applying p on u. In fact, it is easy to show that there exists a set of m?-vectors
u',...,u”™ such that for every such nonzero polynomial p that can be computed by a size m
arithmetic circuit, there exists an i € [m?] for which p(u’) # 0.

This suggests a natural approach for a deterministic algorithm: show a deterministic algorithm
that for every m € N, runs in poly(m) time and outputs a set u',..., u™ of vectors satisfying the

above property. This shouldn’t be too difficult— after all the vast majority of the sets of vectors

16.1. PSEUDORANDOM GENERATORS AND DERANDOMIZATION pl6.3 (283)

have this property, so hard can it be to find a single one? (Howard Karloff calls this task “finding
a hay in a haystack”). Surprisingly this turns out to be quite hard: without using complexity
assumptions, we do not know how to obtain such a set, and in Section 16.3 we will see that in fact
such an algorithm will imply some nontrivial circuit lowerbounds.!

16.1 Pseudorandom Generators and Derandomization

The main tool in derandomization is a pseudorandom generator. This is a twist on the definition of
a secure pseudorandom generator we gave in Chapter 10, with the difference that here we consider
nonuniform distinguishers —in other words, circuits— and allow the generator to run in exponential
time.

DEFINITION 16.2 (PSEUDORANDOM GENERATORS)
Let R be a distribution over {0,1}"", S € N and ¢ > 0. We say that R is an
(S, €)-pseudorandom distribution if for every circuit C' of size at most S,

IPr[C(R) = 1] — Pr[C(Uy,) = 1]| < ¢

where U, denotes the uniform distribution over {0, 1}"™.

If § : N — Nis a polynomial-time computable monotone function (i.e., S(m) > S(n)
for m > n)? then a function G : {0,1}* — {0,1}" is called an (S(¢)-pseudorandom
generator (see Figure 16.1) if:

e For every z € {0,1}, |G(2)| = S(¢) and G(z) can be computed in time 2¢ for
some constant c¢. We call the input z the seed of the pseudorandom generator.

e For every £ € N, G(Uy) is an (S(¢)3,1/10)-pseudorandom distribution.

REMARK 16.3
The choices of the constant 3 and 1/10 in the definition of an S(¢)-pseudorandom generator are
arbitrary and made for convenience.

The relation between pseudorandom generators and simulating probabilistic algorithm is straight-
forward:

!Perhaps it should not be so surprising that “finding a hay in a haystack” is so hard. After all, the hardest open
problems of complexity— finding explicit functions with high circuit complexity— are of this form, since the vast
majority of the functions from {0,1}" to {0, 1} have exponential circuit complexity.

2We place these easily satisfiable requirements on the function S to avoid weird cases such as generators whose
output length is not computable or generators whose output shrinks as the input grows.

pl6.4 (284) 16.1. PSEUDORANDOM GENERATORS AND DERANDOMIZATION
/ ?

| m \ m

l [$5$$5$$5$$5$$5$$ |

8
0

Figure 16.1: A pseudorandom generator G maps a short uniformly chosen seed z € {0, l}g into a longer output
G(z) € {0,1}™ that is indistinguishable from the uniform distribution U, by any small circuit C.

LEMMA 16.4

Suppose that there exists an S(¢)-pseudorandom generator for some polynomial-time computable
monotone S : N — N. Then for every polynomial-time computable function ¢ : N — N, BPTIME(S(¢(n))) C
DTIME(2¢/(") for some constant c.

PROOF: A language L is in BPTIME(S({(n))) if there is an algorithm A that on input x € {0,1}"
runs in time ¢S(¢(n)) for some constant ¢, and satisfies

[A(z,) = L(x)] >

[SIN)

r
rer{0,1}™

where m < S(¢(n)) and we define L(x) =1 if x € L and L(z) = 0 otherwise.

The main idea is that if we replace the truly random string r with the string G(z) produced
by picking a random z € {0, 1}E(”)7 then an algorithm like A that runs in only S(¢) time cannot
detect this switch most of the time, and so the probability 2/3 in the previous expression does not
drop below 2/3 —0.1. Thus to derandomize A, we do not need to enumerate over all r; it suffices to
enumerates over all z € {0, 1}5(") and check how many of them make A accept. This derandomized
algorithm runs in exp(¢(n)) time instead of the trivial 2" time.

Now we make this formal. Our deterministic algorithm B will on input = € {0,1}", go over all
z € {0, 1}“”), compute A(z, G(z)) and output the majority answer. Note this takes 20¢(") time.
We claim that for n sufficiently large, the fraction of z’s such that A(z,G(2)) = L(x) is at least
2 —0.1. (This suffices to prove that L € DTIME(2¢(") as we can “hardwire” into the algorithm
the correct answer for finitely many inputs.)

Suppose this is false and there exists an infinite sequence of z’s for which Pr[A(z,G(2)) =
L(z) < 2/3 —0.1. Then we would get a distinguisher for the pseudorandom generator —just use
the Cook-Levin transformation to construct a circuit that computes the function z — A(z, G(z)),
where z is hardwired into the circuit. This circuit has size O(S(¢(n)))? which is smaller than
S(¢(n))? for sufficiently large n. B

REMARK 16.5
The proof shows why it is OK to allow the pseudorandom generator in Definition 16.2 to run in
time exponential in its seed length. The derandomized algorithm enumerates over all possible seeds

16.1. PSEUDORANDOM GENERATORS AND DERANDOMIZATION pl6.5 (285)

of length ¢, and thus would take exponential time (in ¢) even if the generator itself were to run in
less than exponential time.

Notice, these generators have to fool distinguishers that run for less time than they do. By
contrast, the definition of secure pseudorandom generators (Definition 10.11 in Chapter 10) re-
quired the generator to run in polynomial time, and yet have the ability to fool distinguishers that
have super-polynomial running time. This difference in these definitions stems from the intended
usage. In the cryptographic setting the generator is used by honest users and the distinguisher is
the adversary attacking the system — and it is reasonable to assume the attacker can invest more
computational resources than those needed for normal/honest use of the system. In derandom-
ization, generator is used by the derandomized algorithm, the ”distinguisher” is the probabilistic
algorithm that is being derandomized, and it is reasonable to allow the derandomized algorithm
higher running time than the original probabilistic algorithm.

Of course, allowing the generator to run in exponential time as in this chapter potentially makes
it easier to prove their existence compared with secure pseudorandom generators, and this indeed
appears to be the case. (Note that if we place no upperbounds on the generator’s efficiency, we
could prove the existence of generators unconditionally as shown in Exercise 2, but these do not
suffice for derandomization.)

We will construct pseudorandom generators based on complexity assumptions, using quan-
titatively stronger assumptions to obtain quantitatively stronger pseudorandom generators (i.e.,
S(¢)-pseudorandom generators for larger functions S). The strongest (though still reasonable) as-
sumption will yield a 2()-pseudorandom generator, thus implying that BPP = P. These are
described in the following easy corollaries of the Lemma that are left as Exercise 1.

COROLLARY 16.6
1. If there exists a 2¢‘-pseudorandom generator for some constant € > 0 then BPP = P.

2. If there exists a 2¢° -pseudorandom generator for some constant ¢ > 0 then BPP C QuasiP =
DTIME(2P0olylogm).

3. If there exists an S({)-pseudorandom generator for some super-polynomial function S (i.e.,
S(¢) = +1)) then BPP C SUBEXP = N.-(DTIME(2").

16.1.1 Hardness and Derandomization

We construct pseudorandom generators under the assumptions that certain explicit functions are
hard. In this chapter we use assumptions about average-case hardness, while in the next chapter
we will be able to construct pseudorandom generators assuming only worst-case hardness. Both
worst-case and average-case hardness refers to the size of the minimum Boolean circuit computing
the function:

p16.6 (286) 16.1. PSEUDORANDOM GENERATORS AND DERANDOMIZATION

DEFINITION 16.7 (HARDNESS)

Let f : {0,1}" — {0,1} be a Boolean function. The worst-case hardness of f,
denoted H,{f), is a function from N to N that maps every n € N to the largest
number S such that every Boolean circuit of size at most S fails to compute f on
some input in {0,1}".

The average-case hardness of f, denoted H,{f), is a function from N to N that maps
every n € N, to the largest number S such that Pryc, 0117 [C(z) = f(x)] < 3+ %
for every Boolean circuit C on n inputs with size at most S.

Note that for every function f:{0,1}* — {0,1} and n € N, H,(f)(n) < H,{f)(n) < n2".

REMARK 16.8

This definition of average-case hardness is tailored to the application of derandomization, and in
particular only deals with the uniform distribution over the inputs. See Chapter 15 for a more
general treatment of average-case complexity. We will also sometimes apply the notions of worst-
case and average-case to finite functions from {0, 1}" to {0,1}, where H,{f) and H,(f) are defined
in the natural way. (E.g., if f: {0,1}" — {0, 1} then H,{f) is the largest number S for which every
Boolean circuit of size at most S fails to compute f on some input in {0,1}".)

ExAMPLE 16.9
Here are some examples of functions and their conjectured or proven hardness:

1. If f is a random function (i.e., for every x € {0,1}" we choose f(x) using an independent
unbiased coin) then with high probability, both the worst-case and average-case hardness of
f are exponential (see Exercise 3). In particular, with probability tending to 1 with n, both
H.{ f)(n) and H,[f)(n) exceed 299", We will often use the shorthand H,.{f), H.{f) > 209"

for such expressions.

2. If f € BPP then, since BPP C P/poly, both H,{f) and H,[f) are bounded by some
polynomial.

3. It seems reasonable to believe that 3SAT has exponential worst-case hardness; that is, H,.{3SAT) >
222() Tt is even more believable that NP ¢ P/poly, which implies that H,(3SAT) is super-
polynomial. The average case complexity of 3SAT is unclear, and in any case dependent upon
the way we choose to represent formulas as strings.

4. If we trust the security of current cryptosystems, then we do believe that NP contains func-
tions that are hard on the average. If g is a one-way permutation that cannot be inverted with
polynomial probability by polynomial-sized circuits, then by Theorem 10.14, the function f
that maps the pair z,r € {0,1}" to g~ !(z) ® r has super-polynomial average-case hardness:
H.(f) > n*M). (Where x ©@ r = 37 x;7; (mod 2).) More generally there is a polynomial
relationship between the size of the minimal circuit that inverts g (on the average) and the
average-case hardness of f.

16.2. PROOF OF THEOREM 77: NISAN-WIGDERSON CONSTRUCTION pl6.7 (287)

The main theorem of this section uses hard-on-the average functions to construct pseudorandom
generators:

THEOREM 16.10 (CONSEQUENCES OF NW GENERATOR)

For every polynomial-time computable monotone S : N — N, if there exists a
constant ¢ and function f € DTIME(2") such that H,/(f) > S(n) then there
exists a constant € > 0 such that an S(el)¢-pseudorandom generator exists. In
particular, the following corollaries hold:

1. If there exists f € E = DTIME(2°(") and € > 0 such that H,(f) > 2" then
BPP =P.

2. If there exists f € E = DTIME(2°)) and ¢ > 0 such that H,(f) > 2" then
BPP C QuasiP.

3. If there exists f € E = DTIME(2°() such that H,(f) > n*() then BPP C
SUBEXP.

REMARK 16.11

We can replace E with EXP = DTIME(2pOly<n)) in Corollaries 2 and 3 above. Indeed, for every
f € DTIME(2™), the function g that on input z € {0,1}* outputs the f applies to the first
|z|1/¢ bits of z is in DTIME(2") and satisfies H,{(g)(n) > Hy(f)(n'/¢). Therefore, if there exists
f € EXP with H,(f) > 2" then there there exists a constant ¢ > 0 and a function g € E

with H,(g) > 2”6/, and so we can replace E with EXP in Corollary 2. A similar observation
holds for Corollary 3. Note that EXP contains many classes we believe to have hard problems,
such as NP, PSPACE,®&P and more, which is why we believe it does contain hard-on-the-average
functions. In the next chapter we will give even stronger evidence to this conjecture, by showing it
is implied by the assumption that EXP contains hard-in-the-worst-case functions.

REMARK 16.12
The original paper of Nisan and Wigderson [NW94] did not prove Theorem 16.10 as stated above.
It was proven in a sequence of works [?]. Nisan and Wigderson only proved that under the same

assumptions there exists an S’(¢)-pseudorandom generator, where S'(¢) = S (e\/z log(S (6\/2))6 for

some € > 0. Note that this is still sufficient to derive all three corollaries above. It is this weaker
version we prove in this book.

16.2 Proof of Theorem 16.10: Nisan-Wigderson Construction

How can we use a hard function to construct a pseudorandom generator?

pl6.8 (288) 16.2. PROOF OF THEOREM 7?7: NISAN-WIGDERSON CONSTRUCTION

16.2.1 Warmup: two toy examples

For starters, we demonstrate this by considering the “toy example” of a pseudorandom generator
whose output is only one bit longer than its input. Then we show how to extend by two bits. Of
course, neither suffices to prove Theorem 16.10 but they do give insight to the connection between
hardness and randomness.

Extending the input by one bit using Yao’s Theorem.
The following Lemma uses a hard function to construct such a “toy” generator:

LEMMA 16.13 (ONE-BIT GENERATOR)
Suppose that there exist f € E with H,(f) > n* Then, there exists an S({)-pseudorandom
generator G for S(¢) = ¢+ 1.

PROOF: The generator G will be very simple: for every z € {0, 1}12, we set

G(z) =zo f(2)

(where o denotes concatenation). G clearly satisfies the output length and efficiency requirements
of an (¢+1)-pseudorandom generator. To prove that its output is 1/10-pseudorandom we use Yao’s
Theorem from Chapter 10 showing that pseudorandomness is implied by unpredictiability:?

THEOREM 16.14 (THEOREM 10.12, RESTATED)
Let Y be a distribution over {0,1}". Suppose that there exist S > 10n,e > 0 such that for every
circuit C' of size at most 2S5 and i € [m],

P o rie) =1 <
'I‘ERI‘Y[C(Tlv s T 1) TZ} >~

+

N | =

<
m
Then Y is (S, €)-pseudorandom.

Using Theorem 16.14 it is enough to show that there does not exist a circuit C of size 2(£+1)3 <
¢* and a number i € [¢ + 1] such that

) — 1 1
T:g(rUZ)[C’(rl, CeTil1) =) > 5+ 00T (1)
However, for every i < £, the i*" bit of G(z) is completely uniform and independent from the first
i — 1 bits, and hence cannot be predicted with probability larger than /2 by a circuit of any size.
For i = ¢+ 1, Equation (1) becomes,

1 1 1

1
Pr [C(z) = > ot >~
ZGR{él}e[(2) =) > 5+ 2000+1) 2 @

which cannot hold under the assumption that H,(f) > n*. W

3Although this theorem was stated and proved in Chapter 10 for the case of uniform Turing machines, the proof
easily extends to the case of circuits.

16.2. PROOF OF THEOREM 77: NISAN-WIGDERSON CONSTRUCTION p16.9 (289)

Extending the input by two bits using the averaging principle.

We now continue to progress in “baby steps” and consider the next natural toy problem: construct-
ing a pseudorandom generator that extends its input by two bits. This is obtained in the following
Lemma:

LEMMA 16.15 (TWO-BIT GENERATOR)

Suppose that there exists f € E with H,(f) > n*. Then, there exists an ({+2)-pseudorandom
generator G.

PROOF: The construction is again very natural: for every z € {0, 1}£, we set

G(z) =21 zg20 f(21,- -+, 2072) © Zgj241 200 f(2e/2415 - - -5 20)-

Again, the efficiency and output length requirements are clearly satisfied.
To show G(Uy) is 1/10-pseudorandom, we again use Theorem 16.14, and so need to prove that
there does not exists a circuit C of size 2(¢ 4 1) and 4 € [¢ + 2] such that

1 1
Pr [C(ri,...,71i21) =7i] > - + ————. 2
ot Gz =il > 5 ¥ a5 @)
Once again, (2) cannot occur for those indices i in which the it output of G(z) is truly random,
and so the only two cases we need to consider are i = £/2 4+ 1 and i = ¢ + 2. Equation (2) cannot
hold for i = £/2+ 1 for the same reason as in Lemma 16.13. For i = ¢+ 2, Equation (2) becomes:

Pr [C(ro f(ryor') = f(r")] > % + 20(;% (3)

rr'€r{0,1}¢/2

This may seem somewhat problematic to analyze since the input to C contains the bit f(r),

which C' could not compute on its own (as f is a hard function). Couldn’t it be that the input

f(r) helps C in predicting the bit f(r')? The answer is NO, and the reason is that r’ and r are
independent. Formally, we use the following principle (see Section A.3.2 in the appendix):

THE AVERAGING PRINCIPLE: If A is some event depending on two independent random
variables X, Y, then there exists some z in the range of X such that

I;r[A(m, Y) >)lZ{/[A(X, Y))

Applying this principle here, if (3) holds then there exists a string r € {0, l}é/ 2 such that
Pr [C(n f(r).r") = F(/)] > 5+ 5ot
vepfoyz T 2 20(0+2)°

(Note that this probability is now only over the choice of 7/.) If this is the case, we can “hardwire”
the £/2+1 bits ro f(r) to the circuit C and obtain a circuit D of size at most (£+2)%+2¢ < (¢/2)*
such that

1 1
Pr [D0)=f0')]> =+
T/GR{oﬂ}e/z[) =F0N> 5+ s

contradicting the hardness of f. W

p16.10 (290) 16.2. PROOF OF THEOREM 7?7: NISAN-WIGDERSON CONSTRUCTION

Beyond two bits:

A generator that extends the output by two bits is still useless for our goals. We can generalize the
proof Lemma 16.15 to obtain a generator G that extends the output by £ bits setting

G(z1y...,20) = 2t of(zl) 0 22 of(zz) % of(z]“‘)7 (4)

where 2 is the i*" block of £/k bits in z. However, no matter how big we set k and no matter how
hard the function f is, we cannot get a generator that expands its input by a multiplicative factor
larger than two. Note that to prove Theorem 16.10 we need a generator that, depending on the
hardness we assume, has output that can be exponentially larger than the input! Clearly, we need
a new idea.

16.2.2 The NW Construction

The new idea is still inspired by the construction of (4), but instead of taking z',...,z* to be
independently chosen strings (or equivalently, disjoint pieces of the input z), we take them to be
partly dependent by using combinatorial designs. Doing this will allow us to take k£ so large that
we can drop the actual inputs from the generator’s output and use only f(z!) o f(22)---o f(2F).
The proof of correctness is similar to the above toy examples and uses Yao’s technique, except the
fixing of the input bits has to be done more carefully because of dependence among the strings.
First, some notation. For a string z € {0,1}" and subset I C [¢], we define z11 to be |I]-length
string that is the projection of z to the coordinates in I. For example, 21 4 is the first ¢ bits of 2.

DEFINITION 16.16 (NW GENERATOR)

If7Z ={6L,...,I»} is a family of subsets of [¢] with each |I;| = and f:{0,1}" —
{0, 1} is any function then the (Z, f)-NW generator (see Figure 16.2) is the function
NW% :{0,1}* — {0,1}™ that maps any z € {0,1}" to

NWL(2) = f(z11,) © f(z11) -+~ © f(211,,) (5)

\ Y
7] |
1 |

Ij .

Figure 16.2: The NW generator, given a set system Z = {I1,..., L} of size n subsets of [¢] and a function
f:{0,1}™ — {0,1} maps a string z € {0,1}* to the output f(zi1,),...,f(211,.). Note that these sets are not
necessarily disjoint (although we will see their intersections need to be small).

16.2. PROOF OF THEOREM 77: NISAN-WIGDERSON CONSTRUCTION pl6.11 (291)

Conditions on the set systems and function.

We will see that in order for the generator to produce pseudorandom outputs, function f must
display some hardness, and the family of subsets must come from an efficiently constructible com-
binatorial design.

DEFINITION 16.17 (COMBINATORIAL DESIGNS)
If d,n,¢ € N are numbers with ¢ > n > d then a family Z = {I1,...,I,,} of subsets of [¢] is an
(¢,n,d)-design if |I;| = n for every j and |I; N I;| < d for every j # k.

The next lemma yields efficient constructions of these designs and is proved later.

LEMMA 16.18 (CONSTRUCTION OF DESIGNS)
There is an algorithm A such that on input ¢,d,n € N where n > d and £ > 10n?/d, runs for 20(0)

steps and outputs an (£,n, d)-design T containing 2419 subsets of [/].

The next lemma shows that if f is a hard function and Z is a design with sufficiently good
parameters, than NW%(UK) is indeed a pseudorandom distribution:

LEMMA 16.19 (PSEUDORANDOMNESS USING THE NW GENERATOR)
If T is an (¢,n,d)-design with |Z| = 2410 and f : {0,1}" — {0,1} a function satisfying 2¢ <
VH.f)(n), then the distribution NW%(Ug) is a (Hy{f)(n)/10,1/10)-pseudorandom distribution.

PROOF: Let S denote H,{f)(n). By Yao’s Theorem, we need to prove that for every i € [2%/10]
there does not exist an S/2-sized circuit C' such that

1 1
i—1) = R > = TN od/10 °
A, (O B = Bl 2 5 a7, 0

R=NW(2)

For contradiction’s sake, assume that (6) holds for some circuit C' and some i. Plugging in the
definition of NW%, Equation (6) becomes:

1

+ 10 - 24/10 °

Pr [C(f(ZTI1)"" 7f(ZfIi71)):f(ZfIi)} > (7)

1
Z~Ug 2
Letting Z; and Z5 denote the two independent variables corresponding to the coordinates of Z
in I; and [¢] \ I; respectively, Equation (7) becomes:

o2r [CU(21, 22), - fimi(21, 22)) = f(21)] 2 %Jr 10-7;1/10’

(8)
where for every j € [2d/ 1], f; applies f to the coordinates of Z; corresponding to I; N I; and the
coordinates of Z3 corresponding to I; \ ;. By the averaging principle, if (8) holds then there exists
a string zp € {0,1}*™" such that

1 1

Zﬁ%ﬂ[cﬁl(zh@)a s fic1(Z1,) = f(Z1)] = LI CR (9)

pl6.12 (292) 16.2. PROOF OF THEOREM 7?7: NISAN-WIGDERSON CONSTRUCTION

We may now appear to be in some trouble, since all of f;(Z1, z2) for j < i —1 do depend upon
Z1, and the fear is that if they together contain enough information about Z; then a circuit could
potentially predict f;(Z71) after looking at all of them. To prove that this fear is baseless we use the
fact that the circuit C is small and f is a very hard function.

Since |I; N I;| < d for j # 4, the function Z; — f;(Z1, 22) depends at most d coordinates of z;
and hence can be computed by a d2%-sized circuit. (Recall that 25 is fixed.) Thus if if (8) holds
then there exists a circuit B of size 210 . d2? + §/2 < S such that

1

Pr [B(Z1) = [(2)] = S R (10)

1
Z1~Un 2T 10 24/10

But this contradicts the fact that H,/(f)(n) =S. B

REMARK 16.20 (BLACK-BOX PROOF)

Lemma 16.19 shows that if NW%—(U@) is distinguishable from the uniform distribution Usa/10 by
some circuit D, then there exists a circuit B (of size polynomial in the size of D and in 2%) that
computes the function f with probability noticeably larger than 1/2. The construction of this
circuit B actually uses the circuit D as a black-bozx, invoking it on some chosen inputs. This
property of the NW generator (and other constructions of pseudorandom generators) turned out
to be useful in several settings. In particular, Exercise 5 uses it to show that under plausible
complexity assumptions, the complexity class AM (containing all languages with a constant round
interactive proof, see Chapter 8) is equal to NP. We will also use this property in the construction
of randomness extractors based on pseudorandom generators.

Putting it all together: Proof of Theorem 16.10 from Lemmas 16.18 and 16.19
As noted in Remark 16.12, we do not prove here Theorem 16.10 as stated but only the weaker state-
ment, that given f € E and S: N — N with H,(f) > S, we can construct an S’(¢)-pseudorandom
generator, where S'(£) = S (eﬂlog(S(e\/Z)> for some € > 0.

For such a function f, we denote our pseudorandom generator by NW7. Given input z € {0, 1}£,

the generator NW/ operates as follows:

e Set n to be the largest number such that ¢ > 100n?/log S(n). Set d = logS(n)/10. Since
S(n) < 2™, we can assume that £ < 300n2/log S(n).

e Run the algorithm of Lemma 16.18 to obtain an (¢,n,d)-design Z = {I1,..., I }.
e Output the first §(n)/40 bits of NW ().

Clearly, NWf(z) runs in 2900 time. Moreover, since 2¢ < S(n)/10, Lemma 16.19 implies
that the distribution NWY(Uy) is (S(n)/10,/10)-pseudorandom. Since n > v/flogS(n)/300 >
Vllog S (%) /300 (with the last inequality following from the fact that S is monotone), this con-
cludes the proof of Theorem 16.10.

16.3. DERANDOMIZATION REQUIRES CIRCUIT LOWERBOUNDS pl6.13 (293)

Construction of combinatorial designs.

All that is left to complete the proof is to show the construction of combinatorial designs with the
required parameters:

PROOF OF LEMMA 16.18 (CONSTRUCTION OF COMBINATORIAL DESIGNS): On inputs ¢, d, n with
¢ > 10n%/d, our Algorithm A will construct an (¢, n, d)-design 7 with 24/10 gets using the simple
greedy strategy:

Start with Z = () and after constructing Z = {I,...,L,} for m < 2% search all
subsets of [¢] and add to Z the first n-sized set I satisfying [/ N1;| < d for every j € [m].
We denote this latter condition by (*).

Clearly, A runs in poly(m)2¢ = 200 time and so we only need to prove it never gets stuck.
In other words, it suffices to show that if £ = 10n?/d and {Iy,..., I} is a collection of n-sized
subsets of [¢] for m < 2%/10 then there exists an n-sized subset I C [¢] satisfying (*). We do so by
showing that if we pick I at random by choosing independently every element x € [¢] to be in I
with probability 2n /¢ then:

Pr[|I] > n] > 0.9 (11)
Pr|[INI;| >d] <0.5-27%10 (Vj € [m]) (12)

Because the expected size of I is 2n, while the expected size of the intersection I N I; is
2n%/¢ < d/5, both (12) and (11) follow from the Chernoff bound. Yet together these two conditions
imply that with probability at least 0.4, the set I will simultaneously satisfy (*) and have size at
least n. Since we can always remove elements from I without damaging (*), this completes the
proof. B

16.3 Derandomization requires circuit lowerbounds

We saw in Section 16.2 that if we can prove certain strong circuit lowerbounds, then we can partially
(or fully) derandomize BPP. Now we prove a result in the reverse direction: derandomizing BPP
requires proving circuit lowerbounds. Depending upon whether you are an optimist or a pessimist,
you can view this either as evidence that derandomizing BPP is difficult, or, as a reason to double
our efforts to derandomize BPP.

We say that a function is in AlgP /poly if it can be computed by a polynomial size arithmetic
circuit whose gates are labeled by 4+, —, x and +, which are operations over some underlying field
or ring. We let perm denote the problem of computing the permanent of matrices over the integers.
(The proof can be extended to permanent computations over finite fields of characteristic > 2.) We
prove the following result.

THEOREM 16.21 ([?])
P = BPP = NEXP ¢ P/poly or perm ¢ AlgP /poly.

pl6.14 (294) 16.3. DERANDOMIZATION REQUIRES CIRCUIT LOWERBOUNDS

REMARK 16.22

It is possible to replace the “poly” in the conclusion perm ¢ AlgP /poly with a subexponential
function by appropriately modifying Lemma 16.25. It is open whether the conclusion NEXP ¢
P /poly can be similarly strengthened.

In fact, we will prove the following stronger theorem. Recall the Polynomial Identity Testing
(ZEROP) problem in which the input consists of a polynomial represented by an arithmetic circuit
computing it (see Section 7.2.2 and Example 16.1), and we have to decide if it is the identically
zero polynomial. This problem is in coRP € BPP and we will show that if it is in P then the
conclusions of Theorem 16.21 hold:

THEOREM 16.23 (DERANDOMIZATION IMPLIES LOWER BOUNDS)
If ZEROP € P then either NEXP ¢ P /poly or perm ¢ AlgP /poly.

The proof relies upon many results described earlier in the book.* Recall that MA is the class
of languages that can be proven by a one round interactive proof between two players Arthur and
Merlin (see Definition 8.7). Merlin is an all-powerful prover and Arthur is a polynomial-time verifier
that can flip random coins. That is, given an input x, Merlin first sends Arthur a “proof” y. Then
Arthur with y in hand flips some coins and decides whether or not to accept x. For this to be an
MA protocol, Merlin must convince Arthur to accept strings in L with probability one while at the
same time Arthur must not be fooled into accepting strings not in L except with probability smaller
than 1/2. We will use the following result regarding M A:

LEMMA 16.24 ([BFL91],[BENW93])
EXP C P/poly = EXP = MA.

PROOF: Suppose EXP C P/poly. By the Karp-Lipton theorem (Theorem 6.14), in this case EXP
collapses to the second level 38 of the polynomial hierarchy. Hence X = PH = PSPACE =
IP = EXP C P/poly. Thus every L € EXP has an interactive proof, and furtheremore, since
EXP = PSPACE, we can just the use the interactive proof for TQBF, for which the prover is a
PSPACE machine. Hence the prover can be replaced by a polynomial size circuit family C),. Now
we see that the interactive proof can actually be carried out in 2 rounds, with Merlin going first.
Given an input x of length n, Merlin gives Arthur a polynomial size circuit C', which is supposed to
be the C, for L. Then Arthur runs the interactive proof for L, using C' as the prover. Note that if
the input is not in the language, then no prover has a decent chance of convincing the verifier, so
this is true also for prover described by C'. Thus we have described an M A protocol for L implying
that EXP C MA and hence that EXP = MA. R

Our next ingredient for the proof of Theorem 16.23 is the following lemma:

LEMMA 16.25
If ZEROP € P, and perm € AlgP /poly. Then PPe™ C NP.

4This is a good example of “third generation” complexity results that use a clever combination of both “classical”
results from the 60’s and 70’s and newer results from the 1990’s.

16.3. DERANDOMIZATION REQUIRES CIRCUIT LOWERBOUNDS pl6.15 (295)

PROOF: Suppose perm has algebraic circuits of size n¢, and that ZEROP has a polynomial-time
algorithm. Let L be a language that is decided by an n%time TM M using queries to a perm-
oracle. We construct an NP machine N for L.

Suppose x is an input of size n. Clearly, M’s computation on z makes queries to perm of size
at most m = n?. So N will use nondeterminism as follows: it guesses a sequence of m algebraic
circuits C1,Co,...,C,, where C; has size 1. The hope is that C; solves perm on ¢ X ¢ matrices,
and N will verify this in poly(m) time. The verification starts by verifying C7, which is trivial.
Inductively, having verified the correctness of Cq,...,Cy_1, one can verify that C} is correct using
downward self-reducibility, namely, that for a ¢ x ¢t matrix A,

¢
perm(A) = Z ajiperm(Ay ;),

=1

where Aj ; is the (£ —1) x (¢t —1) sub-matrix of A obtained by removing the 1st row and ith column
of A. Thus if circuit Cy_1 is known to be correct, then the correctness of C; can be checked by
substituting Cy(A) for perm(A) and Cy_1(Ay,;) for perm(A;;): this yields an identity involving
algebraic circuits with #2 inputs which can be verified deterministically in poly(¢) time using the
algorithm for ZEROP. Proceeding this way N verifies the correctness of Ci,...,C,, and then
simulates MP*™ on input x using these circuits. B

The heart of the proof is the following lemma, which is interesting in its own right:

LEMMA 16.26 ([?])
NEXP C P/poly = NEXP = EXP.

PROOF: We prove the contrapositive. Suppose that NEXP # EXP and let L € NEXP \ EXP.
Since L € NEXP there exists a constant ¢ > 0 and a relation R such that

x e L« Jye0, 1}2‘z|c s.t. R(z,y) holds,

where we can test whether R(z,y) holds in time 211" for some constant ¢

For every constant d > 0, let My be the following machine: on input € {0,1}" enumerate
over all possible Boolean circuits C' of size n'%0¢ that take n¢ inputs and have a single output. For
every such circuit let tt(C) be the 2""-long string that corresponds to the truth table of the function
computed by C. If R(x,tt(C)) holds then halt and output 1. If this does not hold for any of the
circuits then output 0.

Since My runs in time 2" , under our assumption that L ¢ EXP, for every d there exists
an infinite sequence of inputs Xy = {z;};eny on which My(z;) outputs 0 even though z; € L (note
that if My(x) = 1 then = € L). This means that for every string = in the sequence X and every y
such that R(x,y) holds, the string y represents the truth table of a function on n® bits that cannot
be computed by circuits of size n'%%? where n = |z|. Using the pseudorandom generator based on
worst-case assumptions (Theorem ?7?), we can use such a string y to obtain an ¢?-pseudorandom
generator.

Now, if NEXP C P/poly then as noted above NEXP C MA and hence every language in
NEXP has a proof system where Merlin proves that an n-bit string is in the language by sending

101d+nc

pl6.16 (296) 16.4. EXPLICIT CONSTRUCTION OF EXPANDER GRAPHS

a proof which Arthur then verifies using a probabilistic algorithm of at most n? steps. Yet, if n is
the input length of some string in the sequence X; and we are given x € Xy with |z| = n, then we
can replace Arthur by non-deterministic poly(n?)2"° time algorithm that does not toss any coins:
Arthur will guess a string y such that R(x,y) holds and then use y as a function for a pseudorandom
generator to verify Merlin’s proof.

This means that there is a constant ¢ > 0 such that every language in NEXP can be decided on
infinitely many inputs by a non-deterministic algorithm that runs in poly(2"°)-time and uses n bits
of advice (consisting of the string z € X;). Under the assumption that NEXP C P /poly we can
replace the poly(2"°) running time with a circuit of size n¢ where ¢ is a constant depending only
on ¢, and so get that there is a constant ¢’ such that every language in NEXP can be decided on
infinitely many inputs by a circuit family of size n+n¢ . Yet this can be ruled out using elementary
diagonalization. l

REMARK 16.27

It might seem that Lemma 16.26 should have an easier proof that goes along the proof that EXP C
P /poly = EXP = MA, but instead of using the interactive proof for TQBF uses the multi-prover
interactive proof system for NEXP. However, we do not know how to implement the provers’
strategies for this latter system in NEXP. (Intuitively, the problem arises from the fact that a
NEXP statement may have several certificates, and it is not clear how we can ensure all provers
use the same one.)

We now have all the ingredients for the proof of Theorem 16.23.

PROOF OF THEOREM 16.23: For contradiction’s sake, assume that the following are all true:

ZEROP ¢ P (13)
NEXP C P/poly, (14)
perm € AlgP /poly. (15)

Statement (14) together with Lemmas 16.24 and 16.26 imply that NEXP = EXP = MA. Now
recall that MA C PH, and that by Toda’s Theorem (Theorem 9.11) PH C P#P. Recall also that
by Valiant’s Theorem (Theorem 9.8) perm is #P-complete. Thus, under our assumptions

NEXP C pPe™, (16)

Since we assume that ZEROP € P, Lemma 16.25 together with statements (15) and (16) implies
that NEXP C NP, contradicting the Nondeterministic Time Hierarchy Theorem (Theorem 3.3).
Thus the three statements at the beginning of the proof cannot be simultaneously true. B

16.4 Explicit construction of expander graphs

Recall that an expander graph family is a family of graphs {Gy},c ; such that for some constants
A and d, for every n € I, the graph G,, has n-vertices, degree d and its second eigenvalue is at
most A (see Section 7.B). A strongly explicit expander graph family is such a family where there

16.4. EXPLICIT CONSTRUCTION OF EXPANDER GRAPHS pl6.17 (297)

is an algorithm that given n and the index of a vertex v in G, outputs the list of v’s neighbors
in poly(log(n)) time. In this section we show a construction for such a family. Such construction
have found several applications in complexity theory and other areas of computer science (one such
application is the randomness efficient error reduction procedure we saw in Chapter 7).

The main tools in our construction will be several types of graph products. A graph product is
an operation that takes two graphs G, G’ and outputs a graph H. Typically we're interested in the
relation between properties of the graphs G, G’ to the properties of the resulting graph H. In this
section we will mainly be interested in three parameters: the number of vertices (denoted n), the
degree (denoted d), and the 2"? largest eigenvalue of the normalized adjacency matrix (denoted \),
and study how different products affect these parameters. We then use these products to obtain a
construction of a strongly explicit expander graph family. In the next section we will use the same
products to show a deterministic logspace algorithm for undirected connectivity.

16.4.1 Rotation maps.

In addition to the adjacency matrix representation, we can also represent an n-vertex degree-d
graph G as a function G from [n] x [d] to [n] that given a pair (v,i) outputs u where the "
neighbor of v in G. In fact, it will be convenient for us to have G output an additional value j € [d]
where j is the index of v as a neighbor of u. Given this definition of G it is clear that we can invert
it by applying it again, and so it is a permutation on [n] x [d]. We call G the rotation map of G.
For starters, one may think of the case that G(u,i) = (v,4) (i.e., v is the i*" neighbor of u iff u is
the i*" neighbor of v). In this case we can think of G as operating only on the vertex. However,
we will need the more general notion of a rotation map later on.

We can describe a graph product in the language of graphs, adjacency matrices, or rotation
maps. Whenever you see the description of a product in one of this forms (e.g., as a way to map
two graphs into one), it is a useful exercise to work out the equivalent descriptions in the other
forms (e.g., in terms of adjacency matrices and rotation maps).

16.4.2 The matrix/path product

G: (n,d,A)-graph G’: (n,d' \)-graph G'G: (n,dd’,A\\’)-graph

iy

For every two n vertex graphs G, G’ with degrees d,d and adjacency matrices A, A’, the graph
G'G is the graph described by the adjacency matrix A’A. That is, G'G has an edge (u,v) for every
length 2-path from u to v where the first step in the path is taken on en edge of G and the second
is on an edge of G'. Note that G has n vertices and degree dd’. Typically, we are interested in
the case G = G/, where it is called graph squaring. More generally, we denote by G* the graph
G-G---G (k times). We already encountered this case before in Lemma 7.27, and similar analysis
yields the following lemma (whose proof we leave as exercise):

pl6.18 (298) 16.4. EXPLICIT CONSTRUCTION OF EXPANDER GRAPHS

LEMMA 16.28 (MATRIX PRODUCT IMPROVES EXPANSION)
AMG'G) < MGHNG)

It is also not hard to compute the rotation map of G'G from the rotation maps of G and G’.
Again, we leave verifying this to the reader.

16.4.3 The tensor product

G: (n,d,A\)-graph G: (n,dN)-graph G®G’: (nn’,dd’,max{\,\’})-graph

Let G and G’ be two graphs with n (resp n') vertices and d (resp. d’) degree, and let G :
[n] x [d] — [n] x [d] and G : [0/] x [d'] — [n/] x [d] denote their respective rotation maps. The
tensor product of G and G’, denoted G ® G’, is the graph over nn’ vertices and degree dd’ whose
rotation map G ® G/ is the permutation over ([n] x [']) x ([d] x [d']) defined as follows

G ® G ((u,0), (i,) = ('), (@', '),

where (u/,i') = G(u,i) and (v/,j') = G'(v,). That is, the vertex set of G ® G’ is pairs of vertices,
one from G and the other from G’, and taking a the step (i,7) on G ® G’ from the vertex (u,v) is
akin to taking two independent steps: move to the pair (u/,v’) where v’ is the i*" neighbor of u in
G and v’ is the i*" neighbor of v in G'.

In terms of adjacency matrices, the tensor product is also quite easy to describe. If A = (a; ;)
is the n x n adjacency matrix of G and A’ = (aj, ;) is the n’ x n’ adjacency matrix of G, then the
adjacency matrix of G ® G’, denoted as A® A’, will be an nn’ x nn/ matrix that in the (i, ') row
and the (j, j') column has the value a;; - aj, ;. That is, A® A’ consists of n? copies of A’, with the

(i,7)™ copy scaled by a; ;:
CL171A, CLLQA, e alynA’
A 2 A’ - a271A’ CI/Q’QA/ N agmA’
a1 A’ an2d’ .. app A

The tensor product can also be described in the language of graphs as having a cluster of n’
vertices in G ® G’ for every vertex of G. Now if, u and v are two neighboring vertices in G, we will
put a bipartite version of G’ between the cluster corresponding to u and the cluster corresponding
to v in G. That is, if (4,7) is an edge in G’ then there is an edge between the i*" vertex in the
cluster corresponding to u and the j* vertex in the cluster corresponding to v.

16.4. EXPLICIT CONSTRUCTION OF EXPANDER GRAPHS p16.19 (299)

LEMMA 16.29 (TENSOR PRODUCT PRESERVES EXPANSION)
Let A = A(G) and N = X\(G’) then A\(G ® G') < max{\, \'}.

One intuition for this bound is the following: taking a T step random walk on the graph G ® G’

is akin to taking two independent random walks on the graphs G and G’. Hence, if both walks
converge to the uniform distribution within 7" steps, then so will the walk on G ® G’.
PRrROOF: Given some basic facts about tensor products and eigenvalues this is immediate since if
A1y . .., Ap are the eigenvalues of A (where A is the adjacency matrix of G) and \,..., A, are the
eigenvalues of A (where A’ is the adjacency matrix of G’), then the eigenvalues of A ® A’ are all
numbers of the form A; -)\;, and hence the largest ones apart from 1 are of the form 1 - A(G’) or
AG) - 1 (see also Exercise 14). B

We note that one can show that A(G ® G') < A(GQ) + A\(G’) without relying on any knowledge
of eigenvalues (see Exercise 15). This weaker bound suffices for our applications.

16.4.4 The replacement product

G: (n,D,1-€)-graph G (D,d,1-€)-graph G@®G': (nD,2d,1-e’/4)-graph
!

In both the matric and tensor products, the degree of the resulting graph is larger than the
degree of the input graphs. The following product will enable us to reduce the degree of one of the
graphs. Let G, G’ be two graphs such that G has n vertices and degree D, and G’ has D vertices
and degree d. The balanced replacement product (below we use simply replacement product for
short) of G and G’ is denoted by G ® G’ is the nn’-vertex 2d-degree graph obtained as follows:

1. For every vertex u of G, the graph G®G’ has a copy of G’ (including both edges and vertices).

2. If u, v are two neighboring vertices in G then we place d parallel edges between the i** vertex
in the copy of G’ corresponding to v and the j** vertex in the copy of G’ corresponding to v,
where i is the index of v as a neighbor of v and j is the index of u as a neighbor of v in G.
(That is, taking the i** edge out of u leads to v and taking the j** edge out of v leads to w.)

Note that we essentially already encountered this product in the proof of Claim ?7? (see also
Figure ?7?), where we reduced the degree of an arbitrary graph by taking its replacement product
with a cycle (although there we did not use parallel edges).” The replacement product also has

5The addition of parallel edges ensures that a random step from a vertex v in G ® G’ will move to a neighbor
within the same cluster and a neighbor outside the cluster with the same probability. For this reason, we call this
product the balanced replacement product.

p16.20 (300) 16.4. EXPLICIT CONSTRUCTION OF EXPANDER GRAPHS

a simple description in terms of rotation maps: since G ® G’ has nD vertices and 2d degree, its
rotation map G ® G’ is a permutation over ([n] x [D]) x ([d] x {0,1}) and so can be thought of as
taking four inputs w,v,i,b where u € [n], v € [D], ¢ € [d] and b € {0,1}. If b = 0 then it outputs
u, G”(v, i),b and if b = 1 then it outputs G’(u, v),4,b. That is, depending on whether b is equal to 0
or 1, the rotation map either treats v as a vertex of G’ or as an edge label of G.

In the language of adjacency matrices the replacement product can be easily seen to be described
as follows: A®A’' = 1/2(A®1Ip)+1/2(I,® A’), where A, A" are the adjacency matrices of the graphs
G and G’ respectively, and Iy is the k x k identity matrix.

If D > d then the replacement product’s degree will be significantly smaller than G’s degree.
The following Lemma shows that this dramatic degree reduction does not cause too much of a
deterioration in the graph’s expansion:

LEMMA 16.30 (EXPANSION OF REPLACEMENT PRODUCT)
IfNG) <1—¢€and \N(G') <1 —¢ then \(G®G') <1— e /4.

The intuition behind Lemma 16.30 is the following: Think of the input graph G as a good
expander whose only drawback is that it has a too high degree D. This means that a k step random
walk on G’ requires O(klog D) random bits. However, as we saw in Section 7.B.3, sometimes we
can use fewer random bits if we use an expander. So a natural idea is to generate the edge labels for
the walk by taking a walk using a smaller expander G’ that has D vertices and degree d < D. The
definition of G ® G’ is motivated by this intuition: a random walk on G ® G’ is roughly equivalent
to using an expander walk on G’ to generate labels for a walk on G. In particular, each step a
walk over G ® G’ can be thought of as tossing a coin and then, based on its outcome, either taking
a a random step on G’, or using the current vertex of G’ as an edge label to take a step on G.
Another way to gain intuition on the replacement product is to solve Exercise 16, that analyzes
the combinatorial (edge) expansion of the resulting graph as a function of the edge expansion of
the input graphs.

PROOF OF LEMMA 16.30: Let A (resp. A’) denote the n x n (resp. D x D) adjacency matrix of
G (resp. G') and let A(A) =1 — € and A(4A’) =1 — €. Then by Lemma 7.40, A = (1 —€)C + J,
and A" = (1 — €')C’ + Jp, where Jj, is the k x k matrix with all entries equal to 1/k.

The adjacency matrix of G ® G’ is equal to

lA®Ip)+ i, eA) =5 CeIp+ N, @Ip+ 551,00 + S, ® Jp,

where [is the k x k identity matrix.
Thus, the adjacency matrix of (G ® G’)? is equal to

’ 4 2
(%C®ID+§JH®ID+ = In®0’+%fn®JD) =
< (I ® Ip)(In © Jp) + §(In ® Jp)(Ju ® Ip) + (1 = §)F,

where F' is some nD x nD matrix of norm at most 1 (obtained by collecting together all the other
terms in the expression). But

(Jn®Ip)Ip®Jp) = I ® Jp)(Jn®Ip) = Jp®Jp = Jnp -

16.4. EXPLICIT CONSTRUCTION OF EXPANDER GRAPHS pl6.21 (301)

(This can be verified by either direct calculation or by going through the graphical representation
or the rotation map representation of the tensor and matrix products.)
Since every vector v € R™P that is orthogonal to 1 satisfies J,pv = 0, we get that

ANG®E) = A (GRE) = A (1 -) F + % Jup) <1-%,

and hence

!

MG®G) <1 —<.
[|

16.4.5 The actual construction.

We now use the three graph products of described above to show a strongly explicit construction
of an expander graph family. Recall This is an infinite family {Gj} of graphs (with efficient way to
compute neighbors) that has a constant degree and an expansion parameter A\. The construction
is recursive: we start by a finite size graph G (which we can find using brute force search), and
construct the graph G from the graph Gr_1. On a high level the construction is as follows: each
of the three product will serve a different purpose in the construction. The Tensor product allows
us to take Gj_1 and increase its number of vertices, at the expense of increasing the degree and
possibly some deterioration in the expansion. The replacement product allows us to dramatically
reduce the degree at the expense of additional deterioration in the expansion. Finally, we use the
Matriz/Path product to regain the loss in the expansion at the expense of a mild increase in the
degree.

THEOREM 16.31 (EXPLICIT CONSTRUCTION OF EXPANDERS)
There exists a strongly-explicit A, d-expander family for some constants d and A < 1.

PROOF: Our expander family will be the following family {Gy }ren of graphs:

e Let H be a (D = d*,d,0.01)-graph, which we can find using brute force search. (We choose
d to be a large enough constant that such a graph exists)

e Let Gy be a (D,d*,1/2)-graph, which we can find using brute force search.
e For k> 1, let Gy = ((Gg—1 ® Gk—1) @H)20.
The proof follows by noting the following points:

1. For every k, G has at least 22" vertices.

Indeed, if nj, denotes the number of vertices of Gy, then ng = (ng_1)?D. If nj_1 > 22" then
ng > (22’“‘1>2 — 92",

p16625 (3@ETERMINISTIC LOGSPACE ALGORITHM FOR UNDIRECTED CONNECTIVITY.

2. For every k, the degree of Gy, is d°.

Indeed, taking a replacement produce with H reduces the degree to d, which is then increased
to d?° by taking the 20" power of the graph (using the matrix/path product).

3. There is a 2°®F)_time algorithm that given a label of a vertex u in G and an index i € [d?°],
outputs the " neighbor of u in Gj. (Note that this is polylogarithmic in the number of
vertices.)

Indeed, such a recursive algorithm can be directly obtained from the definition of G. To
compute Gi’s neighborhood function, the algorithm will make 40 recursive calls to Gg_1’s
neighborhood function, resulting in 2°*) running time.

4. For every k, \(Gy) < 1/3.

Indeed, by Lemmas 16.28, 16.29, and 16.30 If A\(Gx_1) < /3 then A(Gx—1 ® Gr—1) < 2/3 and
hence A((Gr—1®Gr_1)®H) < 1-%39 < 1-1/13. Thus, \(Gg) < (1-1/13)20 ~ e720/13 < 1/3,

Using graph powering we can obtain such a construction for every constant A € (0,1), at the
expense of a larger degree. There is a variant of the above construction supplying a denser family
of graphs that contains an n-vertex graph for every n that is a power of ¢, for some constant c.
Since one can transform an (n,d, \)-graph to an (n/,cd’, \)-graph for any n/c < n’ < n by making
a single “mega-vertex” out of a set of at most ¢ vertices, the following theorem is also known:

THEOREM 16.32
There exist constants d € N, A < 1 and a strongly-explicit graph family {G,, },ecn such that G,, is
an (n,d, \)-graph for every n € N.

REMARK 16.33

As mentioned above, there are known constructions of expanders (typically based on number theory)
that are more efficient in terms of computation time and relation between degree and the parameter
A than the product-based construction above. However, the proofs for these constructions are more
complicated and require deeper mathematical tools. Also, the replacement product (and its close
cousin, the zig-zag product) have found applications beyond the constructions of expander graphs.
One such application is the deterministic logspace algorithm for undirected connectivity described
in the next section. Another application is a construction of combinatorial expanders with greater
expansion that what is implied by the parameter A. (Note that even for for the impossible to
achieve value of A = 0, Theorem ?? implies combinatorial expansion only 1/2 while it can be shown
that a random graph has combinatorial expansion close to 1.)

16.5 Deterministic logspace algorithm for undirected connectiv-
ity.

This section describes a recent result of Reingold, showing that at least the most famous random-
ized logspace algorithm, the random walk algorithm for s-t-connectivity in undirected graphs (

16.5. DETERMINISTIC LOGSPACE ALGORITHM FOR UNDIRECTED CONNECHI6/A3(803)

Chapter 7) can be completely “derandomized.” Thus the s-t-connectivity problem in undirected
graphs is in L.

THEOREM 16.34 (REINGOLD’S THEOREM [?7])
UPATH < L.

Reingold describes a set of poly(n) walks starting from s such that if s is connected to ¢ then
one of the walks is guaranteed to hit ¢. Of course, the existence of such a small set of walks is
trivial; this arose in our discussion of universal traversal sequences of Definition ?7. The point is
that Reingold’s enumeration of walks can be carried out deterministically in logspace.

In this section, all graphs will be multigraphs, of the form G = (V, E) where E is a multiset
(i.e., some edges may appear multiple times, and each appearance is counted separately). We say
the graph is d-regular if for each vertex i, the number of edges incident to it is exactly d. We
will assume that the input graph for the s-t connectivity problem is d-regular for say d = 4. This
is without loss of generality: if a vertex has degree d’ < 3 we add a self-loop of multiplicity to
bring the degree up to d, and if the vertex has degree d’ > 3 we can replace it by a cycle of d’
vertices, and each of the d’ edges that were incident to the old vertex then attach to one of the cycle
nodes. Of course, the logspace machine does not have space to store the modified graph, but it can
pretend that these modifications have taken place, since it can perform them on the fly whenever
it accesses the graph. (Formally speaking, the transformation is implicitly computable in logspace;
see Claim ??.) In fact, the proof below will perform a series of other local modifications on the
graph, each with the property that the logspace algorithm can perform them on the fly.

Recall that checking connectivity in expander graphs is easy. Specifically, if every connected
component in G is an expander, then there is a number ¢ = O(logn) such that if s and ¢ are
connected then they are connected with a path of length at most /.

THEOREM 16.35
If an n-vertex graph G is d-regular graph and A(G) < 1/4 then the maximum distance between
every pair of nodes is at most O(dlogn).

PROOF: The exercises ask you to prove that for each subset S of size at most |V| /2, the number
of edges between S and S is at least (1 — A\)|S|/2 > 3|S| /8. Thus at least 3|S|/8d vertices in
S must be neighbors of vertices in S. Iterating this argument [times we conclude the following
about the number of vertices whose distance to S is at most {: it is either more than |V| /2 (when
the abovementioned fact stops applying) or at least (1 4+ 8—3d)l. Let s,t be any two vertices. Using
S = {s}, we see that at least |V'| /241 vertices must be within distance { = 10dlogn of s. The same
is true for vertex ¢t. Every two subsets of vertices of size at least |V| /2 + 1 necessarily intersect, so
there must be some vertex within distance ! of both s and ¢. Hence the distance from s to ¢ is at

most 2{. W

We can enumerate over all /-step random walks of a d-degree graph in O(df) space by enu-
merating over all sequences of indices i1,...,47y € [d]. Thus, in a constant-degree graph where all
connected components are expanders we can check connectivity in logarithmic space.

p1665.(3METERMINISTIC LOGSPACE ALGORITHM FOR UNDIRECTED CONNECTIVITY.

The idea behind Reingold’s algorithm is to transform the graph G (in an implicitly computable
in logspace way) to a graph G’ such that every connected component in G becomes an expander
in G’, but two vertices that were not connected will stay unconnected.

By adding more self-loops we may assume that the graph is of degree d?° for some constant d
that is sufficiently large so that there exists a (d?°, d,0.01)-graph H. (See Fact ?? in the Appendix.)
Since the size of H is some constant, we assume the algorithm has access to it (either H could be
“hardwired” into the algorithm or the algorithm could perform brute force search to discover it).
Consider the following sequence of transformations.

o Let Go =G.
e For k > 1, we define G}, = (Gj_1 ® H)?°.

Here ® is the replacement product of the graph, defined in Chapter ??. If Gj_; is a graph with
degree d*°, then G,_1 ® H is a graph with degree d and thus G} = (Gx_1 ® H)? is again a graph
with degree d?° (and size (2d%° |Gj_1|)?°). Note also that if two vertices were connected (resp.,
disconnected) in G_1, then they are still connected (resp., disconnected) in G. Thus to solve the
UPATH in G it suffices to solve a UPATH problem in any of the Gy’s.

Now we show that for £ = O(logn), the graph Gy, is an expander, and therefore an easy instance
of UPATH. By Lemmas 16.28 and 16.30, for every e < 1/20 and D-degree graph F, if A(F) < 1—¢
then A(F® H) < 1 —¢/5 and hence A (F®H)?") < 1 — 2e. By Lemma 7.28, every connected
component of G has expansion parameter at most 1 — 1/(8Dn3), where n denotes the number of
G’s vertices which is at least as large as the number of vertices in the connect component. It follows
that for k = 10log D log N, in the graph Gy, every connected component has expansion parameter
at most max{1 — 1/20,2%/(8Dn3)} =1 — 1/20.

To finish, we show how to solve the UPATH problem for G}, in logarithmic space for this value of
k. The catch is of course that the graph we are given is G, not G. Given G, we wish to enumerate
length /¢ starting from a given vertex in (G since the graph is an expander. A walk describes, for
each step, which of the d?° outgoing edges to take from the current vertex. Thus it suffices to show
how we can compute in O(k + logn) space, the ith outgoing edge of a given vertex u in Gj. This
map’s input length is O(k +logn) and hence we can assume it is placed on a read/write tape, and
will compute the rotation map “in-place” changing the input to the output. Let s, be the additional
space (beyond the input) required to compute the rotation map of Gj. Note that sy = O(logn).
We show a recursive algorithm to compute Gy, satisfying the equation s; = sp_1 + O(1). In fact,
the algorithm will be a pretty straightforward implementation of the definitions of the replacement
and matrix products.

The input to G} is a vertex in (Gr—1 ® H) and 20 labels of edges in this graph. If we can
compute the rotation map of G_1®H in s;_1 +O(1) space then we can do so for ék, since we can
simply make 20 consecutive calls to this procedure, each time reusing the space.® Now, to compute
the rotation map of (Gy_1 ® H) we simply follow the definition of the replacement product. Given

50ne has to be slightly careful while making recursive calls, since we don’t want to lose even the O(loglogn) bits
of writing down k and keeping an index to the location in the input we’re working on. However, this can be done
by keeping k in global read/write storage and since storing the identity of the current step among the 50 calls we’re
making only requires O(1) space.

16.6. WEAK RANDOM SOURCES AND EXTRACTORS pl16.25 (305)

an input of the form w,v,i,b (which we think of as read/write variables), if b = 0 then we apply
the rotation map of H to (v,4) (can be done in constant space), while if b = 1 then we apply the
rotation map of Gi_1 to (u,v) using a recursive call at the cost of s;_; space (note that u,v are
conveniently located consecutively at the beginning of the input tape).

16.6 Weak Random Sources and Extractors

Suppose, that despite the philosophical difficulties, we are happy with probabilistic algorithms, and
see no need to “derandomize” them, especially at the expense of some unproven assumptions. We
still need to tackle the fact that real world sources of randomness and unpredictability rarely, if
ever, behave as a sequence of perfectly uncorrelated and unbiased coin tosses. Can we still execute
probabilistic algorithms using real-world “weakly random” sources?

16.6.1 Min Entropy

For starters, we need to define what we mean by a weakly random source.

DEFINITION 16.36
Let X be a random variable. The min entropy of X, denoted by H(X), is the largest real number
k such that Pr[X = x] < 27F for every x in the range of X.

If X is a distribution over {0,1}" with Ho(X) > k then it is called an (n, k)-source.

It is not hard to see that if X is a random variable over {0, 1}" then H(X) < n with Hoo(X) =
n if and only if X is distributed according to the uniform distribution U,. Our goal in this section is
to be able to execute probabilistic algorithms given access to a distribution X with H(X) as small
as possible. It can be shown that min entropy is a minimal requirement in the sense that in general,

to execute a probabilistic algorithm that uses k£ random bits we need access to a distribution X
with Hoo(X) > k (see Exercise 77).

ExAMPLE 16.37
Here are some examples for distributions X over {0,1}" and their min-entropy:

e (Bit fixing and generalized bit fixing sources) If there is subset S C [n] with |S| = k such that
X’s projection to the coordinates in S is uniform over {0, 1}*, and X’s projection to [n]\ S is
a fixed string (say the all-zeros string) then Hy(X) = k. The same holds if X’s projection to
[n] \ S is a fixed deterministic function of its projection to S. For example, if the bits in the
odd positions of X are independent and uniform and for every even position 2i, Xo; = Xo; 1
then Ho(X) = [§ |. This may model a scenario where we measure some real world data at
too high a rate (think of measuring every second a physical event that changes only every
minute).

e (Linear subspaces) If X is the uniform distribution over a linear subspace of GF(2)" of
dimension k, then Hy(X) = k. (In this case X is actually a generalized bit-fixing source—
can you see why?)

p16.26 (306) 16.6. WEAK RANDOM SOURCES AND EXTRACTORS

e (Biased coins) If X is composed of n independent coins, each outputting 1 with probability
d < 1/2 and 0 with probability 1 — 4, then as n grows, Hx(X) tends to H(J)n where H is the
Shannon entropy function. That is, H(d) = 5log% +(1—0)log ﬁ

e (Santha-Vazirani sources) If X has the property that for every i € [n], and every string
x € {0, 1}i_1, conditioned on X7 = z1,...,X;-1 = ;-1 it holds that both Pr[X; = 0] and
Pr[X; = 1] are between § and 1 — 0 then Hy(X) > H(d)n. This can model sources such as
stock market fluctuations, where current measurements do have some limited dependence on
the previous history.

e (Uniform over subset) If X is the uniform distribution over a set S C {0,1}" with |S| = 2*
then Ho(X) = k. As we will see, this is a very general case that “essentially captures” all
distributions X with Ho(X) = k.

We see that min entropy is a pretty general notion, and distributions with significant min
entropy can model many real-world sources of randomness.

16.6.2 Statistical distance and Extractors

Now we try to formalize what it means to extract random —more precisely, almost random— bits
from an (n, k) source. To do so we will need the following way of quantifying when two distributions
are close.

DEFINITION 16.38 (STATISTICAL DISTANCE)

For two random variables X and Y with range {0,1}", their statistical distance (also known as
variation distance) is defined as 0(X,Y’) = maxgc o1y {|Pr[X € S] — Pr[Y € S]|}. We say that
X,Y are e-close, denoted X =, Y, if §(X,Y) <e.

Statistical distance lies in [0, 1] and satisfies triangle inequality, as suggested by its name. The
next lemma gives some other useful properties; the proof is left as an exercise.

LEMMA 16.39
Let X,Y be any two distributions taking values in {0,1}".
L6(X,Y) =5 eqonyn [Pr[X = a] — Pr[y = 4.

2. (Restatement of Definition 16.38) 6(X,Y’) > € iff there is a boolean function D :{0,1}" —
{0,1} such that |Pryex[D(x) = 1] — Pryey[D(y) = 1]| > €.

3. If f:{0,1}" — {0,1}° is any function, then §(f(X), f(Y)) < §(X,Y). (Here f(X) is a
distribution on {0,1}° obtained by taking a sample of X and applying f.)

Now we define an extractor. This is a (deterministic) function that transforms an (n, k) source
into an almost uniform distribution. It uses a small number of additional truly random bits, denoted
by t in the definition below.

16.6. WEAK RANDOM SOURCES AND EXTRACTORS pl16.27 (307)
DEFINITION 16.40

A function Ext : {0,1}" x {0,1}' — {0,1}" is a (k,€) extractor if for any (n,k)-source X, the
distribution Ext(X,U;) is e-close to Uy,. (For every ¢, U, denotes the uniform distribution over

{0,1}%)

Equivalently, if Ext : {0,1}" x {0,1}" — {0,1}" is a (k, €) extractor, then for every distribution
X ranging over {0,1}" of min-entropy k, and for every S C {0,1}", we have

\Pran’ZE{O?l}z[Ext(a, z) e S| — Pr,cioym [resS)<e

We use this fact to show in Section 16.7.2 how to use extractors and (n, k)-sources to to simulate
any probabilistic computation.

Why an additional input? Our stated motivation for extractors is to execute probabilistic
algorithms without access to perfect unbiased coins. Yet, it seems that an extractor is not sufficient
for this task, as we only guarantee that its output is close to uniform if it is given an additional
input that is uniformly distributed. First, we note that the requirement of an additional input is
necessary: for every function Ext : {0,1}" — {0,1}"" and every k < n — 1 there exists an (n, k)-
source X such that the first bit of Ext(X) is constant (i.e, is equal to some value b € {0,1} with
probability 1), and so is at least of statistical distance 1/2 from the uniform distribution (Exercise 7).
Second, if the length t of the second input is sufficiently short (e.g., ¢ = O(logn)) then, for the
purposes of simulating probabilistic algorithms, we can do without any access to true random coins,
by enumerating over all the 2! possible inputs (see Section 16.7.2). Clearly, ¢ has to be somewhat
short for the extractor to be non-trivial: for ¢ > m, we can have a trivial extractor that ignores its
first input and outputs the second input. This second input is called the seed of the extractor.

16.6.3 Extractors based upon hash functions

One can use pairwise independent (and even weaker notions of) hash functions to obtain extractors.
In this section, H denotes a family of hash functions h:{0,1}" — {0,1}*. We say it has collision
error § if for any x1 # x2 € {0,1}", Pryen[h(z1) = h(z2)] < (1 + §)/2F. We assume that one
can choose a random function h € H by picking a string at random from {0, 1}t. We define the
extractor Ext: x {0, 1} — {0, 1} as follows:

Ext(z, h) = h(x) o h, (17)

where o denotes concatenation of strings.
To prove that this is an extractor, we relate the min-entropy to the collision probability of a
distribution, which is defined as), p2, where p, is the probability assigned to string a.

LEMMA 16.41
If a distribution X has min-entropy at least k then its collision probability is at most 1/2F.

ProoF: For every a in X’s range, let p, be the probability that X = a. Then, Zapg <
maxg {pa} (D_, Pa) < Qik 1= QLIC u

p16.28 (308) 16.6. WEAK RANDOM SOURCES AND EXTRACTORS

LEMMA 16.42 (LEFTOVER HASH LEMMA)
If 2 is chosen from a distribution on {0,1}" with min-entropy at least k/§ and H has collision error

§, then h(X) o h has distance at most v/28 to the uniform distribution.

PROOF: Left as exercise. (Hint: use the relation between the Lo and L; norms B

16.6.4 Extractors based upon random walks on expanders

This section assumes knowledge of random walks on expanders, as described in Chapter ?7.

LEMMA 16.43
Let € > 0. For every n and k < n there exists a (k, €)-extractor Ext : {0,1}" x {0,1}! — {0,1}"
where t = O(n — k + log 1/e).

PROOF: Suppose X is an (n, k)-source and we are given a sample a from it. Let G be a (2",d,1/2)-
graph for some constant d (see Definition 7.31 and Theorem 16.32).

Let z be a truly random seed of length ¢ = 10logd(n — k + log1/e) = O(n — k 4+ log1/€). We
interpret z as a random walk in G of length 10(n — k +log 1/¢) starting from the node whose label
is a. (That is, we think of z as 10(n — k 4 log 1/¢) labels in [d] specifying the steps taken in the
walk.) The output Ext(a, z) of the extractor is the label of the final node on the walk.

We have || X —1[j3 < || X||3 = Y, Pr[X = a]?, which is at most 27* by Lemma 16.41 since X is
an (n, k)-source. Therefore, after a random walk of length ¢ the distance to the uniform distribution
is (by the upperbound in (77?)):

1 1
IMIX = o1l < AG)X — Spal2vV2N < 2N,

When ¢ is a sufficiently large multiple of N — k + log 1 /e, this distance is smaller than ¢. B

16.6.5 An extractor based upon Nisan-Wigderson

THIS SECTION IS STILL QUITE ROUGH

Now we describe an elegant construction of extractors due to Trevisan.

Suppose we are given a string = obtained from an (N, k)-source. How can we extract k& random
bits from it, given O(log N) truly random bits? Let us check that the trivial idea fails. Using
2log N random bits we can compute a set of k (where & < N — 1) indices that are uniformly
distributed and pairwise independent. Maybe we should just output the corresponding bits of z?
Unfortunately, this does not work: the source is allowed to set N —k bits (deterministically) to 0 so
long as the remaining k bits are completely random. In that case the expected number of random
bits in our sample is at most k2 /N, which is less than even 1 if k£ < V/N.

This suggests an important idea: we should first apply some transformation on x to “smear out”
the randomness, so it is not localized in a few bit positions. For this, we will use error-correcting
codes. Recall that such codes are used to introduce error-tolerance when transmitting messages
over noisy channels. Thus intuitively, the code must have the property that it “smears” every bit
of the message all over the transmitted message.

16.6. WEAK RANDOM SOURCES AND EXTRACTORS p16.29 (309)

Having applied such an encoding to the weakly random string, the construction selects bits
from it using a better sampling method than pairwise independent sampling, namely, the Nisan-
Wigderson combinatorial design.

Nisan-Wigderson as a sampling method:

In (??) we defined a function NW; s(z) using any function f : {0, 1}l — {0,1} and a com-
binatorial design S. Note that the definition works for every function, not just hard-to-compute
functions. Now we observe that NWy s(2) is actually a way to sample entries from the truth table
of f.

Think of f as a bitstring of length 2!, namely, its truth table. (Likewise, we can think of any
circuit with I-bit inputs and with 0/1 outputs as computing a string of length 2'.) Given any =z
(“the seed”), NW; s(z) is just a method to use z to sample a sequence of m bits from f. This is
completely analogous to pairwise independent sampling considered above; see Figure 77.

Figure unavailable in pdf file.

Figure 16.3: Nisan-Wigderson as a sampling method: An (I, a)-design (S1, Sa, ..., Sm) where each S; C [t], |S:| =1
can be viewed as a way to use z € {0, l}t to sample m bits from any string of length 2', which is viewed as the truth
table of a function f:{0,1}' — {0,1}.

List-decodable codes
The construction will use the following kind of codes.

DEFINITION 16.44 -
If 6 > 0, a mapping o:{0, 1}N — {0, 1}N is called an error-correcting code that is list-decodable up

to error 1/2 — § if for every w € {0,1}", the number of y € BY such that w,o(y) disagree in at
most 1/2 — § fraction of bits is at most 1/6%.

The set {a(aj) :x € {0, 1}N} is called the set of codewords.

The name “list-decodable” owes to the fact that if we transmit = over a noisy channel after first
encoding with o then even if the channel flips 1/2 — § fraction of bits, there is a small “list” of y
that the received message could be decoded to. (Unique decoding may not be possible, but this will
be of no consequence in the construction below.) The exercises ask you to prove that list-decodable
codes exist with N = poly(N, 1/J), where o is computable in polynomial time.

Trevisan’s extractor:

Suppose we are given an (N, k)-source. We fix o : {0,1}" — {0,1}]\77 a polynomial-time
computable code that is list-decodable upto to error 1/2 —¢/m. We assume that N is a power
of 2 and let I = log, N. Now every string z € {0, 1}N may be viewed as a boolean function
<z >:{0,1}'¢" — 0,1} whose truth table is z. Let S = (S1,...,S,,) be a (I,logm) design over

[t].
The extractor ExtNW : {0,1}" x {0,1}' — {0,1}™ is defined as

p16.30 (310) 16.6. WEAK RANDOM SOURCES AND EXTRACTORS

EZCtNWU73($, Z) = NW<O’(.Z’)>,S(Z) :

That is, Ext NW encodes its first (“weakly random”) input x using an error-correcting code, then
uses Nisan-Wigderson sampling on the resulting string using the second (“truly random”) input z
as a seed.

LEMMA 16.45
For sufficiently large m and for € > 27™", ExtNW, s is a (m?, 2¢)-extractor.

PROOF: Let X be an (N, k) source where the min-entropy k is m3. To prove that the distribution
ExtNW (a,z) where a € X,z € {0,1}" is close to uniform, it suffices (see our remarks after
Definition 16.38) to show for each function D : {0,1}"™ — {0,1} that

Pr,[D(r) =1] = Procx .co1y [D(ExtNW (a, 2)) = 1]| < 2e. (18)

For the rest of this proof, we fix an arbitrary D and prove that (18) holds for it.

The role played by this test D is somewhat reminiscent of that played by the distinguisher
algorithm in the definition of a pseudorandom generator, except, of course, D is allowed to be
arbitrarily inefficient. This is why we will use the black-box version of the Nisan-Wigderson analysis
(Corollary ??), which does not care about the complexity of the distinguisher.

Let B be the set of bad a’s for this D, where string a € X is bad for D if

‘Pr[D(r) = 1]~ Pr.c (o, [D(EctNW(a,2)) = 1]| > e.

We show that B is small using a counting argument: we exhibit a 1-1 mapping from the set of
bad a’s to another set GG, and prove G is small. Actually, here is G:

G = {circuits of size O(m?)} x {0, 1}2los(m/e) 10,1}2.

The number of circuits of size O(m?2) is 200m*1o8m) o |G| < 20(m*logm) y 9(py /¢)2 = 20(m*logm)

Let us exhibit a 1-1 mapping from B to G. When a is bad, Corollary ?? implies that there is
a circuit C' of size O(m?) such that either the circuit D(C()) or its negation ~-XORed with some
fixed bit b—agrees with o(a) on a fraction 1/2 + ¢/m of its entries. (The reason we have to allow
either D(C()) or its complement is the |-| sign in the statement of Corollary ??.) Let w € {0,1}"
be the string computed by this circuit. Then o(a) disagrees with w in at most 1/2—¢/m fraction of
bits. By the assumed property of the code o, at most (m/e)? other codewords have this property.
Hence a is completely specified by the following information: (a) circuit C'; this is specified by
O(m?logm) bits (b) whether to use D(C()) or its complement to compute w, and also the value
of the unknown bit b; this is specified by 2 bits (c¢) which of the (m/¢)? codewords around w to
pick as o(a); this is specified by [2log(m/e€)] bits assuming the codewords around w are ordered
in some canonical way. Thus we have described the mapping from B to G.

We conclude that for any fixed D, there are at most 90(m?logm) haq strings. The probability
that an element a taken from X is bad for D is (by Lemma ??) at most 2-™" . 20(m*logm) ¢ for

16.7. APPLICATIONS OF EXTRACTORS pl16.31 (311)

sufficiently large m. We then have

‘PrT[D(T) =1] - Procx.cqo1y [D(E2tNW (a, 2)) = 1]’
< Y PrX =aq ‘Pr[D(r) = 1]~ Pr_c ! [D(EctNW (a, 2)) = 1]‘
< Pr[X € B] +¢€ < 2¢,

where the last line used the fact that if a ¢ B, then by definition of B,
Pr(D(r) = 1] — Pr_ (g [D(ExtNW(a, 2)) = 1]‘ <l

The following theorem is an immediate consequence of the above lemma.

THEOREM 16.46
Fix a constant ¢; for every N and k = N Q) there is a polynomial-time computable (k, €)-extractor

Ext: {0,1}" x {0,1}' — {0,1}™ where m = k'/* and t = O(log N).

16.7 Applications of Extractors

Extractors are deterministic objects with strong pseudorandom properties. We describe a few
important uses for them; many more will undoubtedly be found in future.

16.7.1 Graph constructions

An extractor is essentially a graph-theoretic object; see Figure ??7. (In fact, extractors have been
used to construct expander graphs.) Think of a (k,€) extractor Ext : {0,1}" x {0,1}' — {0,1}™
as a bipartite graph whose left side contains one node for each string in {0, 1}N and the right side
contains a node for each string in {0,1}™. Each node a on the left is incident to 2! edges, labelled
with strings in {0, 1}", with the right endpoint of the edge labeled with z being Ext(a, z).

An (N, k)-source corresponds to any distribution on the left side with min-entropy at least k.
The extractor’s definition implies that picking a node according to this distribution and a random
outgoing edge gives a node on the right that is essentially uniformly distributed.

Figure unavailable in pdf file.

Figure 16.4: An extractor Ext : {0,1}" x {0,1}" — {0,1}™ defines a bipartite graph where every node on the left
has degree 27

This implies in particular that for every set X on the left side of size exactly 2 —notice, this is
a special case of an (N, k)-source— its neighbor set I'(X) on the right satisfies |I'(X)| > (1 —€)2™.

One can in fact show a converse, that high expansion implies that the graph is an extractor;
see Chapter notes.

pl16.32 (312) 16.7. APPLICATIONS OF EXTRACTORS

16.7.2 Running randomized algorithms using weak random sources

We now describe how to use extractors to simulate probabilistic algorithms using weak random
sources. Suppose that A(-,-) is a probabilistic algorithm that on an input of length n uses m = m(n)
random bits, and suppose that for every x we have Pr,.[A(z,r) = right answer | > 3/4. If A’s
answers are 0/1, then such algorithms can be viewed as defining a BPP language, but here we
allow a more general scenario. Suppose Ext : {0, 1} x {0,1} — {0,1}™ is a (k, 1/4)-extractor.

Consider the following algorithm A’: on input z € {0,1}" and given a string a € {0,1}"
from the weakly random source, the algorithm enumerates all choices for the seed z and computes
A(x,Ext(a, z). Let

A'(z,a) = majority value of {A(z,Ext(a,z)): z € {0, 1}t} (19)

The running time of A’ is approximately 2! times that of A. We show that if a comes from an
(n, k + 2) source, then A’ outputs the correct answer with probability at least 3/4.

Fix the input . Let R = {r € {0,1}" : A(z,r) = right answer }, and thus [R| > 32™. Let
B be the set of strings a € {0, l}N for which the majority answer computed by algorithm A’ is
incorrect, namely,

B= {a : Pr 1yt [A(z, Ext(a, z)) = right answer] < 1/2}

= {a : Pr gyt [Ext(a, 2) € R] < 1/2}

CLAIM: |B| < 2%,
Let random variable Y correspond to picking an element uniformly at random from B. Thus Y
has min-entropy log B, and may be viewed as a (NN, log B)-source. By definition of B,

PraeY,zE{O,l}t [EXt(a, Z) S R] < 1/2.
But |R| = 32™, so we have
PraeY,ze{O,l}t[EXt(a’ z) € R] — Pr,cio1)m [r € R]| > 1/4,

which implies that the statistical distance between the uniform distribution and Ext(Y, z) is at least
1/4. Since Ext is a (k, 1/4)-extractor, Y must have min-entropy less than k. Hence |B| < 2¥ and
the Claim is proved.

The correctness of the simulation now follows since

Pr,cx[A'(z,a) = right answer | = 1 — Prycx[a € B|
>1-2"®+2) . |B| >3/4, (by Lemma ?7).

Thus we have shown the following.
THEOREM 16.47
Suppose A is a probabilistic algorithm running in time T4(n) and using m(n) random bits on
inputs of length n. Suppose we have for every m(n) a construction of a (k(n),1/4)-extractor
Ext,, : {0,1}" x {0,1}'™ — {0,1}™™ running in Tg(n) time. Then A can be simulated in time
2Y(T4 + Tg) using one sample from a (N, k + 2) source.

16.7. APPLICATIONS OF EXTRACTORS pl6.33 (313)

16.7.3 Recycling random bits

We addressed the issue of recycling random bits in Section ??. An extractor can also be used to
recycle random bits. (Thus it should not be surprising that random walks on expanders, which
were used to recycle random bits in Section ??, were also used to construct extractors above.)

Suppose A be a randomized algorithm that uses m random bits. Let Ext : {0, 1} x {0,1}" —
{0,1}™ be any (k, ¢)-extractor. Consider the following algorithm. Randomly pick a string a €
{0,1}", and obtain 2¢ strings in {0,1}™ obtained by computing Ext(a, z) for all z € {0,1}’. Run
A for all these random strings. Note that this manages to run A as many as 2! times while using
only N random bits. (For known extractor constructions, N < 2!m, so this is a big saving.)

Now we analyse how well the error goes down. Suppose D C {0,1}"™ be the subset of strings
for which A gives the correct answer. Let p = |D|/2™; for a BPP algorithm p > 2/3. Call an
a € {0, 1}N bad if the above algorithm sees the correct answer for less than p — e fraction of z’s. If
the set of all bad a’s were to have size more than 2¥, the (IV, k)-source X corresponding to drawing
uniformly at random from the bad a’s would satisfy

Pr[Ext(X,U;) € D] — Pr[U,, € D] > ¢,

which would contradict the assumption that Ext is a (k, €)-extractor. We conclude that the prob-
ability that the above algorithm gets an incorrect answer from A in p — € fraction of the repeated
runs is at most 2% /2",

16.7.4 Pseudorandom generators for spacebounded computation

Now we describe Nisan’s pseudo-random generators for space-bounded randomized computation,
which allows randomized logspace computations to be run with O(log2 n) random bits.
Throughout this section we represent logspace machines by their configuration graph, which has

size poly(n).

THEOREM 16.48 (NISAN) , .
For every d there is a ¢ > 0 and a polynomial-time computable function g:{0,1}°1°6" ™ — {0,1}"
such that for every space-bounded machine M that has a configuration graph of size < n® on inputs
of size n:

1
Pr [M(z,r)=1]— Pr [M(z,9(2) =1]| < —. (20)
T‘E{O,l}nd 26{071}clog2n].0

We give a proof due to Impagliazzo, Nisan, and Wigderson [INW94] (with further improvements
by Raz and Reingold [RR99]) that uses extractors. Nisan’s original paper did not explicitly use
extractors —the definition of extractors came later and was influenced by results such as Nisan’s.

In fact, Nisan’s construction proves a result stronger than Theorem 16.48: there is a polynomial-
time simulation of every algorithm in BPL using O(log?n) space. (See Exercises.) Note that
Savitch’s theorem (Theorem ??) also implies that BPL C SPACE(log?n), but the algorithm
in Savitch’s proof takes n'°8™ time. Saks and Zhou [SZ99a] improved Nisan’s ideas to show that
BPL C SPACE(log!?® n), which leads many experts to conjecture that BPL = L (i.e., randomness
does not help logspace computations at all). (For partial progress, see Section ?7 later.)

pl16.34 (314) 16.7. APPLICATIONS OF EXTRACTORS

The main intuition behind Nisan’s construction —and also the conjecture BPL = L— is that
the logspace machine has one-way access to the random string and only O(logn) bits of memory.
So it can only “remember” O(logn) of the random bits it has seen. To exploit this we will use
the following simple lemma, which shows how to recycle a random string about which only a little
information is known. (Throughout this section, o denotes concatenation of strings.)

LEMMA 16.49 (RECYCLING LEMMA)
Let f:{0,1}" — {0,1}® be any function and Ext:{0,1}" x {0,1}" — {0,1}™ be a (k, ¢/2)-extractor,
where k =n — (s + 1) —log L. When X €g {0,1}", W € {0,1}", z €x {0,1}", then

f(X) oW =, f(X)oExt(X,2).

REMARK 16.50

When the lemma is used, s < n and n = m. Thus f(X), which has length s, contains only a small
amount of information about X. The Lemma says that using an appropriate extractor (whose
random seed can have length as small as t = O(s + log(1/¢)) if we use Lemma 16.43) we can get a
new string Ext(X, z) that looks essentially random, even to somebody who knows f(X).

PROOF: For v € {0,1}* we denote by X, the random variable that is uniformly distributed over
the set f~1(v). Then we can express || (f(X) oW — f(X) o Ext(X, z) || as

z

_ ;;‘Pr[f(X) — v AW = w] - Pr[f(X) = v A Ext(X, 2) = u]
=Y " Pr[f(X) =] | W — Ext(X,, 2) | (21)

Let V = {v:Pr[f(X) =v] >¢/2°T'}. If v € V, then we can view X, as a (n, k)-source, where
k>n-—(s+1)—log % Thus by definition of an extractor, Ext(X,,r) ~.» W and hence the
contributions from v € V' sum to at most €/2. The contributions from v ¢ V are upperbounded by
> wgv Prf(X) =v] <2° x 557 = €/2. The lemma follows. B

Now we describe how the Recycling Lemma is useful in Nisan’s construction. Let M be a
logspace machine. Fix an input of size n and view the graph of all configurations of M on this
input as a leveled branching program. For some d > 1, M has < n? configurations and runs in time
L < n?. Assume without loss of generality —since unneeded random bits can always be ignored—
that it uses 1 random bit at each step. Without loss of generality (by giving M a separate worktape
that maintains a time counter), we can assume that the configuration graph is leveled: it has L
levels, with level ¢ containing configurations obtainable at time ¢. The first level contains only
the start node and the last level contains two nodes, “accept” and “reject;” every other level has
W = n? nodes. Each level i node has two outgoing edges to level i + 1 nodes and the machine’s
computation at this node involves using the next bit in the random string to pick one of these two
outgoing edges. We sometimes call L the length of the configuration graph and W the width.

For simplicity we first describe how to reduce the number of random bits by a factor 2. Think
of the L steps of the computation as divided in two halves, each consuming L/2 random bits.
Suppose we use some random string X of length L/2 to run the first half, and the machine is now

16.7. APPLICATIONS OF EXTRACTORS p16.35 (315)

Figure unavailable in pdf file.

Figure 16.5: Configuration graph for machine M

at node v in the middle level. The only information known about X at this point is the index of
v, which is a string of length dlogn. We may thus view the first half of the branching program
as a (deterministic) function that maps {0,1}%/2 bits to {0,1}1%™ bits. The Recycling Lemma
allows us to use a random seed of length O(logn) to recycle X to get an almost-random string
Ext(X, z) of length L/2, which can be used in the second half of the computation. Thus we can run
L steps of computation using L/2 + O(logn) bits, a saving of almost a factor 2. Using a similar
idea recursively, Nisan’s generator runs L steps using O(lognlog L) random bits.
Now we formally define Nisan’s generator.

DEFINITION 16.51 (NISAN’S GENERATOR)
For some r > 0 let Exty: {0, 1}*" x {0,1}" — {0,1}*" be an extractor function for each k > 0. For

every integer k > 0 the associated Nisan generator Gy, : {0, 1}*" — {0, 1}21C is defined recursively
as (where |a| = (k — 1)r, |z| = r)

z1 (i.e., first bit of z) k=1
Grlaoz) =
Gr-1(a) o Gg—1(Extg—1(a,2)) k>1

Now we use this generator to prove Theorem 16.48. We only need to show that the probability
that the machine goes from the start node to the “accept” node is similar for truly random strings
and pseudorandom strings. However, we will prove a stronger statement involving intermediate
steps as well.

If nodes u is a node in the configuration graph, and s is a string of length 2%, then we denote by
fu2r(s) the node that the machine reaches when started in u and its random string is s. Thus if s
comes from some distribution D, we can define a distribution f, 5+ (D) on nodes that are 2k levels
further from wu.

THEOREM 16.52

Let r = O(logn) be such that for each k < dlogn, Exty : {0,1}*" x {0,1}" — {0,1}*" is a
(kr — 2dlogn, €)-extractor. For every machine of the type described in the previous paragraphs,
and every node u in its configuration graph:

I fu2r (Uat) = fu ot (GrUir)) || 3%, (22)

where U; denotes the uniform distribution on {0,1}'.

REMARK 16.53

To prove Theorem 16.48 let u = ug, the start configuration, and 2¥ = L, the length of the entire
computation. Choose 3¥¢ < 1/10 (say), which means log1/e = O(log L) = O(logn). Using the
extractor of Section 16.6.4 as Exty, we can let » = O(logn) and so the seed length kr = O(rlog L) =
O(log? n).

pl6.36 (316) 16.7. APPLICATIONS OF EXTRACTORS

PROOF: (Theorem 16.52) Let €5 denote the maximum value of the left hand side of (22) over all
machines. The lemma is proved if we can show inductively that e, < 2¢;_1 + 2¢. The case k =1
is trivial. At the inductive step, we need to upperbound the distance between two distributions
fuz2r(D1), fu2r(Dy), for which we introduce two distributions Dg, D3 and use triangle inequality:

3

I fu2t(D1) = fuze (D) 1S D7 | fur(Di) = fuzr(Dira) || - (23)

i=1
The distributions will be:
Dl == ng
Dy = Gk(UkT)
Dy = Upk—1 0 Gp—1(Ug—1yr)
D3 = Gr-1(Ugg—1yr) © kal(U(/kq)r) (U,U" are identical but independent).
We bound the summands in (23) one by one.

Claim 1: || fuor(D1) = fuoe(D2) [|< €51
Denote Pr[f, ok-1(Ugk-1) = w] by pyw and Pr[f, or-1(Gr—1(U—1)r)) = w] by quw. According to
the inductive assumption,

1
9 Z |pu,w - Qu,w| =|| fu,2k—1(U2k—1) - fu,zk—l(Gk—l(U(k—l)r)) < €x—1-

Since D; = Uy, may be viewed as two independent copies of Ugk—1 we have
1
|| fu,Qk(Dl) - fu,Qk(DQ) || = ; 5 %puwpwv - ;puwav

where w, v denote nodes 2¥~! and 2¥ levels respectively from u

= Zpuw% Z ‘pwv - Qwv|
w v

< €r—1 (using inductive hypothesis and Z Puw = 1)

w
Claim 2: || fuor(D2) = fu2¢(Ds) || < €p—1.
The proof is similar to the previous case.
Claim 3: || fu,Qk (D3) — fu,2k (D4) ||§ 2e.
We use the Recycling Lemma. Let g, : {0, 1}*~Y" — [1, W] be defined as g, (a) = Juor-1(Gr-1(a)).
(To put it in words, apply the Nisan generator to the seed a and use the result as a random string

for the machine, using u as the start node. Output the node you reach after 251 steps.) Let
X,Y € Ugy_1), and 2z € U,. According to the Recycling Lemma,

gu(X) oY =, g, (X) o Extr_1(X, 2),

16.7. APPLICATIONS OF EXTRACTORS pl16.37 (317)

and then part 3 of Lemma 16.39 implies that the equivalence continues to hold if we apply a
(deterministic) function to the second string on both sides. Thus

gu(X) o gw(Y) Re gu(X) o gw(Eth—l(Xa Z))

for all nodes w that are 2¥~1 levels after u. The left distribution corresponds to fu2x(D3) (by which
we mean that Pr[f, ox(D3) = v] = >, Pr[gu(X) = w A gw(Y) = v]) and the right one to f, o1 (D4)
and the proof is completed. B

Chapter notes and history

The results of this section have not been presented in chronological order and some important
intermediate results have been omitted. Yao [Yao82] first pointed out that cryptographic pseudo-
random generators can be used to derandomize BPP. A short paper of Sipser [Sip88] initiated
the study of “hardness versus randomness,” and pointed out the usefulness of a certain family of
highly expanding graphs that are now called dispersers (they are reminiscent of extractors). This
research area received its name as well as a thorough and brilliant development in a paper of Nisan
and Wigderson [NW94]. MISSING DISCUSSION OF FOLLOWUP WORKS TO NW94

Weak random sources were first considered in the 1950s by von Neumann [von61]. The second
volume of Knuth’s seminal work studies real-life pseudorandom generators and their limitations.
The study of weak random sources as defined here started with Blum [Blu84]. Progressively weaker
models were then defined, culminating in the “correct” definition of an (IV, k) source in Zucker-
man [Zuc90]. Zuckerman also observed that this definition generalizes all models that had been
studied to date. (See [SZ99b] for an account of various models considered by previous researchers.)
He also gave the first simulation of probabilistic algorithms with such sources assuming k = Q(V).
A succession of papers has improved this result; for some references, see the paper of Lu, Rein-
gold, Vadhan, and Wigderson [LRVWO03], the current champion in this area (though very likely
dethroned by the time this book appears).

The earliest work on extractors —in the guise of leftover hash lemma of Impagliazzo, Levin,
and Luby [ILL89] mentioned in Section 16.6.3— took place in context of cryptography, specifically,
cryptographically secure pseudorandom generators. Nisan [Nis92] then showed that hashing could
be used to define provably good pseudorandom generators for logspace.

The notion of an extractor was first formalized by Nisan and Zuckerman [NZ96]. Trevisan [Tre01]
pointed out that any “black-box” construction of a pseudorandom generator gives an extractor, and
in particular used the Nisan-Wigderson generator to construct extractors as described in the chap-
ter. His methodology has been sharpened in many other papers (e.g.,see [LRVWO03]).

Our discussion of derandomization has omitted many important papers that successively im-
proved Nisan-Wigderson and culminated in the result of Impagliazzo and Wigderson [IWO01]that
either NEXP = BPP (randomness is truly powerful!) or BPP has an a subexponential “simula-
tion.” 7 Such results raised hopes that we were getting close to at least a partial derandomization
of BPP, but these hopes were dashed by the Impagliazzo-Kabanets [KI03] result of Section 16.3.

"The “simulation” is in quotes because it could fail on some instances, but finding such instances itself requires
exponential computational power, which nature presumably does not have.

pl6.38 (318) 16.7. APPLICATIONS OF EXTRACTORS

Trevisan’s insight about using pseudorandom generators to construct extractors has been greatly
extended. It is now understood that three combinatorial objects studied in three different fields
are very similar: pseudorandom generators (cryptography and derandomization), extractors (weak
random sources) and list-decodable error-correcting codes (coding theory and information theory).
Constructions of any one of these objects often gives constructions of the other two. For a survey,
see Vadhan’s lecture notes [?].

STILL A LOT MISSING

Expanders were well-studied for a variety of reasons in the 1970s but their application to
pseudorandomness was first described by Ajtai, Komlos, and Szemeredi [AKS87]. Then Cohen-
Wigderson [CW89] and Impagliazzo-Zuckerman (1989) showed how to use them to “recycle” ran-
dom bits as described in Section 7.B.3. The upcoming book by Hoory, Linial and Wigderson (draft
available from their web pages) provides an excellent introduction to expander graphs and their
applications.

The explicit construction of expanders is due to Reingold, Vadhan and Wigderson [RVWO00],
although we chose to present it using the replacement product as opposed to the closely related
zig-zag product used there. The deterministic logspace algorithm for undirected connectivity is due
to Reingold [?].

Exercises

§1 Verify Corollary 16.6.

§2 Show that there exists a number € > 0 and a function G : {0,1}" — {0,1}" that satisfies all of
the conditions of a 2¢*-pseudorandom generator per Definition 77, save for the computational
efficiency condition.

"sonyIfiqeqord ysiy yym soryrodord poIisop oary [[IM SYIq JuG 0%
$11q u Surddewr UOOUNJ WOPURI © ‘U AI9Ad 10J JT 1€} MOUS JUIH

§3 Show by a counting argument (i.e., probabilistic method) that for every large enough n there
is a function f:{0,1}" — {0, 1}, such that H,[f) > 2/10.

§4 Prove that if there exists f € E and € > 0 such that H,[(f)(n) > 2 for every n € N, then
MA = NP.

§5 We define an oracle Boolean circuit to be a Boolean circuit that have special gates with
unbounded fanin that are marked ORACLE. For a Boolean circuit C' and language O C {0, 1}",
we define by C9(z) the output of C' on x, where the operation of the oracle gates when fed
input ¢ is to output 1 iff ¢ € O.

(a) Prove that if every f € E can be computed by a polynomial-size circuits with oracle to
SAT, then the polynomial hierarchy collapses.

(b) For a function f : {0,1}* — {0,1} and O C {0,1}*, define H,,2(f) to be the function
that maps every n € N to the largest S such that Pryc . 10,1)" [CO(x) = f(x)] < 1/24+1/8S.

16.7.

APPLICATIONS OF EXTRACTORS p16.39 (319)

$6

§7

§8

§9

§10

§11

§12

§13

§14

§15

Prove Lemma 16.39.

Prove that for every function Ext : {0,1}" — {0,1}" and there exists an (n,n — 1)-source X
and a bit b € {0,1} such that Pr[Ext(X); = b] = 1 (where Ext(X); denotes the first bit of
Ext(X)). Prove that this implies that 0(Ext(X), Uy,) > 1/2.

Show that there is a constant ¢ > 0 such that if an algorithm runs in time 7" and requires
m random bits, and m > k + clogT, then it is not possible in general to simulate it in a
blackbox fashion using an (N, k) source and O(logn) truly random bits.

“S[reJ UOT)R[NUIIS oY) UOIYM 10]
—,XO(Yor[(q,, © Sk Pasn Sulaq SI }I 9OUIS ‘JUSIDIJo 9q JOU PIaU
WILI0S[R POZIWIOPURI ® ST 9191 TR} MOT[S 90INOS ORI I0] :JUTH

A flat (N, k) source is a (N, k) source where for every € {0,1}" p, is either 0 or exactly
27k,

Show that a source X is an (IV, k)-source iff it is a distribution on flat sources. In other words,
there is a set of flat (IV, k)-sources X1, Xo, ... and a distribution D on them such that drawing
a sample of X corresponds to picking one of the X;’s according to D, and then drawing a
sample from X;.

'seounos jep orqissod [re jusesardar jer) syurod
oY} JO [N XOAUO0D 9} UL ST Y IBYJ MOYS pue ‘0deds [eUOISUSWIP
-yC ® ul julod e se UOMNALIISIP ® MOIA 0} POOU NOX JUIF]

Use Nisan’s generator to give an algorithm that produces universal traversal sequences for
n-node graphs (see Definition ??) in n?°e")_time and O(log?n) space.

Suppose boolean function f is (S, €)-hard and let D be the distribution on m-bit strings defined
by picking inputs x1,x2, ..., T, uniformly at random and outputting f(x1)f(z2) - f(zm).
Show that the statistical distance between D and the uniform distribution is at most em.

Prove Lemma 16.42.

(Klivans and van Melkebeek 1999) Suppose the conclusion of Lemma ?? is true. Then show
that MA C i.o.—[NTIME(2")/n].

(Slightly harder) Show that if NEXP # EXP then AM C i.o.—[NTIME(2")/n].

Let A be an n x n matrix with eigenvectors u',...,u” and corresponding values A, ..., \,.

Let B be an m x m matrix with eigenvectors v', ..., v™ and corresponding values oy, . .., Q.
Prove that the matrix A ® B has eigenvectors u' ® v’/ and corresponding values \; - a;.

Prove that for every two graphs G,G', A\(G® G') < A\(G) + A(G’) without using the fact that
every symmetric matrix is diagonalizable.

"0F'L ewwer as() JUIE

p16.40 (320) 16.7. APPLICATIONS OF EXTRACTORS

§16 Let G be an n-vertex D-degree graph with p combinatorial edge expansion for some p > 0.
(That is, for every a subset S of G’s vertices of size at most n/2, the number of edges
between S and its complement is at least pd|S|.) Let G’ be a D-vertex d-degree graph with
¢ combinatorial edge expansion for some p’ > 0. Prove that G ® G’ has at least p?p’/1000
edge expansion.

' 5 Jo uotsuedxo oY) osn Io)ye] o1}
103 9[IYM ‘5 Jo uotsuedxa o1} oSN ISWLIOJ oY} 10 ey} uey) ssof dn
oye) Je) 9SOY) Pue SISO IY) Jo uorrod (1/d — T ueysy o1ow
dn oxe) ey} $398qNS YY) A[IUSISPIP JBSI], 'SISISN[D [RNPIATPUI 81}
JO sjesqus u se Jo JYINOYY oq ued £ @) £ JO 10squs A1oAy JUIH

Acknowledgements

We thank Luca Trevisan for cowriting an early draft of this chapter. Thanks also to Valentine
Kabanets, Omer Reingold, and Iannis Tourlakis for their help and comments.

Chapter 17

Hardness Amplification and Error
Correcting Codes

We pointed out in earlier chapters (e.g., Chapter ?? the distinction between worst-case hardness
and average-case hardness. For example, the problem of finding the smallest factor of every given
integer seems difficult on worst-case instances, and yet is trivial for at least half the integers —
namely, the even ones. We also saw that functions that are average-case hard have many uses,
notably in cryptography and derandomization.

In this chapter we study techniques for amplifying hardness. First, we see Yao’s XOR Lemma,
which transforms a “mildly hard” function (i.e., one that is hard to compute on a small fraction
of the instances) to a function that is extremely hard, for which the best algorithm is as bad as
the algorithm that just randomly guesses the answer. We mentioned Yao’s result in the chapter
on cryptography as a means to transform weak one-way functions into strong one-way functions.
The second result in this chapter is a technique to use error-correcting codes to transform worst-
case hard functions into average-case hard functions. This transformation unfortunately makes the
running time exponential, and is thus useful only in derandomization, and not in cryptography.

In addition to their applications in complexity theory, the ideas covered here have had other
uses, including new constructions of error-correcting codes and new algorithms in machine learning.

17.1 Hardness and Hardness Amplification.

We now define a slightly more refined notion of hardness, that generalizes both the notions of
worst-case and average-case hardness given in Definition 16.7:

DEFINITION 17.1 (HARDNESS)

Let f: {0,1}* — {0,1} and p : N — [0,1]. We define H2(f) to be the func-
tion from N to N that maps every number n to the largest number S such that
Pryc.101)7[C(x) = f(x)] < p(n) for every Boolean circuit C' on n inputs with size
at most S.

pl7.1 (321)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pl7.2 (322) 17.2. MILD TO STRONG HARDNESS: YAO’S XOR LEMMA.
Note that, in the notation of Definition 16.7, H.{ f) = H(f) and H, f)(n) = max {S : HY/2*1/5(f)(n) > S}.

av,

In this chapter we show the following results for every two functions S, S’ : N — N:

Worst-case to mild hardness. If there is a function f € E = DTIME(2°() such that H,(f)(n) =
H.(f)(n) > S(n) then there is a function f’ € E such that HL?(f)(n) > S(en) for some

constant € > 0 and every sufficiently large n.

Mild to strong hardness. If f’ € E satisfies H2.9(f")(n) > S’(n) then there is f” € E and € > 0
such that H,[(f")(n) > S’ (n)".

Combining these two results with Theorem 16.10, this implies that if there exists a function
f € E with H,{f)(n) > S(n) then there exists an S({°)°-pseudorandom generator for some € > 0,
and hence:

Corollary 1 If there exists f € E and ¢ > 0 such that H,(f) > 2" then BPP C QuasiP =
U.DTIME(2!°8 7).

Corollary 2 If there exists f € E such that H, f) > n“(!) then BPP C SUBEXP = N.DTIME(2").

To get to BPP = P, we need a stronger transformation. We do this by showing how to
transform in one fell swoop, a function f € E with H,J{f) > S(n) into a function f' € E with
H.{f) > S(en)¢ for some ¢ > 0. Combined with Theorem 16.10, this implies that BPP = P if
there exists f € E with H,.{(f) > 28(n)

17.2 Mild to strong hardness: Yao’s XOR Lemma.

We start with the second result described above: transforming a function that has “mild” average-
case hardness to a function that has strong average-case hardness. The transformation is actually
quite simple and natural, but its analysis is somewhat involved (yet, in our opinion, beautiful).

THEOREM 17.2 (YAO’S XOR LEMMA)

For every f : {0,1}" — {0,1} and k € N, define f® : {0,1}"* — {0,1} as follows:
Oy, ap) = S f(2) (mod 2).

For every § > 0,5 and € > 2(1 — §/2)%, if H.=%(f) > S then

avg

H1/2+e(f€Bk) >

2
€
avg = 1001log(1/de) S

The intuition behind Theorem 17.2 derives from the following fact. Suppose we have a biased
coin that, whenever it is tossed, comes up heads with probability 1 — § and tails with probability
0. If 6 is small, each coin toss is fairly predictable. But suppose we now toss it k times and define
a composite coin toss that is “heads” iff the coin came up heads an odd number of times. Then
the probability of “heads” in this composite coin toss is at most 1/2 + (1 — 26)* (see Exercise 1),
which tends to 1/2 as k increases. Thus the parity of coin tosses becomes quite unpredictable. The

17.2. MILD TO STRONG HARDNESS: YAO’S XOR LEMMA. pl7.3 (323)

analogy to our case is that intuitively, for each 4, a circuit of size S has chance at most 1 — § of
“knowing” f(z;) if x; is random. Thus from its perspective, whether or not it will be able to know
f(z;) is like a biased coin toss. Hence its chance of guessing the parity of the k bits should be
roughly like 1/2 + (1 — 20)*.

We transform this intuition into a proof via an elegant result of Impagliazzo, that provides some
fascinating insight on mildly hard functions.

DEFINITION 17.3 (0-DENSITY DISTRIBUTION)
For § < 1 a d-density distribution H over {0,1}" is one such that for every z € {0,1}", Pr[H =

27774

REMARK 17.4
Note that in Chapter 16 we would have called it a distribution with min entropy n — log1/4.

The motivating example for this definition is the distribution that is uniform over some subset
of size 2™ and has 0 probability outside this set.

A priori, one can think that a function f that is hard to compute by small circuits with
probability 1 — ¢ could have two possible forms: (a) the hardness is sort of “spread” all over the
inputs, and it is roughly 1 — d-hard on every significant set of inputs or (b) there is a subset H
of roughly a § fraction of the inputs such that on H the function is extremely hard (cannot be
computed better than % + € for some tiny €) and on the rest of the inputs the function may be even
very easy. Such a set may be thought of as lying at the core of the hardness of f and is sometimes
called the hardcore set. Impagliazzo’s Lemma shows that actually every hard function has the form
(b). (While the Lemma talks about distributions and not sets, one can easily transform it into a
result on sets.)

LEMMA 17.5 (IMPAGLIAZZO’S HARDCORE LEMMA)
For every 6 >0, f : {0,1}" — {0,1}", and € > 0, if HL-%(f) > S then there exists a distribution H

over {0,1}" of density at least §/2 such that for every circuit C' of size at most Wé/&)’

Pr[C@) = f(a)) < Yote,

Proof of Yao’s XOR Lemma using Impagliazzo’s Hardcore Lemma.

We now use Lemma 17.5 to transform the biased-coins intuition discussed above into a proof of the
XOR Lemma. Let f:{0,1}" — {0,1} be a function such that Halvg_‘s(f) > S8, let k € N and suppose,

for the sake of contradiction, that there is a circuit C' of size Wz(l/&)é’ such that

k
Pr Clz,...,m) = Y flzi) (mod2)| >12+e, (1)

k
($1,...,Ik)€RUn i=1

where € > 2(1 — §/2)*.

Let H be the hardcore distribution of dens ity at least &’ = §/2 that is obtained from Lemma 17.5,
on which every circuit C’ fails to compute f with probability better than 1/2 + €/2. Define a dis-
tribution G over {0,1}" as follows: for every z € {0,1}", Pr[G = 2] = (1 — &' Pr[H = z]) /(1 — &').

pl7.4 (324) 17.3. PROOF OF IMPAGLIAZZO’S LEMMA

Note that G is indeed a well-defined distribution, as H has density at least §’. Also note that if H
was the uniform distribution over some subset of {0,1}" of size 6’2", then G will be the uniform
distribution over the complement of this subset.

We can think of the process of picking a uniform element in {0,1}" as follows: first toss a
d’-biased coin that comes up “heads” with probability §. Then, if it came up “heads” choose a
random element out of H, and with probability 1 — ¢, and otherwise choose a random element out
of G. We shorthand this and write

Up=(1—06)G+6H. 2)

If we consider the distribution (U,,)? of picking two random strings, then by (2) it can be written
as (1—6)2G?+ (1 - 0")§'GH +6'(1 — §')HG + 6" H?. Similarly, for every k

(Un)f = (1=8)"G" + (1= 810G H +- -+ 6" HF. (3)
For every distribution D over {0, 1}"k let Pp be the probability of the event of the left-hand side of

(1) that C(z1,...,2x) = Zle f(z;) (mod 2) where x1,. ..,z are chosen from D. Then, combining
(1) and (3),

1/2 +e< P(Un)k = (1 — 5’)kPGk + (1 — 5/)k_15,PG’k—1H 4+ .4 (SlkPHk)
But since ¢’ = §/2 and € > 2(1 — §/2)* and Pgr < 1 we get
Yo 4e/2<ate—(1—08)< (1= Pooigg+ -+ 6Py

Notice, the coefficients of all distributions on the right hand side sum up to less than one, so there
must exist a distribution D that has at least one H component such that Pp > 1/2 + ¢/2. Suppose
that D = G¥~1H (all other cases are handled in a similar way). Then, we get that

k

[C(X1,.. ., Xpo1, Xi) = Y f(Xi) (mod 2)] > 1/a+¢/2. (4)

Pr
X1, X 1€rG,XreRH i—1
i=

By the averaging principle, (4) implies that there exist k — 1 strings x1,...,2,_1 such that if
b=S"""1 f(x;) (mod 2) then,

Pr [C(x1,...,25-1,Xk) =b+ f(Xk) (mod 2)] >1/2+¢/2. (5)
XrerH
But by “hardwiring” the values z1, ...,z and b into the circuit C, (5) shows a direct contradiction

to the fact that H is a hardcore distribution for the function f. W

17.3 Proof of Impagliazzo’s Lemma

Let f be a function with Halvg_‘s(f) > S. To Prove Lemma 17.5 we need to show a distribution H over
{0,1}" (with no element of weight more than 2-27"/4) on which every circuit C of size S’ cannot
compute f with probability better than 1/2 + ¢ (where S’ are as in the Lemma’s statement).

17.3. PROOF OF IMPAGLIAZZO’S LEMMA pl7.5 (325)

Let’s think of this task as a game between two players named Russell and Noam. Russell first
sends to Noam some distribution H over {0,1}" with density at least 6. Then Noam sends to
Russell some circuit C' of size at most S’. Russell then pays to Noam E,c, m[Rights(z)] dollars,
where Right(z) is equal to 1 if C(z) = f(x) and equal to 0 otherwise. What we need to prove is
that there is distribution that Russell can choose, such that no matter what circuit Noam sends,
Russell will not have to pay him more than 1/2 + ¢ dollars.

An initial observation is that Russell could have easily ensured this if he was allowed to play
second instead of first. Indeed, under our assumptions, for every circuit C of size S (and so, in
particular also for circuits of size S’ which is smaller than S), there exists a set S¢ of at least
92" > (0/2)2™ inputs such that C(x) # f(x) for every x € Sc. Thus, if Noam had to send his
circuit C', then Russell could have chosen H to be the uniform distribution over S¢. Thus H would
have density at least §/2 and Egc,m[Righto(x)] = 0, meaning that Russell wouldn’t have to pay
Noam a single cent.

Now this game is a zero sum game, since whatever Noam gains Russell loses and vice versa,
tempting us to invoke von-Neumann’s famous Min-Maz Theorem (see Note 17.7) that says that
in a zero-sum game it does not matter who plays first as long as we allow randomized strategies."
What does it mean to allow randomized strategies in our context? It means that Noam can
send a distribution C over circuits instead of a single circuit, and the amount Russell will pay is
EcepcEzerm(Righto(z)]. (It also means that Russell is allowed to send a distribution over ¢/2-
density distributions, but this is equivalent to sending a single §/2-density distribution.)

Thus, we only need to show that, when playing second, Russell can still ensure a payment
of at most 1/2 4+ € dollars even when Noam sends a distribution C of S’-sized circuits. For every
distribution C, we say that an input z € {0,1}" is good for Noam (good for short) with respect to
C if Ecepe[Righto(z)] > 1/2+ €. It suffices to show that for every distribution C over circuits of size
at most S’, the number of good x’s with respect to C is at most 1 — §/2. (Indeed, this means that
for every C, Russell could choose as its distribution H the uniform distribution over the bad inputs
with respect to C.)

Suppose otherwise, that there is at least a 1 — §/2 fraction of inputs that are good for C. We
will use this to come up with an S-sized circuit C' that computes f on at least a 1 — § fraction
of the inputs in {0,1}", contradicting the assumption that Halvg_‘s(f) > S. Let t = 10log(1/d¢) /€,
choose C1,...,C; at random from C and let C = maj{C1,...,C;} be the circuit of size tS’ < §
circuit that on input = outputs the majority value of {C1(z),...,C¢(z)}. If x is good for C, then
by the Chernoff bound we have that C(z) = f(z) with probability at least 1 — §/2 over the choice
of Ci,...,C};. Since we assume at least 1 — §/2 of the inputs are good for C, we get that

EverfoynEcienc,...ciencRightiaice, .o (@)] = (1-9(1-%) >1-3. (6)

But by linearity of expectation, we can switch the order of expectations in (6) obtaining that

EClERcv--thERCExGR{O,l}"[Rightmaj{cl,...,ct}(x)] >1- 5?

!The careful reader might note that another requirement is that the set of possible moves by each player is finite,
which does not seem to hold in our case as Russell can send any one of the infinitely many ¢/2-density distributions.
However, by either requiring that the probabilities of the distribution are multiples of i555= (which won’t make any
significant difference in the game’s outcome), or using the fact that each such distribution is a convex sum of uniform
distributions over sets of size at least (§/2)2" (see Exercise 9 of Chapter 16), we can make this game finite.

pl7.6 (326) 17.3. PROOF OF IMPAGLIAZZO’S LEMMA

which in particular implies that there exists a circuit C of size at most .S such that E;c v, [Righto(z)] >
1 — 9, or in other words, C' computes f on at least a 1 — § fraction of the inputs. H

REMARK 17.6

Taken in the contrapositive, Lemma 17.5 implies that if for every significant chunk of the inputs
there is some circuit that computes f with on this chunk with some advantage over 1/2, then there
is a single circuit that computes f with good probability over all inputs. In machine learning such
a result (transforming a way to weakly predict some function into a way to strongly predict it) is
called Boosting of learning methods. Although the proof we presented here is non-constructive,
Impagliazzo’s original proof was constructive, and was used to obtain a boosting algorithm yielding
some new results in machine learning, see [?].

17.3. PROOF OF IMPAGLIAZZO’S LEMMA

pl7.7 (327)

NotE 17.7 (THE MIN-MAX THEOREM)

A zero sum game is, as the name implies, a game between two parties in
which whatever one party loses is won by the other party. It is modeled
by an m x n matrix A = (a; ;) of real numbers. The game consists of only
a single move. One party, called the minimizer or column player, chooses
an index j € [n] while the other party, called the mazimizer or row player,
chooses an index i € [m]. The outcome is that the column player has to pay
a; j units of money to the row player (if a; ; is negative then actually the row
player has to pay). Clearly, the order in which players make their moves is
important. Surprisingly, if we allow the players randomized strategies, then
the order of play becomes unimportant.

The game with randomized (also known as mized) strategies is as follows.
The column player chooses a distribution over the columns; that is, a vector
p € [0,1]" with " ; p; = 1. Similarly, the row player chooses a distribution
q over the rows. The amount paid is the expectation of a; ; for j chosen from
p and ¢ chosen from q. If we think of p as a column vector and q as a row
vector then this is equal to gqAp. The min-max theorem says:

min max qAp = max min qAp (7)
p€[0,1]™ g€[0,1]™ q€[0,1]™ peg[0,1]™
Yipi=1 3iq;=1 Yigi=1 Xip;i=1

The min-max theorem can be proven using the following result, known as
Farkas’ Lemma:? if C' and D are disjoint convex subsets of R™, then there
is an m — 1 dimensional hyperplane that separates them. That is, there is
a vector z and a number a such that for every x € C, (x,2) =), ;2 < a
and for every y € D, (y,z) > a. (A subset C C R™ is conver if
whenever it contains a pair of points x,y, it contains the line segment
{ax+ (1 —a)y : 0 < a < 1} that lies between them.) We ask you to prove
Farkas’” Lemma in Exercise 2 but here is a “proof by picture” for the two

dimensional case: :

hyperplane
Farkas’ Lemma implies the min-max theorem by noting that
maxqminpgAp > ¢ if and only if the convex set D =
{Ap:p € [0,1]" > .pi=1} does not intersect with the convex set
C = {X € R™ : Vigpmei < c} and using the Lemma to show that this
implies the existence of a probability vector q such that (q,y) > ¢ for every
y € D (see Exercise 3). The Min-Max Theorem is equivalent to another
well-known result called linear programming duality, that can also be proved
using Farkas’ Lemma (see Exercise 4).

17.4. ERROR CORRECTING CODES: THE INTUITIVE CONNECTION TO HARDNESS
p17.8 (328) AMPLIFICATION

17.4 FError correcting codes: the intuitive connection to hardness
amplification

Now we construct average-case hard functions using functions that are only worst-case hard. To do
so, we desire a way to transform any function f to another function g such that if there is a small
circuit that computes g approximately (i.e., correctly outputs g(x) for many z) then there is a small
circuit that computes f at all points. Taking the contrapositive, we can conclude that if there is
no small circuit that computes f then there is no small circuit that computes g approximately.

Let us reason abstractly about how to go about the above task.

View a function f:{0,1}" — {0,1} as its truth table, namely, as a string of length 2", and
view any circuit C' for computing this function as a device that, given any index x € [2"], gives the
x’th bit in this string. If the circuit only computes g on ”average” then this device may be thought
of as only partially correct; it gives the right bit only for many indices x’s, but not all. Thus we
need to show how to turn a partially correct string for g into a completely correct string for f.
This is of course reminiscent of error correcting codes (ECC), but with a distinct twist involving
computational efficiency of decoding, which we will call local decoding.

The classical theory of ECC’s (invented by Shannon in 1949) concerns the following problem.
We want to record some data z € {0,1}" on a compact disk to retrieve at a later date, but that
compact disk might scratched and say 10% of its contents might be corrupted. The idea behind
error correcting codes is to encode z using some redundancy so that such corruptions do not prevent
us from recovering x.

The naive idea of redundancy is to introduce repetitions but that does not work. For example
suppose we repeat each bit three times, in other words encode x as the string y = x1z12x122%2%2 . . . TpTpTy.
But now if the first three coordinates of y are corrupted then we cannot recover x1, even if all other
coordinates of y are intact. (Note that the first three coordinates take only a 1/n < 10% fraction
of the entire string y.) Clearly, we need a smarter way.

DEFINITION 17.8 (ERROR CORRECTING CODES)

For z,y € {0,1}"™, the fractional Hamming distance of x and y, denoted A(x,y), is
equal to L [{i : z; # yi}|.

For every § € [0,1], a function E : {0,1}" — {0,1}"" is an error correcting code
(ECC) with distance ¢, if for every x # y € {0,1}", A(E(x), E(y)) > 6. We call the
set Im(E) ={E(z):x € {0,1}"} the set of codewords of E.

Suppose E : {0,1}" — {0,1}"" is an ECC of distance § > 0.2. Then the encoding x — E(x)
suffices for the CD storage problem (momentarily ignoring issues of computational efficiency).
Indeed, if y is obtained by corrupting 0.1m coordinates of E(z), then A(y, E(x)) < /2 and by the
triangle inequality A(y, E(z")) > /2 for every 2/ # x. Thus, x is the unique string that satisfies

2Many texts use the name Farkas’ Lemma only to denote a special case of the result stated in Note 17.7. Namely
the result that there is a separating hyperplane between any disjoint sets C, D such that C is a single point and D
is a set of the form {Ax : V;x; > 0} for some matrix A.

17.4. ERROR CORRECTING CODES: THE INTUITIVE CONNECTION TO HARDNESS
AMPLIFICATION p17.9 (329)

Figure 17.1: In a -distance error correcting code, A(E(x), E(z')) > § for every x # 2’. We can recover z from
every string y satisfying A(y, E(x)) < §/2 since the §/2-radius ball around every codeword z = E(z) does not contain
any other codeword.

A(y,E(x)) < 0/2. (See Figure 17.1.)

Of course, we still need to show that error correcting codes with minimum distance 0.2 actually
exist. The following lemma shows this. It introduces H(J), the so-called entropy function, which
lies strictly between 0 and 1 when § € (0, 1).

LEMMA 17.9
For every 6 < 1/2 and sufficiently large n, there exists a function E : {0,1}" — {0,1}
that is an error correcting code with distance 0, where H(5) = §log(1/6) + (1 — §) log(1/(1 —§)).

2n/(1-H(3))

PROOF: We simply choose the function E : {0,1}" — {0,1}"™ at random for m = 2n/(1 — H(d)n.
That is, we choose 2" random strings y1, Y2, - . .,y2n and E will map the input x € {0,1}" (which
we can identify with a number in [2"]) to the string y,.

It suffices to show that the probability that for some ¢ < j with 4,5 € [2"], A(y;,y;) < 0 is less
than 1. But for every string y;, the number of strings that are of distance at most J to it is ([5%])

which at most 0.99 - 270)™ for m sufficiently large (see Appendix A) and so for every j > i, the
probability that y; falls in this ball is bounded by 0.99 - 2H(5)m/2m. Since there are at most 22"
such pairs %, j, we only need to show that

2H(5)m

2
0.99 2" =0

<1.

which is indeed the case for our choice of m. B

REMARK 17.10
By a slightly more clever argument, we can get rid of the constant 2 above, and show that there

exists such a code F : {0,1}" — {0, 1}"/(17]{(6)) (see Exercise 6). We do not know whether this is
the smallest value of m possible.

Why half? Lemma 17.9 only provides codes of distance ¢ for 6 < 1/2 and you might wonder
whether this is inherent or can we have codes of even greater distance. It turns out we can have
codes of distance 1/2 but only if we allow m to be exponentially larger than n (i.e., m > 2%/2). For

17.4. ERROR CORRECTING CODES: THE INTUITIVE CONNECTION TO HARDNESS
p17.10 (330) AMPLIFICATION

every § > 1/2, if n is sufficiently large then there is no ECC E : {0,1}" — {0,1}" that has distance
0, no matter how large m is. Both these bounds are explored in Exercise 7.

The mere existence of an error correcting code is not sufficient for most applications: we need
to actually be able to compute them. For this we need to show an explicit function E : {0,1}" —
{0,1}™ that is an ECC satisfying the following properties:

Efficient encoding There is a polynomial time algorithm to compute E(x) from z.

Efficient decoding There is a polynomial time algorithm to compute x from every y such that
A(y,E(x)) < p for some p. (For this to be possible, the number p must be less than /2,
where § is the distance of E.)

There is a very rich and still ongoing body of work dedicated to this task, of which Section 17.5
describes a few examples.

17.4.1 Local decoding

For use in hardness amplification, we need ECCs with more than just efficient encoding and decoding
algorithms: we need local decoders, in other words, decoding algorithms whose running time is
polylogarithmic. Let us see why.

Recall that we are viewing a function from {0,1}" to {0, 1} as a string of length 2. To amplify
its hardness, we take an EC'C' and map function f to its encoding E(f). To prove that this works,
it suffices to show how to turn any circuit that correctly computes many bits of E(f) into a circuit
that correctly computes all bits of f. This is formalized using a local decoder, which is a decoding
algorithm that can compute any desired bit in the string for f using a small number of random
queries in any string y that has high agreement with (in other words, low hamming distance to)
E(f). Since we are interested in the circuits of size poly(n)— in other words, polylogarithmic in 2™
—this must also be the running time of the local decoder.

DEFINITION 17.12 (LOCAL DECODER)

Let E : {0,1}" — {0,1}"" be an ECC and let p and ¢ be some numbers. A local decoder for E
handling p errors is an algorithm L that, given random access to a string y such that A(y, E(z)) < p
for some (unknown) z € {0,1}", and an index j € N, runs for polylog(m) time and outputs z; with
probability at least 2/3.

REMARK 17.13
The constant 2/3 is arbitrary and can be replaced with any constant larger than 1/2, since the
probability of getting a correct answer can be amplified by repetition.

Notice, local decoding may be useful in applications of ECC’s that have nothing to do with
hardness amplification. Even in context of CD storage, it seems nice if we do not to have to read
the entire CD just to recover one bit of x.

Using a local decoder, we can turn our intuition above of hardness amplification into a proof.

17.4. ERROR CORRECTING CODES: THE INTUITIVE CONNECTION TO HARDNESS

AMPLIFICATION

pl7.11 (331)

NotTE 17.11 (HIGH DIMENSIONAL GEOMETRY)

While we are normally used to geometry in two or three dimensions, we can
get some intuition on error correcting codes by considering the geometry of
high dimensional spaces. Perhaps the strongest effect of high dimension is the
following: compare the cube with all sides 1 and the ball of radius 1/4. In one
dimension, the ratio between their areas is 1/(1/2) = 2, in two dimensions
it is 1/(w1/4%) = 16/, while in three dimensions it is 1/(4/371/4%) = 48 /7.
Note that as the number of dimension grows, this ratio grows exponentially
in the number of dimensions. (Similarly for any two radii r; > ry the volume
of the m-dimension ball of radius r; is exponentially larger than the volume
of the ro-radius ball.)

0 1/4 3/4 1 0 1/4 3/4 1 0 1/4 34 1
Ball volume=1/2

B.V. = n(1/4)2~3.14/16 B.V. =4/3n(1/4)3 ~ 3.14/48

This intuition lies behind the existence of an error correcting code with
distance 1/4 mapping n bit strings into m = 5n bit strings. We can have om/5
codewords that are all of distance at least 1/4 from one another because, also
in the Hamming distance, the volume of the radius 1/4 ball is exponentially
smaller than the volume of the cube {0,1}". Therefore, we can “pack” om/5
such balls within the cube.

pl7.12 (332) 17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES

length n string function on {0,1}" =
string of length 2"
I X I I f |
| E(x) | | E(f) |

Y Y

W corrupted E(x)//” algorithm computing f

I X I Ialgorithm computing f per'ectly

Figure 17.2: An ECC allows to map a string = to E(z) such as z can be reconstructed from a corrupted version of
E(z). The idea is to treat a function f : {0,1}" — {0, 1} as a string in {0,1}*", encode it using an ECC to a function
f . Intuitively, f should be hard on the average case if f was hard on the worst case, since an algorithm to solve f
with probability 1 — p could be transformed (using the ECC’s decoding algorithm) to an algorithm computing f on
every input.

THEOREM 17.14

Suppose that there is an ECC with polynomial-time encoding algorithm and a local decoding
algorithm handling p errors (where p is a constant independent of the input length). Suppose also
that there is f € E with H,.{f)(n) > S(n) for some function S : N — N satisfying S(n) > n. Then,
there exists € > 0 and g € E with H,.{g)(n) > S(en)¢

The proof of Theorem 17.14 follows essentially from the definition, and we will prove it for the
case of a particular code later on in Theorem 17.24.

17.5 Constructions of Error Correcting Codes

We now describe some explicit functions that are error correcting codes, building up to the con-
struction of an explicit ECC of constant distance with polynomial-time encoding and decoding.
Section 17.6 describes local decoding algorithms for some of these codes.

17.5.1 Walsh-Hadamard Code.

For two strings x,y € {0,1}", define z ® y to be the number Y " | z;y; (mod 2). The Walsh-
Hadamard code is the function WH : {0,1}" — {0,1}?" that maps a string = € {0,1}" into the
string z € {0,1}?" where for every y € {0,1}", the y** coordinate of z is equal to 2 ®y (we identify
{0,1}" with [2"] in the obvious way).

CrLAam 17.15
The function WH is an error correcting code of distance 1/2.

17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES pl7.13 (333)

| Wcorrupted E ;W

N

local
decoder

Figure 17.3: A local decoder gets access to a corrupted version of E(z) and an index i and computes from it x;
(with high probability).

PRrROOF: First, note that WH is a linear function. By this we mean that if we take = + y to be the
componentwise addition of z and y modulo 2, then WH(z + y) = WH(z) + WH(y). Now, for every
x #y € {0,1}" we have that the number of 1’s in the string WH(x) + WH(y) = WH(z +y) is equal
to the number of coordinates on which WH(x) and WH(y) differ. Thus, it suffices to show that for
every z # 0", at least half of the coordinates in WH(z) are 1. Yet this follows from the random
subsum principle (Claim A.5) that says that the probability for y € {0,1}" that z ®y = 1 is
exactly 1/2. B

17.5.2 Reed-Solomon Code

The Walsh-Hadamard code has a serious drawback: its output size is exponential in the input size.
By Lemma 17.9 we know that we can do much better (at least if we’re willing to tolerate a distance
slightly smaller than 1/2). To get towards explicit codes with better output, we need to make a
detour to codes with non-binary alphabet.

DEFINITION 17.16
For every set ¥ and z,y € £™, we define A(z,y) = = |{i : z; # y;}|. We say that E: £" — X™ i
an error correcting code with distance § over alphabet Y if for every x # y € 3", A(E(z), E(y)) > 6

Allowing a larger alphabet makes the problem of constructing codes easier. For example, every
ECC with distance 0 over the binary ({0, 1}) alphabet automatically implies an ECC with the same
distance over the alphabet {0, 1,2,3}: just encode strings over {0,1,2,3} as strings over {0,1} in
the obvious way. However, the other direction does not work: if we take an ECC over {0, 1,2,3}
and transform it into a code over {0,1} in the natural way, the distance might grow from ¢ to 20
(Exercise 8).

The Reed-Solomon code is a construction of an error correcting code that can use as its alphabet
any field F:

pl7.14 (334) 17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES

E,°E,{0,1}"-->{0,1}m

x |
E,:{0,1)"->5m l

Eeol | [[[00]
E%/ E2¢ Ez:z“>{0’1}k\

B[]

Figure 17.4: If Ey,E; are ECC’s such that E; : {0,1}" — £™ and Es : ¢ — {0,1}", then the concatenated code
E :{0,1}" — {0,1}"* maps x into the sequence of blocks Ez(Ei(x)1),. .., Ea(E1(2)m).

DEFINITION 17.17
Let F be a field and n,m numbers satisfying n < m < |F|. The Reed-Solomon code from F™ to
F™ is the function RS : F" — F" that on input ag,...,a,—1 € F™ outputs the string zg, ..., Zm_1

where
n—1
2= ail]
i=0
and f; denotes the jt" element of F under some ordering.

LEMMA 17.18
The Reed-Solomon code RS : F"* — F™ has distance 1 — %

PROOF: As in the case of Walsh-Hadamard code, the function RS is also linear in the sense that
RS(a + b) = RS(a) + RS(b) (where addition is taken to be componentwise addition in F). Thus, as
before we only need to show that for every a # 0", RS(a) has at most n coordinates that are zero.
But this immediate from the fact that a nonzero n — 1 degree polynomial has at most n roots (see
Appendix A). B

17.5.3 Concatenated codes

The Walsh-Hadamard code has the drawback of exponential-sized output and the Reed-Solomon
code has the drawback of a non-binary alphabet. We now show we can combine them both to
obtain a code without neither of these drawbacks:

DEFINITION 17.19

If RS is the Reed-Solomon code mapping F” to F™ (for some n,m,F) and WH is the Walsh-
Hadamard code mapping {O,l}logm to {0,1}210gm = {0,1}‘F‘, then the code WH o RS maps
{0,1}"los Il to {0, 1}m|F| in the following way:

1. View RS as a code from {0,1}"1°/¥l to F™ and WH as a code from F to {0, 1} using the

canonical representation of elements in I as strings in {0, 1}10g ¥,

2. For every input z € {0,1}"'°8 ¥l WHoRS(2) is equal to WH(RS(z)1), ..., WH(RS(2),,) Where
RS(z); denotes the it symbol of RS(z).

17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES pl7.15 (335)

Note that the code WH o RS can be computed in time polynomial in n,m and |F|. We now
analyze its distance:

CLAIM 17.20
Let 01 = 1 —n/m be the distance of RS and 2 = 1/2 be the distance of WH. Then WH o RS is an
ECC of distance 616s.

PROOF: Let 2,y be two distinct strings in {0, 1}°8FI"If we set 2/ = RS(2’) and 3’ = RS(y/) then
A2’ y') > 1. If we let 2’ (resp. y”) to be the binary string obtained by applying WH to each of
these blocks, then whenever two blocks are distinct, the corresponding encoding will have distance
2, and so §(z”,y") > 6102. W

REMARK 17.21
Because for every k € N, there exists a finite field |F| of size in [k, 2k] (e.g., take a prime in [k, 2k] or
a power of two) we can use this construction to obtain, for every n, a polynomial-time computable

ECC E:{0,1}" — {0, 1}20"2 of distance 0.4.

Both Definition 17.19 and Lemma 17.20 easily generalize for codes other than Reed-Solomon
and Hadamard. Thus, for every two ECC’s Ey : {0,1}" — ¥™ and Ey : ¥ — {0,1}"* their
concatenation Ey o Ey is a code from {0,1}" to {0,1}™" that has distance at least &8y where &;
(resp. d2) is the distance of Ej (resp. E3), see Figure 17.6. In particular, using a different binary
code than WH, it is known how to use concatenation to obtain a polynomial-time computable ECC
E :{0,1}" — {0,1}"™ of constant distance 6 > 0 such that m = O(n).

17.5.4 Reed-Muller Codes.

Both the Walsh-Hadamard and and the Reed-Solomon code are special cases of the following family
of codes known as Reed-Muller codes:

DEFINITION 17.22 (REED-MULLER CODES)

Let F be a finite field, and let ¢, d be numbers with d < |F|. The Reed Muller code with parameters
F,?,d is the function RM : F(5) — FF’ that maps every {-variable polynomial P over [F of total
degree d to the values of P on all the inputs in F.

That is, the input is a polynomial of the form

glen. . w) = Y Cha ey oy
i1+i2+“.+i4§£
specified by the vector of (ézd)
for every z1,...,xp € F.

coefficients {¢;,,.. ;,} and the output is the sequence {g(z1,...,z/)}

Setting ¢ = 1 one obtains the Reed-Solomon code (for m = |F|), while setting d = 1 and
F = GF(2) one obtains a slight variant of the Walsh-Hadamard code. (IL.e., the code that maps
every z € {0,1}" into the 2-2" long string z such that for every y € {0,1}",a € {0,1}, 2y, = 2Oy+a
(mod 2).)

The Schwartz-Zippel Lemma (Lemma A.25 in Appendix A) shows that the Reed-Muller code
is an ECC with distance 1 — d/|F|. Note that this implies the previously stated bounds for the
Walsh-Hadamard and Reed-Solomon codes.

pl7.16 (336) 17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES
17.5.5 Decoding Reed-Solomon.

To actually use an error correcting code to store and retrieve information, we need a way to
efficiently decode a data x from its encoding E(x) even if E(x) has been corrupted in a fraction p
of its coordinates. We now show this for the Reed-Solomon code, that treats x as a polynomial g,
and outputs the values of this polynomial on m inputs.

We know (see Theorem A.24 in Appendix A) that a univariate degree d polynomial can be
interpolated from any d + 1 values. Here we consider a robust version of this procedure, whereby
we wish to recover the polynomial from m values of which pm are “faulty” or “noisy”.

Let (a1,b1), (a2,b2), ..., (am,bn) be a sequence of (point, value) pairs. We say that a degree d
polynomial g(x) describes this (a;, b;) if g(a;) = b;.

We are interested in determining if there is a degree d polynomial g that describes (1 — p)m of
the pairs. If 2pm > d then this polynomial is unique (exercise). We desire to recover it, in other
words, find a degree d polynomial g such that

g(a;) = b; for at (1 — p)m least values of 1. (8)

The apparent difficulty is in identifying the noisy points; once those points are identified, we
can recover the polynomial.

Randomized interpolation: the case of p < 1/(d+ 1)

If p is very small, say, p < 1/(2d) then we can actually use the standard interpolation technique:
just select d+ 1 points at random from the set {(a;, b;)} and use them to interpolate. By the union
bound, with probability at least 1 — p(d+ 1) > 0.4 all these points will be non-corrupted and so we
will recover the correct polynomial. (Because the correct polynomial is unique, we can verify that
we have obtained it, and if unsuccessful, try again.)

Berlekamp-Welch Procedure: the case of p < (m —d)/(2m)

The Berlekamp-Welch procedure works when the error rate p is bounded away from 1/2; specifically,
p < (m —d)/(2m). For concreteness, assume m = 4d and p = 1/4.

1. We claim that if the polynomial g exists then there is a degree 2d polynomial ¢(z) and a
degree d nonzero polynomial e(z) such that

c(a;) = bie(a;) for all 4. 9)

The reason is that the desired e(z) can be any nonzero degree d polynomial whose roots are
precisely the a;’s for which g(a;) # b;, and then just let ¢(z) = g(z)e(x). (Note that this is
just an existence argument; we do not know g yet.))

2. Let c(x) = Y,y cix® and e(x) = Y, e;x’. The e;’s and ¢;’s are our unknowns, and these
satisfy 4d linear equations given in (??), one for each a;. The number of unknowns is 3d + 2,
and our existence argument in part 1 shows that the system is feasible. Solve it using Gaussian
elimination to obtain a candidate c, e.

17.6. LOCAL DECODING OF EXPLICIT CODES. pl7.17 (337)

3. Let c,e are any polynomials obtained in part 2. Since they satisfy (9) and b; = g(a;) for at
least 3d values of i, we conclude that

c(a;) = g(ai)e(a;) for at least 3d values of i.

Hence c¢(z) — g(x)e(x) is a degree 2d polynomial that has at least 3d roots, and hence is
identically zero. Hence e divides ¢ and that in fact ¢(z) = g(z)e(z).

4. Divide ¢ by e to recover g.

17.5.6 Decoding concatenated codes.

Decoding concatenated codes can be achieved through the natural algorithm. Recall that if Fy :
{0,1}" — %™ and E, : ¥ — {0,1}"* are two ECC’s then Ey o E; maps every string z € {0,1}" to
the string Fa(E1(x)1) - - E2(E1(z)y). Suppose that we have a decoder for Ey (resp. Es) that can
handle p; (resp. p2) errors. Then, we have a decoder for Es o F that can handle pyp; errors. The
decoder, given a string y € {0, 1}mk composed of m blocks y1,...,ym € {0, 1}k, first decodes each
block y; to a symbol z; in ¥, and then uses the decoder of Fy to decode z1,...,z,. The decoder
can indeed handle p;ps errors since if A(y, Fy o E1(x)) < p1p2 then at most p; of the blocks of y
are of distance at least ps from the corresponding block of Ey o F1(x).

17.6 Local Decoding of explicit codes.

We now show local decoder algorithm (c.f. Definition 17.12) for several explicit codes.

17.6.1 Local decoder for Walsh-Hadamard.

The following is a two-query local decoder for the Walsh-Hadamard code that handles p errors for
every p < 1/4. This fraction of errors we handle is best possible, as it can be easily shown that there
cannot exist a local (or non-local) decoder for a binary code handling p errors for every p > 1/4.

WALSH-HADAMARD LOCAL DECODER for p < 1/4:

Input: j € [n], random access to a function f : {0,1}" — {0,1} such that Pry[g(y) # 2 @ y] < p
for some p < 1/4 and z € {0,1}".

Output: A bit b € {0,1}. (Our goal: z; =.)

Operation: Let e/ be the vector in {0,1}" that is equal to 0 in all the coordinates except for
the j'" and equal to 1 on the j* coordinate. The algorithm chooses y €r {0,1}" and
outputs f(y) + f(y + €/) (mod 2) (where y + e/ denotes componentwise addition modulo 2,
or equivalently, flipping the j** coordinate of y).

Analysis: Since both y and y+e’ are uniformly distributed (even though they are dependent), the
union bound implies that with probability 1—2p, f(y) = x©y and f(y+e’) = 2®(y+e’). But
by the bilinearity of the operation ®, this implies that f(y)+ f(y+¢€’) =20y+2x0(y+e/) =

pl7.18 (338) 17.6. LOCAL DECODING OF EXPLICIT CODES.

Figure 17.5: Given access to a corrupted version of a polynomial P : F* — T, to compute P(z) we pass a random
line L, through x, and use Reed-Solomon decoding to recover the restriction of P to the line L,.

20 0y)+r0el =x®e (mod2). Yet, z® el = z; and so with probability 1 — 2p, the
algorithm outputs the right value.

REMARK 17.23

This algorithm can be modified to locally compute not just z; = = ® e/ but in fact the value z ® z
for every z € {0,1}". Thus, we can use it to compute not just every bit of the original message =
but also every bit of the uncorrupted codeword WH(x). This property is sometimes called the self
correction property of the Walsh-Hadamard code.

17.6.2 Local decoder for Reed-Muller

We now show a local decoder for the Reed-Muller code. (Note that Definition 17.12 can be easily
extended to the case of codes, such as Reed-Muller, that use non-binary alphabet.) It runs in
time polynomial in £ and d, which, for an appropriate setting of the parameters, is polylogarithmic
in the output length of the code. Convention: Recall that the input to a Reed-Muller code is
an f-variable d-degree polynomial P over some field F. When we discussed the code before, we
assumed that this polynomial is represented as the list of its coefficients. However, below it will be
more convenient for us to assume that the polynomial is represented by a list of its values on its
first (dy) inputs according to some canonical ordering. Using standard interpolation, we still have
a polynomial-time encoding algorithm even given this representation. Thus, it suffices to show an
algorithm that, given access to a corrupted version of P, computes P(z) for every z € F*

REED-MULLER LOCAL DECODER for p < (1 —d/|F|)/4 — 1/|F]|.

Input: A string 2 € F¢, random access to a function f such that Pr,cpe[P(z) # f(x)] < p, where
P :F! — F is an {-variable degree-d polynomial.

Output: y € F (Goal: y = P(z).)

Operation: 1. Let L, be a random line passing through x. That is L, = {z +ty : t € F} for a
random y € F.

17.6. LOCAL DECODING OF EXPLICIT CODES. pl7.19 (339)

E,°E1:{0,1)"->{0, 1}*m
| x |
E,{0,1p—>zm l
F1(X)1| | | | B4 |
E%/ Eva E25z“>(0'1)k\

EAE)
O(q, log q,) queries \ /

X9 queries/

E, decoder

Figure 17.6: To locally decode a concatenated code F2 o 1 we run the decoder for E; using the decoder for Fo.
The crucial observation is that if y is within p1p2 distance to F2 o FE1(z) then at most a p1 fraction of the blocks in
y are of distance more than p2 the corresponding block in E2 o F1(z).

2. Query f on all the |F| points of L, to obtain a set of points {(¢, f(z + ty))} for every
tel.

3. Run the Reed-Solomon decoding algorithm to obtain the univariate polynomial @ : F —
F such that Q(t) = f(z + ty) for the largest number of t’s (see Figure 17.5).3

4. Output Q(0).

Analysis: For every d-degree (-variable polynomial P, the univariate polynomial Q(t) = P(x+ty)
has degree at most d. Thus, to show that the Reed-Solomon decoding works, it suffices to
show that with probability at least 1/2, the number of points on z € L, for which f(z) # P(2)
is less than (1 — d/|F|)/2. Yet, for every t # 0, the point x + ty is uniformly distributed
(independently of x), and so the expected number of points on L, for which f and P differ
is at most p|F| + 1. By Markov inequality, the probability that there will be more than
2p|F|+2 < (1 —d/|F|)|F|/2 such points is at most 1/2 and hence Reed-Solomon decoding will
be successful with probability 1/2. In this case, we obtain the correct polynomial ¢ that is the
restriction of @ to the line L, and hence ¢(0) = P(z).

17.6.3 Local decoding of concatenated codes.

Given two locally decodable ECC’s E1 and FEs, we can locally decode their concatenation £ o Fo
by the natural algorithm. Namely, we run the decoder for Ej, but answer its queries using the
decoder for F (see Figure 17.6).

LOCAL DECODER FOR CONCATENATED CODE: p < p1P2

The code: If E; : {0,1}" — £™ and E, : ¥ — {0,1}* are codes with decoders of ¢ (resp. g¢2)
queries with respect to p; (resp. p2) errors, let E = FEy0Fj be the concatenated code mapping
{0,1}" to {0, 1},

31f p is sufficiently small, (e.g., p < 1/(10d)), then we can use the simpler randomized Reed-Solomon decoding
procedure described in Section 17.5.5.

pl7.20 (340) 17.6. LOCAL DECODING OF EXPLICIT CODES.

Input: An index i € [n], random access to a string y € {0, 1}*™ such that A(y, Ey o Fsy(z)) < p1ps
for some z € {0,1}".

Output: b€ {0,1}" (Goal: b= xz;)

Operation: Simulate the actions of the decoder for F, whenever the decoder needs access to the
4" symbol of E;(x), use the decoder of Ey with O(golog g1 log |Y|) queries applied to the j"
block of y to recover all the bits of this symbol with probability at least 1 — 1/(2q;).

Analysis: The crucial observation is that at most a p; fraction of the length k blocks in y can
be of distance more than py from the corresponding blocks in Fy o Ej(x). Therefore, with
probability at least 0.9, all our ¢; answers to the decoder of E are consistent with the answer
it would receive when accessing a string that is of distance at most p; from a codeword of Fj.

17.6.4 Putting it all together.

We now have the ingredients to prove our second main theorem of this chapter: transformation of
a hard-on-the-worst-case function into a function that is “mildly” hard on the average case.

THEOREM 17.24 (WORST-CASE HARDNESS TO MILD HARDNESS)

Let S : N — N and f € E such that H,{f)(n) > S(n) for every n. Then there exists
a function g € E and a constant ¢ > 0 such that H%%(g)(n) > S(n/c)/n® for every
sufficiently large n.

PROOF: For every n, we treat the restriction of f to {0,1}" as a string f’ € {0,1}" where N = 2.

We then encode this string f’ using a suitable error correcting code E : {0,1} — {0, 1}NC for
some constant C' > 1. We will define the function g on every input x € {0, l}cn to output the z'"
coordinate of E(f’).* For the function g to satisfy the conclusion of the theorem, all we need is for
the code F to satisfy the following properties:

1. For every z € {0,1}", E(z) can be computed in poly(N) time.

2. There is a local decoding algorithm for E that uses polylog(/NV) running time and queries and
can handle a 0.01 fraction of errors.

But this can be achieved using a concatenation of a Walsh-Hadamard code with a Reed-Muller
code of appropriate parameters:

1. Let RM denote the Reed-Muller code with the following parameters:

e The field F is of size log® N.
e The number of variables / is equal to log N/loglog N.

“By padding with zeros as necessary, we can assume that all the inputs to g are of length that is a multiple of C.

17.7. LIST DECODING pl7.21 (341)

e The degree is equal to log? N.

RM takes an input of length at least (%f)Z > N (and so using padding we can assume its input
is {0,1}™). Its output is of size |F|* < poly(n). Its distance is at least 1 — 1/log N.

2. Let WH denote the Walsh-Hadamard code from {0,1}°¢ = {0, 1}°%elsN ¢4 10 1}1Fl =
{0 l}log‘r’N.

Our code will be WHoRM. Combining the local decoders for Walsh-Hadamard and Reed-Muller
we get the desired result. W

Combining Theorem 17.24 with Yao’s XOR Lemma (Theorem 17.2), we get the following corol-
lary:

COROLLARY 17.25

Let S : N — N and f € E with H,{(f)(n) > S(n) for every n. Then, there exists an S(v/£)¢-
pseudorandom generator for some constant € > 0.

PROOF: By Theorem 17.24, under this assumption there exists a function g € E with H2(g)(n) >
S’(n) = S(n)/poly(n), where we can assume S’(n) > /S(n) for sufficiently large n (otherwise S
is polynomial and the theorem is trivial). Consider the function ¢®* where k = clog S’(n) for a
sufficiently small constant c. By Yao’s XOR Lemma, on inputs of length kn, it cannot be computed
with probability better than 1/2 4 27¢5"(")/1000 1y circuits of size S'(n). Since S(n) < 27, kn < /n,
and hence we get that H,(¢®F) > §¢/2000, m

As already mentioned, this implies the following corollaries:

Q(1)

1. If there exists f € E such that H,{(f) > 2" then BPP C QuasiP.

2. If there exists f € E such that H,Jf) > n*() then BPP C SUBEXP.

However, Corollary 17.25 is still not sufficient to show that BPP = P under any assumption on
the worst-case hardness of some function in E. It only yields an S (\/Z)Q(l)—pseudorandom generator,
while what we need is an S(Q(¢))*(")-pseudorandom generator.

17.7 List decoding

Our approach to obtain stronger worst-case to average-case reduction will be to bypass the XOR
Lemma, and use error correcting codes to get directly from worst-case hardness to a function that
is hard to compute with probability slightly better than 1/2. However, this idea seems to run into
a fundamental difficulty: if f is worst-case hard, then it seems hard to argue that the encoding
of f, under any error correcting code is hard to compute with probability 0.6. The reason is that
any error-correcting code has to have distant at most 1/2, which implies that there is no decoding
algorithm that can recover = from F(z) if the latter was corrupted in more than a 1/4 of its locations.
Indeed, in this case there is not necessarily a unique codeword closest to the corrupted word. For
example, if F(x) and E(z’) are two codewords of distance 1/2, let y be the string that is equal to

pl7.22 (342) 17.7. LIST DECODING

E(z) on the first half of the coordinates and equal to E(2’) on the second half. Given y, how can
a decoding algorithm know whether to return x or z'?

This seems like a real obstacle, and indeed was considered as such in many contexts where
ECC’s were used, until the realization of the importance of the following insight: “If y is obtained
by corrupting E(x) in, say, a 0.4 fraction of the coordinates (where F is some ECC with good
enough distance) then, while there may be more than one codeword within distance 0.4 to y, there
can not be too many such codewords.”

THEOREM 17.26 (JOHNSON BOUND)
IfE:{0,1}" — {0,1}"™ is an ECC with distance at least 1/2 — ¢, then for every z € {0,1}", and
§ > \/e, there exist at most 1/(28%) vectors yi, ...,y such that A(x,y;) <1/2 — 6 for every i € [£].

PROOF: Suppose that x,y1,...,ys satisfy this condition, and define ¢ vectors z1,...,z, in R™ as
follows: for every i € [¢] and k € [m], set z; , to equal +1 if y;, = 2, and set it to equal —1 otherwise.
Under our assumptions, for every i € [¢],

Z Zik > 20m, (10)
k=1

since z; agrees with x on an 1/2 + ¢ fraction of its coordinates. Also, for every i # j € [{],

m
(2i,25) = Z zikzjn < 2em < 25°m (11)
k=1
since E is a code of distance at least 1/2 — e. We will show that (10) and (11) together imply that
0 < 1/(262).
Indeed, set w = Zle z;. On one hand, by (11)

¢
(w,w) = Z<Z“ zi) + Z(zz, zj) < fm + £226°m.
i=1 i#j

On the other hand, by (10), >, wg = 3_; ; 2i,; > 20mf and hence
(w,w) >]Zwk|2/m > 46%me?
k

since for every ¢, the vector w € R™ with minimal two-norm satisfying >, wi = c is the uniform
vector (¢/m,c/m,...,c/m). Thus 46°me? < fm + 2025?m, implying that £ < 1/(25%). &

17.7.1 List decoding the Reed-Solomon code

In many contexts, obtaining a list of candidate messages from a corrupted codeword can be just as
good as unique decoding. For example, we may have some outside information on which messages
are likely to appear, allowing us to know which of the messages in the list is the correct one.

17.8. LOCAL LIST DECODING: GETTING TO BPP = P. pl7.23 (343)

However, to take advantage of this we need an efficient algorithm that computes this list. Such an
algorithm was discovered in 1996 by Sudan for the popular and important Reed-Solomon code. It
can recover a polynomial size list of candidate codewords given a Reed-Solomon codeword that was
corrupted in up to a 1 — 2,/d/|F| fraction of the coordinates. Note that this tends to 1 as |F|/d
grows, whereas the Berlekamp-Welch unique decoding algorithm of Section 17.5.5 gets “stuck”
when the fraction of errors surpasses 1/2.

On input a set of data points {(a;,b;)}™, in F?, Sudan’s algorithm returns all degree d poly-
nomials g such that the number of i’s for which g(a;) = b; is at least 2,/d/|F|m. It relies on the
following observation:

LEMMA 17.27

For every set of m data pairs (a1,b1), ..., (am, bn), there is a bivariate polynomial Q(z, x) of degree
at most [\/m] + 1 in z and x such that Q(b;,a;) = 0 for each i = 1,...,m. Furthermore, there is
a polynomial-time algorithm to construct such a Q).

PROOF: Let k = [\/m]| 4+ 1. Then the unknown bivariate polynomial Q = Zf:o Z?:o Qi;7'27 has
(k + 1)? coefficients and these coefficients are required to satisfy m linear equations of the form:

k

k
Z Z Qij(bt)i(at)] fort=1,2,...,m.

i=0 j=0

Note that the a;’s, b;’s are known and so we can write down these equations.
Since the system is homogeneous and the number of unknowns exceeds the number of con-
straints, it has a nonzero solution. Furthermore this solution can be found in polynomial time. W

LEMMA 17.28
Let d be any integer and k > (d + 1)([/m] + 1). If p(z) is a degree d polynomial that describes k
of the data pairs, then z — p(z) divides the bivariate polynomial Q(z,x) described in Lemma 17.27.

PROOF: By construction, Q(b,a;) = 0 for every data pair (as,b;). If p(z) describes this data
pair, then Q(p(at),ar) = 0. We conclude that the univariate polynomial Q(p(z),z) has at least k
roots, whereas its degree is d([/n] + 1) < k. Hence Q(p(z),z) = 0. By the division algorithm
for polynomials, Q(p(x),z) is exactly the remainder when Q(z,z) is divided by (z — p(z)). We
conclude that z — p(z) divides Q(z,z). B

Now it is straightforward to describe Sudan’s list decoding algorithm. First, find Q(z,z) by
the algorithm of Lemma 17.27. Then, factor it using a standard algorithm for bivariate factoring
(see [VG99]). For every factor of the form (z — p(x)), check by direct substitution whether or not
p(z) describes 24/d/|F|m data pairs. Output all such polynomials.

17.8 Local list decoding: getting to BPP = P.

Analogously to Section 17.4.1, to actually use list decoding for hardness amplification, we need to
provide local list decoding algorithms for the codes we use. Fortunately, such algorithms are known
for the Walsh-Hadamard code, the Reed-Muller code, and their concatenation.

pl7.24 (344) 17.8. LOCAL LIST DECODING: GETTING TO BPP = P.

DEFINITION 17.29 (LOCAL LIST DECODER)

Let £ :{0,1}" — {0,1}" be an ECC and let p > 0 and ¢ be some numbers. An algorithm L is
called a local list decoder for E handling p errors, if for every x € {0,1}" and y € {0,1}" satisfying
A(E(x),y) < p, there exists a number ig € [poly(n/e)] such that for every j € [m], on inputs ig, j
and with random access to y, L runs for poly(log(m)/e) time and outputs x; with probability at
least 2/3.

REMARK 17.30
One can think of the number iy as the index of x in the list of poly(n/€) candidate messages output
by L. Definition 17.29 can be easily generalized to codes with non-binary alphabet.

17.8.1 Local list decoding of the Walsh-Hadamard code.

It turns out we already encountered a local list decoder for the Walsh-Hadamard code: the proof
of the Goldreich-Levin Theorem (Theorem 10.14) provided an an algorithm that given access to
a “black box” that computes the function y — x © y (for z,y € {0,1}") with probability 1/2 + e,
computes a list of values x1,... s Lpoly(n/e) such that z;, = x for some ip. In the context of that
theorem, we could find the right value of z from that list by checking it against the value f(z)
(where f is a one-way permutation). This is a good example for how once we have a list decoding

algorithm, we can use outside information to narrow the list down.

17.8.2 Local list decoding of the Reed-Muller code

We now present an algorithm for local list decoding of the Reed-Muller code. Recall that the
codeword of this code is the list of evaluations of a d-degree ¢-variable polynomial P : F¢ — F. The
local decoder for Reed-Muller gets random access to a corrupted version of P and two inputs: an
index i and = € F*. Below we describe such a decoder that runs in poly(d, £, |F|) and outputs P(x)
with probability at least 0.9 assuming that ¢ is equal to the “right” index ig. Note: To be a valid
local list decoder, given the index ig, the algorithm should output P(z) with high probability for
every x € FY. The algorithm described below is only guaranteed to output the right value for most
(i.e., a 0.9 fraction) of the x’s in F*. We transform this algorithm to a valid local list decoder by
combining it with the Reed-Muller local decoder described in Section 17.6.2.

REED-MULLER LOCAL Li1ST DECODER for p < 1 —10/d/|F|

Inputs: e Random access to a function f such that Pr cpe[P(z) = f(z)] > 104/d/|F| where
P : F’ — F is an (-variable d-degree polynomial. We assume |F| > d* and that both
d > 1000. (This can always be ensured in our applications.)

e An index ig € [|F|**!] which we interpret as a pair (29, %0) with zg € F¢, yo € I,
e A string x € F-.

Output: y € F (For some pair (xo,y0), it should hold that P(x) = y with probability at least 0.9
over the algorithm’s coins and x chosen at random from F*.)

17.8. LOCAL LIST DECODING: GETTING TO BPP = P. pl7.25 (345)

Operation: 1. Let L, ,, be a random degree 3 curve passing through x, xo. That is, we find a
random degree 3 univariate polynomial ¢ : F — F¢ such that ¢(0) = = and ¢(r) = z¢ for
some random r € F. (See Figure 17.7.)

2. Query f on all the |F| points of L, 4, to obtain the set S of the |F| pairs {(t, f(q(t)) :
teF)}.

3. Run Sudan’s Reed-Solomon list decoding algorithm to obtain a list g1, . .., gi of all degree
3d polynomials that have at least 8/d|F| agreement with the pairs in S.

4. If there is a unique 7 such that g;(r) = yo then output ¢;(0). Otherwise, halt without
outputting anything.

Figure 17.7: Given access to a corrupted version of a polynomial P : F’ — F and some index (z0,¥0), to compute
P(z) we pass a random degree-3 curve L 4, through z and zo, and use Reed-Solomon list decoding to recover a list
of candidates for the restriction of P to the curve L; ,,. If only one candidate satisfies that its value on xg is yo,
then we use this candidate to compute P(x).

We will show that for every f : F¢ — T that agrees with an -variable degree d polynomial
on a 104/d/|F| fraction of its input, and every z € F’ if xq is chosen at random from F’ and
yo = P(z9), then with probability at least 0.9 (over the choice of xg and the algorithm’s coins) the
above decoder will output P(z). By a standard averaging argument, this implies that there exist
a pair (zg,yp) such that given this pair, the algorithm outputs P(z) for a 0.9 fraction of the z’s in
Fe.

Let o € FY, if 2 is chosen randomly in F¢ and 3y = P(z() then the following

For every x € I, the following fictitious algorithm can be easily seen to have an identical output
to the output of our decoder on the inputs z, a random z¢ €z F* and yo = P(z0):

1. Choose a random degree 3 curve L that passes through z. That is, L = {q(t) : t € F} where
q:F — Fis a random degree 3 polynomial satisfying ¢(0) = .

2. Obtain the list g1, . .., gm of all univariate polynomials over F such that for every ¢, there are
at least 64/d|IF| values of ¢ such that ¢;(t) = f(q(t)).

3. Choose a random r € F. Assume that you are given the value yo = P(q(r)).

pl7.26 (346) 17.8. LOCAL LIST DECODING: GETTING TO BPP = P.

4. If there exists a unique ¢ such that g;(r) = yo then output g;(0). Otherwise, halt without an
input.

Yet, this fictitious algorithm will output P(z) with probability at least 0.9. Indeed, since all
the points other than x on a random degree 3 curve passing through = are pairwise independent,
Chebyshev’s inequality implies that with probability at least 0.99, the function f will agree with
the polynomial P on at least 8/d|F| points on this curve (this uses the fact that \/d/|F| is smaller
than 107%). Thus the list g1, ..., g Wwe obtain in Step 2 contains the polynomial g : F — F defined
as g(t) = P(q(t)). We leave it as Exercise 9 to show that there can not be more than \/|F|/4d
polynomials in this list. Since two 3d-degree polynomials can agree on at most 3d + 1 points, with

probability at least % vIFI/ad 0.01, if we choose a random r € F, then g(r) # g¢;(r) for every
gi # ¢ in this list. Thus, with this probability, we will identify the polynomial g and output the
value g(0) = P(z). &

17.8.3 Local list decoding of concatenated codes.

If B : {0,1}" — X" and Ey : £ — {0,1}" are two codes that are locally list decodable then so
is the concatenated code Es o Ey : {0,1}" — {0, l}mk. As in Section 17.6.3, the idea is to simply
run the local decoder for E; while answering its queries using the decoder of Fy. More concretely,
assume that the decoder for F; takes an index in the set I, uses ¢; queries, and can handle 1 — ¢;
errors, and that Is, g2 and e are defined analogously. Our decoder for Es o Fy will take a pair
of indices i1 € Iy and is € I and run the decoder for F; with the index 7;, and whenever this
decoder makes a query answer it using the decoder Fy with the index i2. (See Section 17.6.3.) We
claim that this decoder can handle 1/2 — €j€a|l2| number of errors. Indeed, if y agrees with some
codeword Fso F1(x) on an €€2|I5| fraction of the coordinates then there are €1]3| blocks on which
it has at least 1/2 + €3 agreement with the blocks this codeword. Thus, by an averaging argument,
there exists an index i9 such that given ig, the output of the Fy decoder agrees with Fq(x) on €;
symbols, implying that there exists an index i; such that given (i1, i3) and every coordinate j, the
combined decoder will output x; with high probability.

17.8.4 Putting it all together.

As promised, we can use local list decoding to transform a function that is merely worst-case hard
into a function that cannot be computed with probability significantly better than 1/2:

THEOREM 17.31 (WORST-CASE HARDNESS TO STRONG HARDNESS)

Let S: N — N and f € E such that H,.{f)(n) > S(n) for every n. Then there exists
a function g € E and a constant ¢ > 0 such that H,(g)(n) > S(n/c)'/¢ for every
sufficiently large n.

PROOF SKETCH: As in Section 17.6.4, for every n, we treat the restriction of f to {0,1}" as a

17.8. LOCAL LIST DECODING: GETTING TO BPP = P. pl7.27 (347)

string f € {0,1}" where N = 2" and encode it using the concatenation of a Reed-Muller code
with the Walsh-Hadamard code. For the Reed-Muller code we use the following parameters:

e The field F is of size S(n)!/100,
e The degree d is of size log? N.

e The number of variables /¢ is 2log N/log S(n).

The function g is obtained by applying this encoding to f. Given a circuit of size S (n)l/ 100
that computes g with probability better than /2 + 1/5(n)/®0, we will be able to transform it, in
S (n)o(l) time, to a circuit computing f perfectly. We hardwire the index iy to this circuit as part
of its description. W

WHAT HAVE WE LEARNED?

e Yao’'s XOR Lemma allows to amplify hardness by transforming a Boolean
function with only mild hardness (cannot be computed with say 0.99 success)
into a Boolean function with strong hardness (cannot be computed with 0.51
success).

e An error correcting code is a function that maps every two strings into a pair
of strings that differ on many of their coordinates. An error correcting code
with a local decoding algorithm can be used to transform a function hard in
the worst-case into a function that is mildly hard on the average case.

e A code over the binary alphabet can have distance at most /2. A code with
distance ¢ can be uniquely decoded up to §/2 errors. List decoding allows to
a decoder to handle almost a § fraction of errors, at the expense of returning
not a single message but a short list of candidate messages.

e We can transform a function that is merely hard in the worst case to a function
that is strongly hard in the average case using the notion of local list decoding
of error correcting codes.

Chapter notes and history

MANY ATTRIBUTIONS STILL MISSING.
Impagliazzo and Wigderson [IWO01] were the first to prove that BPP = P if there exists
f € E such that H,(f) > 222n) ysing a derandomized version of Yao’s XOR Lemma. However,

SWe assume here that S(n) > log N1090 and that it can be computed in 20" time. These assumptions can
be removed by slightly complicating the construction (namely, executing it while guessing that S(n) = 2% and
concatenating all the results.)

pl7.28 (348) 17.8. LOCAL LIST DECODING: GETTING TO BPP = P.

the presentation here follows Sudan, Trevisan, and Vadhan [STV], who were the first to point the
connection between local list decoding and hardness amplification, and gave (a variant of) the Reed-
Muller local list decoding algorithm described in Section 17.8. They also showed a different approach
to achieve the same result, by first showing that the NW generator and a mildly hard function can
be used to obtain from a short random seed a distribution that has high pseudoentropy, which is
then converted to a pseudorandom distribution via a randomness extractor (see Chapter 16).

The question raised in Problem 5 is treated in O’Donnell [O’D04], where a hardness amplification
lemma is given for NP. For a sharper result, see Healy, Vadhan, and Viola [HVV04].

Exercises

§1

§2

§3
§4

§5

Let X4,...,X,, be independent random variables such that X; is equal to 1 with probability
1 — 6 and equal to 0 with probability . Let X = Zle X; (mod 2). Prove that Pr[X = 1] =
1/2 + (1 —26).

‘suorjedadxe 1oty Jjo jonpod o1y SI
se[qeLrea wopuel juepuadsput jo jonpoid ' Jo uoryejoadxe o) ey}

ey oy osn ‘woyy, L T = & pue .y (1-) = ‘K ouge:pury

Prove Farkas’ Lemma: if C, D C R™ are two convex sets then there exists a vector z € R™
and a number a € R such that

xe(C= (x,2)

a
veD= (y,z)<a

IN IV

‘(D O £ pur) D X I10] A — X ULIOJ S} JO I0100A
1S91I0TS 91} 9 0} Z e} Ued N0k ased SIY) u] (7 D L pue) > X
K198 10] 3 < °||£—X|| ‘0 < 3 oWOS I0] Yel[) SRS YOIYM ‘pajeredoes
- aIe (7 pue) 1ey) osed oYy ul siyy Sutaoid Aq 111§ QUL

Prove the Min-Max Theorem (see Note 17.7) using Farkas’ Lemma.

Prove the duality theorem for linear programming using Farkas’ Lemma. That is, prove that
for every m x n matrix A, and vectors ¢ € R", b € R",

max (x,c)= min b
ngZsbt.(’ > yERms.t.<y, >

XS Aty>

x>0 v20

where AT denotes the transpose of A and for two vectors u, v we say that u > v if u; > v;
for every i.

Suppose we know that NP contains a function that is weakly hard for all polynomial-size
circuits. Can we use the XOR Lemma to infer the existence of a strongly hard function in
NP? Why or why not?

17.8.

LOCAL LIST DECODING: GETTING TO BPP = P. pl7.29 (349)

$6

§7

§8

§9

§10

For every 6 < 1/2 and sufficiently large n, prove that there exists a function £ : {0,1}" —
{0, l}n/(lfH(a)) that is an error correcting code with distance §, where H(0) = dlog(1/6) +
(1 —9)log(1/(1—9)).

$ONIS 108 NOA [IM UYAN "SOUO
snotadad 03 ¢ d0URISIP UIYIIM ST 1R} PIOMSOPOD ® SUIPPR IOAST ‘QUO
Aq oUO 4 JO SPIOMOPOD 93 12908 07 ‘AF0jeIs Apools ®© oS :JUTH

Show that for every E : {0,1}" — {0,1}"™ that is an error correcting code of distance 1/2,
2" < 104/n. Show if E is an error correcting code of distance § > 1/2, then 2" < 10/(d — 1/2).

Let E : {0,1}" — {0,1}™ be a d-distance ECC. Transform E to a code E' : {0,1,2,3}"/? —
{0, 1,2,3}m/2 in the obvious way. Show that E’ has distance §. Show that the opposite
direction is not true: show an example of a d-distance ECC E’ : {0, 1, 2, 3}"/2 —{0,1,2, 3}m/2
such that the corresponding binary code has distance 26.

Let f:F — F be any function. Suppose integer d > 0 and number € satisfy € > 2 %. Prove

that there are at most 2/e degree d polynomials that agree with f on at least an e fraction of
its coordinates.
010 ‘) = TG U 1g azoym g sjutod
Jo wonyoely |g|/p — > ur J sequosep [erwouA[od puooes oY) ‘Ig Aes
syutod Jo wororyy 3 ue ul f soquuosop [erwoudjod 981y oy, :JUIH

(Linear codes) We say that an ECC E : {0,1}" — {0,1}"™ is linear if for every x, 2’ € {0,1}",
E(z+2') = E(x)+ E(2') where + denotes componentwise addition modulo 2. A linear ECC
E can be described by an m x n matrix A such that (thinking of x as a column vector)
E(x) = Ax for every z € {0,1}".

(a) Prove that the distance of a linear ECC E is equal to the minimum over all nonzero
xz € {0,1}" of the fraction of 1’s in E(x).

(b) Prove that for every § > 0, there exists a linear ECC E : {0,1}" — {0, 1}}1/(1—H(9)
with distance §, where H () = dlog(1/9) + (1 —d)log(1/(1 — 9))y,

XLIjewx
WopUeI ® 10§ SP[OY SIY) MOYS - porjaut 21sifiqeqoxd o) s :JUTE]

(c) Prove that for some 6 > 0 there is an ECC E : {0,1}" — {0, l}pOIY(n) of distance ¢ with
polynomial-time encoding and decoding mechanisms. (You need to know about the field
GF(2F) to solve this, see Appendix A.)

"9p0oo pIRWRPRH-US[BAM U3}
UHM (4g)dD 19A0 TOUIO[OG-PIdY JO UOTIRUDIROUOD AT} OS() :JUTH

(d) We say that a linear code F : {0,1}" — {0,1}" is e-biased if for every non-zero x €
{0,1}", the fraction of 1’s in E(x) is between 1/2—e and 1/24¢. Prove that for every e > 0,
there exists an e-biased linear code E : {0,1}" — {0, 1}p01y(n/ ¢ with a polynomial-time
encoding algorithm.

p17.30 (350) 17.8. LOCAL LIST DECODING: GETTING TO BPP = P.

Chapter 18

PCP and Hardness of Approximation

“...most problem reductions do not create or preserve such gaps...To create such a
gap in the generic reduction (cf. Cook)...also seems doubtful. The intuitive reason
18 that computation is an inherently unstable, non-robust mathematical object, in the
the sense that it can be turned from non-accepting to accepting by changes that would
be insignificant in any reasonable metric.”

Papadimitriou and Yannakakis, 1991 [PY91]

The PCP Theorem provides an interesting new characterization for NP, as the set of languages
that have a “locally testable” membership proof. It is reminiscent of —and was motivated by—
results such as IP =PSPACE. Its essence is the following:

Suppose somebody wants to convince you that a Boolean formula is satisfiable. He could present
the usual certificate, namely, a satisfying assignment, which you could then check by substituting
back into the formula. However, doing this requires reading the entire certificate. The PCP
Theorem shows an interesting alternative: this person can easily rewrite his certificate so you
can verify it by probabilistically selecting a constant number of locations—as low as 3 bits— to
examine in it. Furthermore, this probabilistic verification has the following properties: (1) A
correct certificate will never fail to convince you (that is, no choice of your random coins will make
you reject it) and (2) If the formula is unsatisfiable, then you are guaranteed to reject every claimed
certificate with high probability.

Of course, since Boolean satisfiability is NP-complete, every other NP language can be deter-
ministically and efficiently reduced to it. Thus the PCP Theorem applies to every NP language.
We mention one counterintuitive consequence. Let A be any one of the usual axiomatic systems of
mathematics for which proofs can be verified by a deterministic TM in time that is polynomial in
the length of the proof. Recall the following language is in NP:

L = {(p,1") : v has a proof in A of length <n}.

The PCP Theorem asserts that L has probabilistically checkable certificates. Such certificate
can be viewed as an alternative notion of “proof” for mathematical statements that is just as valid
as the usual notion. However, unlike standard mathematical proofs, where every line of the proof

pl8.1 (351)
Complexity Theory: A Modern Approach. (C) 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

pl8.2 (352) 18.1. PCP AND LOCALLY TESTABLE PROOFS

has to be checked to verify its validity, this new notion guarantees that proofs are probabilistically
checkable by examining only a constant number of bits in them?.

This new, “robust” notion of certificate/proof has an important consequence: it implies that
many optimization problems are NP-hard not only to solve exactly but even to approximate. As
mentioned in Chapter 2, the P versus NP question is practically important —as opposed to “just”
philosophically important— because thousands of real-life combinatorial optimization problems are
NP-hard. By showing that even computing approximate solutions to many of these problems is
NP-hard, the PCP Theorem extends the practical importance of the theory of NP-completeness,
as well as its philosophical significance.

This seemingly mysterious connection between the PCP Theorem —which concerns probabilis-
tic checking of certificates— and the NP-hardness of computing approximate solutions is actually
quite straightforward. All NP-hardness results ultimately derive from the Cook-Levin theorem
(Section 2.3), which expresses accepting computations of a nondeterministic Turing Machine with
satisfying assignments to a Boolean formula. Unfortunately, the standard representations of com-
putation are quite nonrobust, meaning that they can be incorrect if even one bit is incorrect (see
the quote at the start of this chapter). The PCP Theorem, by giving a robust representation of
the certificate for NP languages, allow new types of reductions; see Section 18.2.3.

Below, we use the term “PCP Theorems” for the body of other results of a similar nature to
the PCP Theorem that found numerous applications in complexity theory. Some important ones
appear in the next Chapter, including one that improves the PCP Theorem so that verification is
possible by reading only 3 bits in the proof!

18.1 PCP and Locally Testable Proofs

According to our usual definition, language L is in NP if there is a poly-time Turing machine V
(“verifier”) that, given input z, checks certificates (or membership proofs) to the effect that = € L.
This means,

re€L=3rst. V'(zx)=1
x¢ L=Vr V™(x)=0,

where V™ denotes “a verifier with access to certificate 7”.

The class PCP (short for “Probabilistically Checkable Proofs”) is a generalization of this notion,
with the following changes. First, the verifier is probabilistic. Second, the verifier has random access
to the proof string II. This means that each bit of the proof string can be independently queried
by the verifier via a special address tape: if the verifier desires say the ith bit in the proof string,
it writes 7 on the address tape and then receives the bit 7[i].2 (This is reminiscent of oracle TMs
introduced in Chapter 3.) The definition of PCP treats queries to the proof as a precious resource,
to be used sparingly. Note also that since the address size is logarithmic in the proof size, this model
in principle allows a polynomial-time verifier to check membership proofs of exponential size.

!One newspaper article about the discovery of the PCP Theorem carried the headline “New shortcut found for
long math proofs!”

2Though widely used, the term “random access” is misleading since it doesn’t involve any notion of randomness
per se. “Indexed access” would be more accurate.

18.1. PCP AND LOCALLY TESTABLE PROOFS p18.3 (353)

Verifiers can be adaptive or nonadaptive. A nonadaptive verifier selects its queries based only
on its input and random tape, whereas an adaptive verifier can in addition rely upon bits it has
already queried in 7 to select its next queries. We restrict verifiers to be nonadaptive, since most
PCP Theorems can be proved using nonadaptive verifiers. (But Exercise 3 explores the power of
adaptive queries.)

proofir | | [[[[L[]

Verifier
Input: x in {0,1}"
r(n) coins

Figure 18.1: A PCP verifier for a language L gets an input x and random access to a string 7. If z € L then there
exists a string 7w that makes the verifier accepts, while if ¢ L then the verifier rejects every proof m with probability
at least 1/2.

DEFINITION 18.1 ((7,q)-VERIFIER)
Let L be a language and ¢,7 : N — N. We say that L has an (r(n), ¢(n))-verifier if there’s a
polynomial-time probabilistic algorithm V' satisfying:

Efficiency: On input a string x € {0,1}" and given random access to a string 7 € {0,1}" (which
we call the proof), V uses at most r(n) random coins and makes at most ¢(n) non-adaptive
queries to locations of 7 (see Figure 18.1). Then it outputs “1”(for “accept”) or “0” (for
“reject”). We use the notation V7 (x) to denote the random variable representing V’s output
on input z and with random access to 7.

Completeness: If x € L then there exists a proof m € {0,1}" such that Pr[V™(z) = 1] = 1. We
call 7w the correct proof for x.

Soundness: If x ¢ L then for every proof 7w € {0,1}", Pr[V™(z) = 1] < 1/2.

We say that a language L is in PCP(r(n),q(n)) if L has a (¢-r(n),d - g(n))-verifier for some
constants ¢, d.

Sometimes we consider verifiers for which the probability “1/2” is replaced by some other number,
called the soundness parameter.

THEOREM 18.2 (PCP THEOREM [AS98, ALM™'98])
NP = PCP(logn,1).

Notes:

1. Without loss of generality, proofs checkable by an (r, g)-verifier contain at most ¢2" bits. The
verifier looks at only ¢ places of the proof for any particular choice of its random coins, and
there are only 2" such choices. Any bit in the proof that is read with 0 probability (i.e., for
no choice of the random coins) can just be deleted.

pl8.4 (354) 18.1. PCP AND LOCALLY TESTABLE PROOFS

2. The previous remark implies PCP(r(n),¢(n)) € NTIME(2°0(™)g(n)). The proofs check-
able by an (r(n), ¢(n)-verifier have size at most 2°"(")g(n). A nondeterministic machine
could guess the proof in 200(™)¢(n) time, and verify it deterministically by running the ver-
ifier for all 29("(") possible choices of its random coin tosses. If the verifier accepts for all
these possible coin tosses then the nondeterministic machine accepts.

As a special case, PCP(logn,1) € NTIME(20(°2")) — NP: this is the trivial direction of
the PCP Theorem.

3. The constant 1/2 in the soundness requirement of Definition 18.1 is arbitrary, in the sense
that changing it to any other positive constant smaller than 1 will not change the class of
languages defined. Indeed, a PCP verifier with soundness 1/2 that uses r coins and makes ¢
queries can be converted into a PCP verifier using c¢r coins and cq queries with soundness
27¢ by just repeating its execution ¢ times (see Exercise 1).

EXAMPLE 18.3
To get a better sense for what a PCP proof system looks like, we sketch two nontrivial PCP
systems:

1. The language GNI of pairs of non-isomorphic graphs is in PCP(poly(n),1). Say the input
for GNI is (Go, G1), where Gy, G1 have both n nodes. The verifier expects 7 to contain, for
each labeled graph H with n nodes, a bit w[H] € {0,1} corresponding to whether H = G or
H = G (w[H] can be arbitrary if neither case holds). In other words, 7 is an (exponentially
long) array of bits indexed by the (adjacency matrix representations of) all possible n-vertex
graphs.

The verifier picks b € {0,1} at random and a random permutation. She applies the permuta-
tion to the vertices of Gy to obtain an isomorphic graph, H. She queries the corresponding
bit of w and accepts iff the bit is b.

If Gog # G, then clearly a proof m can be constructed which makes the verifier accept with
probability 1. If G; = Ga, then the probability that any m makes the verifier accept is at
most 1/2.

2. The protocols in Chapter 8 can be used (see Exercise 5) to show that the permanent has
PCP proof system with polynomial randomness and queries. Once again, the length of the
proof will be exponential.

In fact, both of these results are a special case of the following theorem a “scaled-up” version
of the PCP Theorem which we will not prove.

THEOREM 18.4 (ScALED-uP PCP, [?, ALMT98, AS98])
PCP(poly,1) = NEXP

18.2. PCP AND HARDNESS OF APPROXIMATION pl8.5 (355)

18.2 PCP and Hardness of Approximation

The PCP Theorem implies that for many NP optimization problems, computing near-optimal
solutions is no easier than computing exact solutions.

We illustrate the notion of approximation algorithms with an example. MAX3SAT is the prob-
lem of finding, given a 3CNF Boolean formula ¢ as input, an assignment that maximizes the number
of satisfied clauses. This problem is of course NP-hard, because the corresponding decision prob-
lem, 3SAT, is NP-complete.

DEFINITION 18.5
For every 3CNF formula ¢, define val(y) to be the maximum fraction of clauses that can be satisfied
by any assignment to ¢’s variables. In particular, if ¢ is satisfiable then val(¢) = 1.

Let p < 1. An algorithm A is a p-approximation algorithm for MAX3SAT if for every 3CNF
formula ¢ with m clauses, A(y) outputs an assignment satisfying at least p-val(p)m of ¢’s clauses.

In many practical settings, obtaining an approximate solution to a problem may be almost as
good as solving it exactly. Moreover, for some computational problems, approximation is much
easier than an exact solution.

EXAMPLE 18.6 (1/2-APPROXIMATION FOR MAX3SAT)

We describe a polynomial-time algorithm that computes a 1/2-approximation for MAX 3SAT. The
algorithm assigns values to the variables one by one in a greedy fashion, whereby the ith variable is
assigned the value that results in satisfying at least 1/2 the clauses in which it appears. Any clause
that gets satisfied is removed and not considered in assigning values to the remaining variables.
Clearly, the final assignment will satisfy at least 1/2 of all clauses, which is certainly at least half of
the maximum that the optimum assignment could satisfy.

Using semidefinite programming one can also design a polynomial-time (7/8 — €)-approximation
algorithm for every e > 0 (see references). (Obtaining such a ratio is trivial if we restrict ourselves
to 3CNF formulae with three distinct variables in each clause. Then a random assignment has
probability 7/8 to satisfy it, and by linearity of expectation, is expected to satisfy a 7/8 fraction
of the clauses. This observation can be turned into a simple probabilistic or even deterministic
7/8-approximation algorithm.)

For a few problems, one can even design (1 — €)-approximation algorithms for every e > 0.
Exercise 10 asks you to show this for the NP-complete knapsack problem.

Researchers are extremely interested in finding the best possible approximation algorithms for
NP-hard optimization problems. Yet, until the early 1990’s most such questions were wide open. In
particular, we did not know whether MAX 3SAT has a polynomial-time p-approximation algorithm
for every p < 1. The PCP Theorem has the following Corollary.

COROLLARY 18.7
There exists some constant p < 1 such that if there is a polynomial-time p-approximation algorithm
for MAX3SAT then P = NP.

p18.6 (356) 18.2. PCP AND HARDNESS OF APPROXIMATION

Later, in Chapter 19, we show a stronger PCP Theorem by Hastad which implies that for
every € > 0, if there is a polynomial-time (7/8+ €)-approximation algorithm for MAX3SAT then
P = NP. Hence the approximation algorithm for this problem mentioned in Example 18.6 is very
likely optimal. The PCP Theorem (and the other PCP theorems that followed it) imply a host
of such hardness of approximation results for many important problems, often showing that known
approximation algorithms are optimal.

18.2.1 Gap-producing reductions

To prove Corollary 18.7 for some fixed p < 1, it suffices to give a polynomial-time reduction f that
maps 3CNF' formulae to 3C N F formulae such that:

v € 3SAT = val(f(p)) =1 (1)
p g L=val(f(p)) <p (2)

After all, if a p-approximation algorithm were to exist for MAX3SAT, then we could use it to
decide membership of any given formula ¢ in 3SAT by applying reduction f on ¢ and then running
the approximation algorithm on the resultant 3CNF formula f(p). If val(f(¢) = 1, then the
approximation algorithm would return an assignment that satisfies at least p fraction of the clauses,
which by property (2) tells us that ¢ € 3SAT.

Later (in Section 18.2) we show that the PCP Theorem is equivalent to the following Theorem:

THEOREM 18.8
There exists some p < 1 and a polynomial-time reduction f satisfying (1) and (2).

By the discussion above, Theorem 18.8 implies Corollary 18.7 and so rules out a polynomial-time
p-approximation algorithm for MAX3SAT (unless P = NP).

Why doesn’t the Cook-Levin reduction suffice to prove Theorem 18.87 The first thing
one would try is the reduction from any NP language to 3SAT in the Cook-Levin Theorem (Theo-
rem 2.10). Unfortunately, it doesn’t give such an f because it does not satisfy property (2): we can
always satisfy almost all of the clauses in the formulae produced by the reduction (see Exercise 9
and also the “non-robustness” quote at the start of this chapter).

18.2.2 Gap problems

The above discussion motivates the definition of gap problems, a notion implicit in (1) and (2). It
is also an important concept in the proof of the PCP Theorem itself.

DEFINITION 18.9 (GAP 3SAT)
Let p € (0,1). The p-GAP 3SAT problem is to determine, given a 3CNF formula ¢ whether:

e ¢ is satisfiable, in which case we say ¢ is a YES instance of p-GAP 3SAT.

e val(p) < p, in which case we say ¢ is a NO instance of p-GAP 3SAT.

18.2. PCP AND HARDNESS OF APPROXIMATION pl8.7 (357)

An algorithm A is said to solve p-GAP 3SAT if A(p) =1 if ¢ is a YES instance of p-GAP 3SAT
and A(p) = 0 if ¢ is a NO instance. Note that we do not make any requirement on A(yp) if ¢ is
neither a YES nor a NO instance of p-GAP qCSP.

Our earlier discussion of the desired reduction f can be formalized as follows.

DEFINITION 18.10
Let p € (0,1). We say that p-GAP 3SAT is NP-hard if for every language L there is a polynomial-
time computable function f such that

x € L= f(x)is a YES instance of p-GAP 3SAT
x & L= f(x)is a NO instance of p-GAP 3SAT

18.2.3 Constraint Satisfaction Problems

Now we generalize the definition of 3SAT to constraint satisfaction problems (CSP), which allow
clauses of arbitrary form (instead of just OR of literals) including those depending upon more than
3 variables. Sometimes the variables are allowed to be non-Boolean. CSPs arise in a variety of
application domains and play an important role in the proof of the PCP Theorem.

DEFINITION 18.11

Let ¢, W be natural numbers. A gCSPyy instance ¢ is a collection of functions 1, ..., ¢ (called
constraints) from {0..W—1}" to {0, 1} such that each function ¢; depends on at most ¢ of its input
locations. That is, for every i € [m] there exist ji,...,jq € [n] and f : {0.W—-1}¢9 — {0,1} such
that o;(u) = f(uj,,...,u;,) for every u € {0..W-1}".

We say that an assignment u € {0.W—1}" satisfies constraint ¢; if ¢;(u) = 1. The fraction of
constraints satisfied by u is w, and we let val(p) denote the maximum of this value over all
u € {0.W—1}". We say that ¢ is satisfiable if val(p) = 1.

We call g the arity of ¢ and W the alphabet size. If W = 2 we say that ¢ uses a binary alphabet
and call ¢ a ¢CSP-instance (dropping the subscript 2).

EXAMPLE 18.12
3SAT is the subcase of ¢qCSPy, where ¢ = 3, W = 2, and the constraints are OR’s of the involved
literals.

Similarly, the NP-complete problem 3COL can be viewed as a subcase of 2CSP3 instances where
for each edge (7,7), there is a constraint on the variables u;, u; that is satisfied iff u; # ;. The
graph is 3-colorable iff there is a way to assign a number in {0, 1,2} to each variable such that all
constraints are satisfied.

Notes:

p18.8 (358) 18.2. PCP AND HARDNESS OF APPROXIMATION

1. We define the size of a ¢qCSPyy-instance ¢ to be the number of constraints m it has. Because
variables not used by any constraints are redundant, we always assume n < gm. Note that a
gCSPyw instance over n variables with m constraints can be described using O(mn?W?) bits.
Usually ¢, W will be constants (independent of n,m).

2. As in the case of 3SAT, we can define maximization and gap problems for CSP instances.
In particular, for any p € (0,1), we define p-GAP ¢CSPy; as the problem of distinguishing
between a qCSPyy-instance ¢ that is satisfiable (called a YES instance) and an instance ¢
with val(p) < p (called a NO instance). As before, we will drop the subscript W in the case
of a binary alphabet.

3. The simple greedy approximation algorithm for 3SAT can be generalized for the MAX ¢CSP
problem of maximizing the number of satisfied constraints in a given ¢CSP instance. That
is, for any ¢qCSPy instance ¢ with m constraints, the algorithm will output an assignment
satisfying %(‘qmm constraints. Thus, unless NP C P, the problem 279-GAP ¢CSP is not NP
hard.

18.2.4 An Alternative Formulation of the PCP Theorem

We now show how the PCP Theorem is equivalent to the NP-hardness of a certain gap version of
qCSP. Later, we will refer to this equivalence as the “hardness of approximation viewpoint” of the
PCP Theorem.

THEOREM 18.13 (PCP THEOREM, ALTERNATIVE FORMULATION)
There exist constants ¢ € N, p € (0,1) such that p-GAP qCSP is NP-hard.

We now show Theorem 18.13 is indeed equivalent to the PCP Theorem:

Theorem 18.2 implies Theorem 18.13. Assume that NP C PCP(logn,1). We will show
that 1/2-GAP ¢qCSP is NP-hard for some constant ¢. It is enough to reduce a single NP-complete
language such as 3SAT to 1/2-GAP ¢qCSP for some constant ¢q. Under our assumption, 3SAT has a
PCP system in which the verifier V' makes a constant number of queries, which we denote by g¢,
and uses clogn random coins for some constant ¢. Given every input = and r € {0, l}Clog”, define
Vzr to be the function that on input a proof 7 outputs 1 if the verifier will accept the proof 7 on
input z and coins r. Note that V,, depends on at most ¢ locations. Thus for every x € {0,1}", the
collection o = {Vy.+}, . (0,1)c1oen 1S @ polynomial-sized gCSP instance. Furthermore, since V' runs in
polynomial-time, the transformation of x to ¢ can also be carried out in polynomial-time. By the
completeness and soundness of the PCP system, if © € 3SAT then ¢ will satisfy val(y¢) = 1, while
if x ¢ 3SAT then ¢ will satisfy val(¢) < 1/2. B

Theorem 18.13 implies Theorem 18.2. Suppose that p-GAP ¢CSP is NP-hard for some con-
stants ¢,p < 1. Then this easily translates into a PCP system with ¢ queries, p soundness and
logarithmic randomness for any language L: given an input x, the verifier will run the reduction
f(z) to obtain a ¢CSP instance ¢ = {¢;}*,. It will expect the proof 7 to be an assignment to the

18.2. PCP AND HARDNESS OF APPROXIMATION p18.9 (359)

variables of ¢, which it will verify by choosing a random i € [m] and checking that ; is satisfied
(by making ¢ queries). Clearly, if x € L then the verifier will accept with probability 1, while if
x ¢ L it will accept with probability at most p. The soundness can be boosted to 1/2 at the expense
of a constant factor in the randomness and number of queries (see Exercise 1). B

REMARK 18.14

Since 3C' N F formulas are a special case of 3CSP instances, Theorem 18.8 (p-GAP 3SAT is NP-hard)
implies Theorem 18.13 (p-GAP ¢CSP is NP-hard). Below we show Theorem 18.8 is also implied by
Theorem 18.13, concluding that it is also equivalent to the PCP Theorem.

It is worth while to review this very useful equivalence between the “proof view” and the
“hardness of approximation view” of the PCP Theorem:

PCP verifier (V) — CSP instance (¢)
PCP proof () — Assignment to variables (u)
Length of proof — Number of variables (n)
Number of queries (q) — Arity of constraints (q)
Number of random bits (7) «—— Logarithm of number of constraints (logm)
Soundness parameter — Maximum of val(y) for a NO instance
Theorem 18.2 (NP C PCP(logn,1)) «— Theorem 18.13 (p-GAP ¢CSP is NP-hard)

18.2.5 Hardness of Approximation for 3SAT and INDSET.

The CSP problem allows arbitrary functions to serve as constraints, which may seem somewhat
artificial. We now show how Theorem 18.13 implies hardness of approximation results for the more
natural problems of MAX3SAT (determining the maximum number of clauses satisfiable in a 3SAT
formula) and MAXINDSET (determining the size of the largest independent set in a given graph).

The following two lemmas use the PCP Theorem to show that unless P = NP, both MAX 3SAT
and MAXINDSET are hard to approximate within a factor that is a constantless than 1. (Sec-
tion 18.3 proves an even stronger hardness of approximation result for INDSET.)

LEMMA 18.15 (THEOREM 18.8, RESTATED)
There exists a constant 0 < p < 1 such that p-GAP 3SAT is NP-hard.

LEMMA 18.16
There exist a polynomial-time computable transformation f from 3CNF formulae to graphs such
that for every 3CNF formula ¢, f(y) is an n-vertex graph whose largest independent set has size

val(yp)%.

PROOF OF LEMMA 18.15: Let € > 0 and g € N be such that by Theorem 18.13, (1—¢)-GAP ¢CSP
is NP-hard. We show a reduction from (1—¢)-GAP gqCSP to (1—¢€')-GAP 3SAT where ¢ > 0 is
some constant depending on € and ¢. That is, we will show a polynomial-time function mapping
YES instances of (1—€)-GAP ¢CSP to YES instances of (1—¢’)-GAP 3SAT and NO instances of
(1—€)-GAP gCSP to NO instances of (1—€')-GAP 3SAT.

Let ¢ be a ¢CSP instance over n variables with m constraints. Each constraint ¢; of ¢ can be
expressed as an AND of at most 29 clauses, where each clause is the OR of at most ¢ variables

p18.10 (360) 18.2. PCP AND HARDNESS OF APPROXIMATION

or their negations. Let ¢’ denote the collection of at most m2? clauses corresponding to all the
constraints of . If ¢ is a YES instance of (1—)-GAP ¢CSP (i.e., it is satisfiable) then there exists
an assignment satisfying all the clauses of ¢'. if ¢ is a NO instance of (1—€)-GAP ¢CSP then every

assignment violates at least an e fraction of the constraints of ¢ and hence violates at least an =

q
fraction of the constraints of . We can use the Cook-Levin technique of Chapter 2 (Theorem 2.102),
to transform any clause C' on ¢ variables on uyg, ..., uq to aset Cy,. .., Cy of clauses over the variables
u1, ..., uq and additional auxiliary variables yi, ..., y, such that (1) each clause C; is the OR of at
most three variables or their negations, (2) if uy,...,u, satisfy C' then there is an assignment to
Yi,...,Yqgsuch that uy,...,ug, y1,...,yq simultaneously satisfy C1,...,Cy and (3) if uy, ..., uq does
not satisfy C then for every assignment to y1,...,y,, there is some clause C; that is not satisfies

by w1,...,uq, Y1, ., Yqg-

Let " denote the collection of at most gm2? clauses over the n + gm variables obtained in this
way from ¢’. Note that ¢” is a 3SAT formula. Our reduction will map ¢ to ¢”. Completeness holds
since if ¢ was satisfiable then so will be ¢’ and hence ¢”. Soundness holds since if every assignment

€

violates at least an e fraction of the constraints of ¢, then every assignment violates at least an 5
fraction of the constraints of ¢’, and so every assignment violates at least an qﬁ fraction of the

constraints of ¢”. H

ProOOF OF LEMMA 18.16: Let ¢ be a 3CNF formula on n variables with m clauses. We define
a graph G of 7m vertices as follows: we associate a cluster of 7 vertices in G with each clause of
. The vertices in cluster associated with a clause C correspond to the 7 possible assignments to
the three variables C' depends on (we call these partial assignments, since they only give values for
some of the variables). For example, if C' is ug V5 V@7 then the 7 vertices in the cluster associated
with C' correspond to all partial assignments of the form w; = a,us = b, u3 = ¢ for a binary vector
{(a,b,c) # (1,1,1). (If C depends on less than three variables we treat one of them as repeated and
then some of the 7 vertices will correspond to the same assignment.) We put an edge between two
vertices of G if they correspond to inconsistent partial assignments. Two partial assignments are
consistent if they give the same value to all the variables they share. For example, the assignment
u1 = 1,u2 = 0, u3z = 0 is inconsistent with the assignment uz = 1, u5 = 0, uy = 1 because they share
a variable (ug) to which they give a different value. In addition, we put edges between every two
vertices that are in the same cluster.

Clearly transforming ¢ into G can be done in polynomial time. Denote by «(G) to be the
size of the largest independent set in G. We claim that «(G) = val(p)m. For starters, note that
a(G) > val(¢)m. Indeed, let u be the assignment that satisfies val(¢)m clauses. Define a set S as
follows: for each clause C satisfied by u, put in S the vertex in the cluster associated with C that
corresponds to the restriction of u to the variables C' depends on. Because we only choose vertices
that correspond to restrictions of the assignment u, no two vertices of S correspond to inconsistent
assignments and hence S is an independent set of size val(¢)m.

Suppose that G has an independent set S of size k. We will use S to construct an assignment
u satisfying & clauses of ¢, thus showing that val(p)m > «(G). We define u as follows: for every
i € [n], if there is a vertex in S whose partial assignment gives a value a to u;, then set u; = a;
otherwise set u; = 0. This is well defined because S is an independent set, and each variable u;
can get at most a single value by assignments corresponding to vertices in .S. On the other hand,
because we put all the edges within each cluster, S can contain at most a single vertex in each

18.3. N9%-APPROXIMATION OF INDEPENDENT SET IS NP-HARD. pl8.11 (361)

cluster, and hence there are k distinct cluster with members in S. By our definition of u it satisfies
all the clauses associated with these clusters. B

REMARK 18.17

In Chapter 2, we defined L’ to be NP-hard if every L € NP reduces to L. The reduction
was a polynomial-time function f such that x € L < f(z) € L. In all cases, we proved that
x € L = f(x) € L' by showing a way to map a certificate to the fact that x € L to a certificate
to the fact that 2’ € L’. Although the definition of a Karp reduction does not require that this
mapping is efficient, it often turned out that the proof did provide a way to compute this mapping
in polynomial time. The way we proved that f(z) € L' = x € L was by showing a way to map a
certificate to the fact that 2’ € L’ to a certificate to the fact that x € L. Once again, the proofs
typically yield an efficient way to compute this mapping.

A similar thing happens in the gap preserving reductions used in the proofs of Lemmas 18.15
and 18.16 and elsewhere in this chapter. When reducing from, say, p-GAP qCSP to p'-GAP 3SAT
we show a function f that maps a CSP instance ¢ to a 3SAT instance v satisfying the following
two properties:

Completeness We can map a satisfying assignment of ¢ to a satisfying assignment to 1

Soundness Given any assignment that satisfies more than a p’ fraction of 1’s clauses, we can map
it back into an assignment satisfying more than a p fraction of ¢’s constraints.

18.3 n %-approximation of independent set is NP-hard.

We now show a much stronger hardness of approximation result for the independent set (INDSET)
problem than Lemma 18.16. Namely, we show that there exists a constant 6 € (0,1) such that
unless P = NP, there is no polynomial-time n’-approximation algorithm for INDSET. That is, we
show that if there is a polynomial-time algorithm A that given an n-vertex graph G outputs an
independent set of size at least %‘? (where opt is the size of the largest independent set in G) then
P = NP. We note that an even stronger result is known: the constant § can be made arbitrarily
close to 1 [?, ?]. This factor is almost optimal since the independent set problem has a trivial
n-approximation algorithm: output a single vertex.

Our main tool will be the notion of expander graphs (see Note 18.18 and Chapter ?7?). Expander
graphs will also be used in the proof of PCP Theorem itself. We use here the following property

of expanders:

LEMMA 18.19

Let G = (V, E) be a A-expander graph for some X € (0,1). Let S be a subset of V with |S| = 3|V|
for some 3 € (0,1). Let (X1,...,X¢) be a tuple of random variables denoting the vertices of a
uniformly chosen (¢—1)-step path in G. Then,

(8 =2\ < Pr[V;ciqX; € 8] < (B+2))F

The upper bound of Lemma 18.19 is implied by Theorem ?7; we omit the proof of the lower
bound.
The hardness result for independent set follows by combining the following lemma with Lemma 18.16:

pl18.12 (362) 18.3. N9%-APPROXIMATION OF INDEPENDENT SET IS NP-HARD.

NOTE 18.18 (EXPANDER GRAPHS)
Expander graphs are described in Chapter ??. We define there a parameter
AG) €]0,1], for every regular graph G (see Definition 7.25). The main
property we need in this chapter is that for every regular graph G = (V, E)
and every S C V with |S| < |V]/2,

S| (1 AG)
< — — —~ 7
(U’E’)re [u€ S,vels| v \2 + 5 (3)

Another property we use is that A(G*) = A(G)! for every £ € N, where G¥ is
obtained by taking the adjacency matrix of G to the ¢ power (i.e., an edge
in G* corresponds to an (/—1)-step path in G).

For every ¢ € (0,1), we call a regular graph G satisfying A\(G) < ¢ a c-
expander graph. If ¢ < 0.9, we drop the prefix ¢ and simply call G an
expander graph. (The choice of the constant 0.9 is arbitrary.) As shown
in Chapter 77, for every constant ¢ € (0,1) there is a constant d and an
algorithm that given input n € N, runs in poly(n) time and outputs the
adjacency matrix of an n-vertex d-regular c-expander (see Theorem 16.32).

LEMMA 18.20
For every \ > 0 there is a polynomial-time computable reduction f that maps every n-vertex graph
G into an m-vertex graph H such that

(&(G) —20)°8" < G(H) < (&(G) + 2))losn
where &(G) is equal to the fractional size of the largest independent set in G.

Recall that Lemma 18.16 shows that there are some constants (3, € € (0, 1) such that it is NP-
hard to tell whether a given graph G satisfies (1) @(G) > § or (2) &(G) < (1 —€)5. By applying
to G the reduction of Lemma 18.20 with parameter A\ = [¢/8 we get that in case (1), a(H) >
(B—Be/4)°8™ = (B(1—€/4))°8", and in case (2), &(H) < ((1—¢€)B+Fe/4)1°8™ = (B3(1—0.75¢))'8™,
We get that the gap between the two cases is equal to ¢!°8™ for some ¢ > 1 which is equal to m?
for some § > 0 (where m = poly(n) is the number of vertices in H).

PrOOF OoF LEMMA 18.20: Let G, A be as in the lemma’s statement. We let K be an n-vertex
A-expander of degree d (we can obtain such a graph in polynomial-time, see Note 18.18). We will
map G into a graph H of nd'°e"~! vertices in the following way:

e The vertices of H correspond to all the (logn—1)-step paths in the A-expander K.

e We put an edge between two vertices u, v of H corresponding to the paths (u1, ..., Ulogn) and
(U1, ..., Viogn) if there exists an edge in G between two vertices in the set {u1, ..., Ulogn, V1, - - -, Viogn }-

18.4. NP C PCP(POLY(N),1): PCP BASED UPON WALSH-HADAMARD CODEpi8.13 (363)

A subset T of H'’s vertices corresponds to a subset of log n-tuples of numbers in [n], which we
can identify as tuples of vertices in G. We let V(T') denote the set of all the vertices appearing in
one of the tuples of T'. Note that in this notation, T is an independent set in H if and only if V(T)
is an independent set of G. Thus for every independent set 7" in H, we have that |V(T')| < &(G)n
and hence by the upper bound of Lemma 18.19, T takes up less than an (&(H) + 2))'°8™ fraction
of H’s vertices. On the other hand, if we let S be the independent set of G of size &(G)n then by
the lower bound of Lemma, 18.19, an (& — 2))'°8™ fraction of H’s vertices correspond to paths fully
contained in S, implying that &(H) > (a(G) — 2))'¢". A

18.4 NP C PCP(poly(n),1): PCP based upon Walsh-Hadamard
code

We now prove a weaker version of the PCP theorem, showing that every NP statement has an
exponentially-long proof that can be locally tested by only looking at a constant number of bits. In
addition to giving a taste of how one proves PCP Theorems, this section builds up to a stronger
Corollary 18.26, which will be used in the proof of the PCP theorem.

THEOREM 18.21
NP C PCP(poly(n),1)

We prove this theorem by designing an appropriate verifier for an NP-complete language. The
verifier expects the proof to contain an encoded version of the usual certificate. The verifier checks
such an encoded certificate by simple probabilistic tests.

18.4.1 Tool: Linearity Testing and the Walsh-Hadamard Code

We use the Walsh-Hadamard code (see Section 17.5, though the treatment here is self-contained).
It is a way to encode bit strings of length n by linear functions in n variables over GF(2); namely,
the function WH : {0,1}" — {0, 1}* mapping a string u € {0,1}" to the truth table of the function
X — u® x, where for x,y € {0,1}" we define x ®y = > | z;5; (mod 2). Note that this is a
very inefficient encoding method: an n-bit string u € {0,1}" is encoded using [WH(u)| = 2" bits.
If f € {0,1}*" is equal to WH(u) for some u then we say that f is a Walsh-Hadamard codeword.
Such a string f € {0,1}*" can also be viewed as a function from {0,1}" to {0,1}.

The Walsh-Hadamard code is an error correcting code with minimum distance 1/2, by which we
mean that for every u # u’ € {0,1}", the encodings WH(u) and WH(u) differ in half the bits. This
follows from the familiar random subsum principle (Claim A.5) since exactly half of the strings
x € {0,1}" satisfy u © x # u’ ® x. Now we talk about local tests for the Walsh-Hadamard code
(i.e., tests making only O(1) queries).

Local testing of Walsh-Hadamard code. Suppose we are given access to a function f :
{0,1}" — {0,1} and want to test whether or not f is actually a codeword of Walsh-Hadamard.
Since the Walsh-Hadamard codewords are precisely the set of all linear functions from {0,1}" to

pl8.14 (364)18.4. NP C PCP(POLY (), 1): PCP BASED UPON WALSH-HADAMARD CODE

{0,1}, we can test f by checking that

fx+y)=f(x)+ f(y) (4)

for all the 22" pairs x,y € {0,1}" (where “+” on the left side of (pcp:eq:lintest) denotes vector
addition over GF(2)" and on the right side denotes addition over GF(2)).

But can we test f by querying it in only a constant number of places? Clearly, if f is not linear
but very close to being a linear function (e.g., if f is obtained by modifying a linear function on
a very small fraction of its inputs) then such a local test will not be able to distinguish f from a
linear function. Thus we set our goal on a test that on one hand accepts every linear function, and
on the other hand rejects with high probability every function that is far from linear. It turns out
that the natural test of choosing x,y at random and verifying (4) achieves this goal:

DEFINITION 18.22

Let p € [0,1]. We say that f,g:{0,1}" — {0,1} are p-close if Pryc 10132 [f(x) = g(x)] > p. We
say that f is p-close to a linear function if there exists a linear function g such that f and ¢ are
p-close.

THEOREM 18.23 (LINEARITY TESTING [?])
Let f:{0,1}" — {0,1} be such that

eyl b alf e y) = f0) + f3)] 2 0

for some p > 1/2. Then f is p-close to a linear function.

We defer the proof of Theorem 18.23 to Section 19.3 of the next chapter. For every ¢ € (0, 1/2),
we can obtain a linearity test that rejects with probability at least 1/2 every function that is not
(1-0)-close to a linear function, by testing Condition (4) repeatedly O(1/0) times with independent
randomness. We call such a test a (1-0)-linearity test.

Local decoding of Walsh-Hadamard code. Suppose that for § < i the function f : {0,1}" —
{0,1} is (1—6)-close to some linear function f. Because every two linear functions differ on half of
their inputs, the function f is uniquely determined by f. Suppose we are given x € {0,1}" and
random access to f. Can we obtain the value f (x) using only a constant number of queries? The
naive answer is that since most x’s satisfy f(x) = f(x), we should be able to learn f(x) with good
probability by making only the single query x to f. The problem is that x could very well be one of
the places where f and f differ. Fortunately, there is still a simple way to learn f (x) while making
only two queries to f:

1. Choose x’ €r {0,1}".
2. Set x" =x+x'.
3. Let y' = f(x) and y” = f(x”).

4. Output y’ +y”.

18.4. NP C PCP(POLY(N),1): PCP BASED UPON WALSH-HADAMARD CODEpi8.15 (365)

Since both x’ and x” are individually uniformly distributed (even though they are dependent),
by the union bound with probability at least 1 — 28 we have y’ = f(x') and y” = f(x”). Yet by
the linearity of f, f(x) = f(x' +x") = f(x') + f(x”), and hence with at least 1 — 28 probability
f(x) =y'+y”.3 This technique is called local decoding of the Walsh-Hadamard code since it allows
to recover any bit of the correct codeword (the linear function f) from a corrupted version (the
function f) while making only a constant number of queries. It is also known as self correction of
the Walsh-Hadamard code.

18.4.2 Proof of Theorem 18.21

We will show a (poly(n), 1)-verifier proof system for a particular NP-complete language L. The
result that NP C PCP(poly(n), 1) follows since every NP language is reducible to L. The NP-
complete language L we use is QUADEQ), the language of systems of quadratic equations over
GF(2) = {0,1} that are satisfiable.

ExXAMPLE 18.24
The following is an instance of QUADEQ over the variables w1, ..., us:

uiug + ustg + uius = 1
ugug + urug = 0

U g + uzus +uztg = 1

This instance is satisfiable since the all-1 assignment satisfies all the equations.

More generally, an instance of QUADEQ over the variables uy,...,u, is of the form AU = b,
where U is the n’-dimensional vector whose (i, ;)" entry is ujuj, A is an m X n? matrix and
b € {0,1}™. In other words, U is the tensor product u ® u, where x ® y for a pair of vectors
x,y € {0,1}" denotes the n’-dimensional vector (or n x n matrix) whose (i, j) entry is x;y;. For
every i, j € [n] with 7 < j, the entry Ay, (; j) is the coefficient of u;u; in the k' equation (we identify
[n?] with [n] x [n] in some canonical way). The vector b consists of the right hand side of the m
equations. Since u; = (u;)? in GF(2), we can assume the equations do not contain terms of the
form u?

Thus a satisfying assignment consists of uy,u,...,u, € GF(2) such that its tensor product
U = u®u satisties AU = b. We leave it as Exercise 12 to show that QUADEQ), the language of all
satisfiable instances, is indeed NP-complete.

We now describe the PCP system for QUADEQ. Let A,b be an instance of QUADEQ and
suppose that A, b is satisfiable by an assignment u € {0,1}". The correct PCP proof 7 for A,b
will consist of the Walsh-Hadamard encoding for u and the Walsh-Hadamard encoding for u ® u,
by which we mean that we will design the PCP verifier in a way ensuring that it accepts proofs

3We use here the fact that over GF(2), a +b=a — b.

p18.16 (366)18.4. NP C PCP(POLY (), 1): PCP BASED UPON WALSH-HADAMARD CODE

-~

‘WH(U)% || WHuew %, |

Figure 18.2: The PCP proof that a set of quadratic equations is satisfiable consists of WH(u) and WH(u ® u) for
some vector u. The verifier first checks that the proof is close to having this form, and then uses the local decoder of
the Walsh-Hadamard code to ensure that u is a solution for the quadratic equation instance.

of this form with probability one, satisfying the completeness condition. (Note that 7 is of length
2m 4 2%)
Below, we repeatedly use the following fact:

RANDOM SUBSUM PRINCIPLE: Ifu # v then for at least 1/2 the choices of x, u®x # v ©x. Realize
that x can be viewed as a random subset of indices in [1,...,n| and the principle says that with
probability 1/2 the sum of the u;’s over this index set is different from the corresponding sum of v;’s.

n n2
The verifier. The verifier V' gets access to a proof m € {0, 1}2 +2
of functions f : {0,1}" — {0,1} and g : {0,1}"" — {0,1}.

Step 1: Check that f, g are linear functions.

, which we interpret as a pair

As already noted, this isn’t something that the verifier can check per se using local tests. Instead,
the verifier performs a 0.99-linearity test on both f, g, and rejects the proof at once if either test
fails.

Thus, if either of f, g is not 0.99-close to a linear function, then V rejects with high probability.
Therefore for the rest of the procedure we can assume that there exist two linear functions f :
{0,1}" — {0,1} and g : {0, 1}"2 — {0,1} such that f is 0.99-close to f, and § is 0.99-close to g.
(Note: in a correct proof, the tests succeed with probability 1 and f=fand g= g.)

In fact, we will assume that for Steps 2 and 3, the verifier can query f, § at any desired point.
The reason is that local decoding allows the verifier to recover any desired value of f , g with good
probability, and Steps 2 and 3 will only use a small (less than 15) number of queries to f ,g. Thus
with high probability (say > 0.9) local decoding will succeed on all these queries.

NOTATION: To simplify notation in the rest of the procedure we use f,g for f,§ respectively.
Furthermore, we assume both f and g are linear, and thus they must encode some strings u € {0,1}"

and w € {0, 1}”2. In other words, f, g are the functions given by f(r) =u®r and ¢g(z) =w O z.
Step 2: Verify that g encodes u ® u, where u € {0,1}" is the string encoded by f.
Verifier V' does the following test 3 times: “Choose r,r’ independently at random from {0,1}",

and if f(r)f(r') # g(r @ r’) then halt and reject.”
In a correct proof, w = u® u, so

f(r)f(r,) = Z U;T5 Z uj'r;. —
]

1€[n] jE[n

Z uiugrir; = (W@u) © (r@r'),
i,j€ln]

18.4. NP C PCP(POLY(N),1): PCP BASED UPON WALSH-HADAMARD CODEpi18.17 (367)

which in the correct proof is equal to g(r @ r’). Thus Step 2 never rejects a correct proof.

Suppose now that, unlike the case of the correct proof, w # u®u. We claim that in each of the
three trials V' will halt and reject with probability at least i. (Thus the probability of rejecting in
at least one trial is at least 1 — (3/4)3 = 37/64.) Indeed, let W be an n x n matrix with the same
entries as w, let U be the n x n matrix such that U; ; = u;u; and think of r as a row vector and r
as a column vector. In this notation,

grer)=wo(rer)= Z w jrir; = rWr'
i,j€[n]

n n
ffE)=@or)(or) =0 wr)) ur) =Y wury; =rUr
1=1 Jj=1 i,j€n]

And V rejects if rWr’ # rUr’. The random subsum principle implies that if W # U then at
least 1/2 of all r satisfy rW # rU. Applying the random subsum principle for each such r, we
conclude that at least 1/2 the r' satisfy rWWr’ # rUr’. We conclude that the test rejects for at least
1/4 of all pairs r,r’.

Step 3: Verify that f encodes a satisfying assignment.
Using all that has been verified about f, g in the previous two steps, it is easy to check that any
particular equation, say the kth equation of the input, is satisfied by u, namely,

ZAk,(i,j)uiuj = bk (5)
0.

Denoting by z the n? dimensional vector (Ak,,j)) (where i, j vary over [1..n]), we see that the
left hand side is nothing but g(z). Since the verifier knows Ay, ; ;y and by, it simply queries g at z
and checks that g(z) = by.

The drawback of the above idea is that in order to check that u satisfies the entire system,
the verifier needs to make a query to g for each k = 1,2, ..., m, whereas the number of queries is
required to be independent of m. Luckily, we can use the random subsum principle again! The
verifier takes a random subset of the equations and computes their sum mod 2. (In other words,
for k =1,2,...,m multiply the equation in (5) by a random bit and take the sum.) This sum is a
new quadratic equation, and the random subsum principle implies that if u does not satisfy even
one equation in the original system, then with probability at least 1/2 it will not satisfy this new
equation. The verifier checks that u satisfies this new equation.

(Actually, the above test has to be repeated twice to ensure that if u does not satisfy the system,
then Step 3 rejects with probability at least 3/4.)

18.4.3 PCP’s of proximity

Theorem 18.21 says that (exponential-sized) certificates for NP languages can be checked by ex-
amining only O(1) bits in them. The proof actually yields a somewhat stronger result, which will
be used in the proof of the PCP Theorem. This concerns the following scenario: we hold a circuit
C' in our hands that has n input wires. Somebody holds a satisfying assignment u. He writes down
WH(u) as well as another string 7 for us. We do a probabilistic test on this by examining O(1) bits
in these strings, and at the end we are convinced of this fact.

p18.18 (368)18.4. NP C PCP(POLY (), 1): PCP BASED UPON WALSH-HADAMARD CODE

Concatenation test. First we need to point out a property of Walsh-Hadamard codes and a
related concatenation test. In this setting, we are given two linear functions f, g that encode strings
of lengths n and n + m respectively. We have to check by examining only O(1) bits in f, g that if
u and v are the strings encoded by f, ¢ (that is, f = WH(u) and h = WH(v)) then u is the same
as the first n bits of v. By the random subsum principle, the following simple test rejects with
probability 1/2 if this is not the case. Pick a random x € {0,1}", and denote by X € GF(2)"*"
the string whose first n bits are x and the remaining bits are all-0. Verify that f(X) = g(x).
With this test in hand, we can prove the following corollary.

COROLLARY 18.25 (EXPONENTIAL-SIZED PCP OF PROXIMITY.)
There exists a verifier V that given any circuit C of size m and with n inputs has the following
property:

1. Ifu € {0,1}" is a satisfying assignment for circuit C, then there is a string my of size 2P oly(m)
such that V' accepts WH(u) o mo with probability 1. (Here o denotes concatenation.)

2. For every strings w1, mo € {0,1}*, where 1 has 2" bits, if V accepts my o mo with probability
at least 1/2, then m; is 0.99-close to WH(u) for some u that satisfies C.

3. V uses poly(m) random bits and examines only O(1) bits in the provided strings