
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 17

Hardness Amplification and Error
Correcting Codes

We pointed out in earlier chapters (e.g., Chapter ?? the distinction between worst-case hardness
and average-case hardness. For example, the problem of finding the smallest factor of every given
integer seems difficult on worst-case instances, and yet is trivial for at least half the integers –
namely, the even ones. We also saw that functions that are average-case hard have many uses,
notably in cryptography and derandomization.

In this chapter we study techniques for amplifying hardness. First, we see Yao’s XOR Lemma,
which transforms a “mildly hard” function (i.e., one that is hard to compute on a small fraction
of the instances) to a function that is extremely hard, for which the best algorithm is as bad as
the algorithm that just randomly guesses the answer. We mentioned Yao’s result in the chapter
on cryptography as a means to transform weak one-way functions into strong one-way functions.
The second result in this chapter is a technique to use error-correcting codes to transform worst-
case hard functions into average-case hard functions. This transformation unfortunately makes the
running time exponential, and is thus useful only in derandomization, and not in cryptography.

In addition to their applications in complexity theory, the ideas covered here have had other
uses, including new constructions of error-correcting codes and new algorithms in machine learning.

17.1 Hardness and Hardness Amplification.

We now define a slightly more refined notion of hardness, that generalizes both the notions of
worst-case and average-case hardness given in Definition 16.7:

Definition 17.1 (Hardness)
Let f : {0, 1}∗ → {0, 1} and ρ : N → [0, 1]. We define Hρ

avg(f) to be the func-
tion from N to N that maps every number n to the largest number S such that
Prx∈R{0,1}n [C(x) = f(x)] < ρ(n) for every Boolean circuit C on n inputs with size
at most S.

Web draft 2007-01-08 22:03
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p17.1 (315)

DRAFT

p17.2 (316) 17.2. MILD TO STRONG HARDNESS: YAO’S XOR LEMMA.

Note that, in the notation of Definition 16.7, Hwrs(f) = H1
avg(f) and Havg(f)(n) = max

{
S : H1/2+1/S

avg (f)(n) ≥ S
}
.

In this chapter we show the following results for every two functions S, S′ : N → N:

Worst-case to mild hardness. If there is a function f ∈ E = DTIME(2O(n)) such that Hwrs(f)(n) =
H1

avg(f)(n) ≥ S(n) then there is a function f ′ ∈ E such that H0.99
avg (f)(n) ≥ S(εn)ε for some

constant ε > 0 and every sufficiently large n.

Mild to strong hardness. If f ′ ∈ E satisfies H0.99
avg (f ′)(n) ≥ S′(n) then there is f ′′ ∈ E and ε > 0

such that Havg(f ′′)(n) ≥ S′(nε)ε.

Combining these two results with Theorem 16.10, this implies that if there exists a function
f ∈ E with Hwrs(f)(n) ≥ S(n) then there exists an S(`ε)ε-pseudorandom generator for some ε > 0,
and hence:

Corollary 1 If there exists f ∈ E and ε > 0 such that Hwrs(f) ≥ 2nε
then BPP ⊆ QuasiP =

∪cDTIME(2log nc
).

Corollary 2 If there exists f ∈ E such that Hwrs(f) ≥ nω(1) then BPP ⊆ SUBEXP = ∩εDTIME(2nε
).

To get to BPP = P, we need a stronger transformation. We do this by showing how to
transform in one fell swoop, a function f ∈ E with Hwrs(f) ≥ S(n) into a function f ′ ∈ E with
Havg(f) ≥ S(εn)ε for some ε > 0. Combined with Theorem 16.10, this implies that BPP = P if
there exists f ∈ E with Hwrs(f) ≥ 2Ω(n).

17.2 Mild to strong hardness: Yao’s XOR Lemma.

We start with the second result described above: transforming a function that has “mild” average-
case hardness to a function that has strong average-case hardness. The transformation is actually
quite simple and natural, but its analysis is somewhat involved (yet, in our opinion, beautiful).

Theorem 17.2 (Yao’s XOR Lemma)
For every f : {0, 1}n → {0, 1} and k ∈ N, define f⊕k : {0, 1}nk → {0, 1} as follows:

f⊕k(x1, . . . , xk) =
∑k

i=1 f(xi) (mod 2).
For every δ > 0, S and ε > 2(1− δ/2)k, if H1−δ

avg (f) ≥ S then

H1/2+ε
avg (f⊕k) ≥ ε2

100 log(1/δε)S

The intuition behind Theorem 17.2 derives from the following fact. Suppose we have a biased
coin that, whenever it is tossed, comes up heads with probability 1 − δ and tails with probability
δ. If δ is small, each coin toss is fairly predictable. But suppose we now toss it k times and define
a composite coin toss that is “heads” iff the coin came up heads an odd number of times. Then
the probability of “heads” in this composite coin toss is at most 1/2 + (1 − 2δ)k (see Exercise 1),
which tends to 1/2 as k increases. Thus the parity of coin tosses becomes quite unpredictable. The

Web draft 2007-01-08 22:03

DRAFT

17.2. MILD TO STRONG HARDNESS: YAO’S XOR LEMMA. p17.3 (317)

analogy to our case is that intuitively, for each i, a circuit of size S has chance at most 1 − δ of
“knowing” f(xi) if xi is random. Thus from its perspective, whether or not it will be able to know
f(xi) is like a biased coin toss. Hence its chance of guessing the parity of the k bits should be
roughly like 1/2 + (1− 2δ)k.

We transform this intuition into a proof via an elegant result of Impagliazzo, that provides some
fascinating insight on mildly hard functions.

Definition 17.3 (δ-density distribution)
For δ < 1 a δ-density distribution H over {0, 1}n is one such that for every x ∈ {0, 1}n, Pr[H =
x] ≤ 2−n

δ .

Remark 17.4
Note that in Chapter 16 we would have called it a distribution with min entropy n− log 1/δ.

The motivating example for this definition is the distribution that is uniform over some subset
of size δ2n and has 0 probability outside this set.

A priori, one can think that a function f that is hard to compute by small circuits with
probability 1 − δ could have two possible forms: (a) the hardness is sort of “spread” all over the
inputs, and it is roughly 1 − δ-hard on every significant set of inputs or (b) there is a subset H
of roughly a δ fraction of the inputs such that on H the function is extremely hard (cannot be
computed better than 1

2 + ε for some tiny ε) and on the rest of the inputs the function may be even
very easy. Such a set may be thought of as lying at the core of the hardness of f and is sometimes
called the hardcore set. Impagliazzo’s Lemma shows that actually every hard function has the form
(b). (While the Lemma talks about distributions and not sets, one can easily transform it into a
result on sets.)

Lemma 17.5 (Impagliazzo’s Hardcore Lemma)
For every δ > 0, f : {0, 1}n → {0, 1}n, and ε > 0, if H1−δ

avg (f) ≥ S then there exists a distribution H

over {0, 1}n of density at least δ/2 such that for every circuit C of size at most ε2S
100 log(1/δε) ,

Pr
x∈RH

[C(x) = f(x)] ≤ 1/2 + ε ,

Proof of Yao’s XOR Lemma using Impagliazzo’s Hardcore Lemma.

We now use Lemma 17.5 to transform the biased-coins intuition discussed above into a proof of the
XOR Lemma. Let f : {0, 1}n → {0, 1} be a function such that H1−δ

avg (f) ≥ S, let k ∈ N and suppose,
for the sake of contradiction, that there is a circuit C of size ε2

100 log(1/δε)S such that

Pr
(x1,...,xk)∈RUk

n

[
C(x1, . . . , xk) =

k∑
i=1

f(xi) (mod 2)

]
≥ 1/2 + ε , (1)

where ε > 2(1− δ/2)k.
Let H be the hardcore distribution of dens ity at least δ′ = δ/2 that is obtained from Lemma 17.5,

on which every circuit C ′ fails to compute f with probability better than 1/2 + ε/2. Define a dis-
tribution G over {0, 1}n as follows: for every x ∈ {0, 1}n, Pr[G = x] = (1− δ′ Pr[H = x])/(1− δ′).

Web draft 2007-01-08 22:03

DRAFT

p17.4 (318) 17.3. PROOF OF IMPAGLIAZZO’S LEMMA

Note that G is indeed a well-defined distribution, as H has density at least δ′. Also note that if H
was the uniform distribution over some subset of {0, 1}n of size δ′2n, then G will be the uniform
distribution over the complement of this subset.

We can think of the process of picking a uniform element in {0, 1}n as follows: first toss a
δ′-biased coin that comes up “heads” with probability δ. Then, if it came up “heads” choose a
random element out of H, and with probability 1− δ′, and otherwise choose a random element out
of G. We shorthand this and write

Un = (1− δ′)G + δ′H . (2)

If we consider the distribution (Un)2 of picking two random strings, then by (2) it can be written
as (1− δ′)2G2 + (1− δ′)δ′GH + δ′(1− δ′)HG + δ′2H2. Similarly, for every k

(Un)k = (1− δ′)kGk + (1− δ′)k−1δ′Gk−1H + · · ·+ δ′kHk . (3)

For every distribution D over {0, 1}nk let PD be the probability of the event of the left-hand side of
(1) that C(x1, . . . , xk) =

∑k
i=1 f(xi) (mod 2) where x1, . . . , xk are chosen from D. Then, combining

(1) and (3),

1/2 + ε ≤ P(Un)k = (1− δ′)kPGk + (1− δ′)k−1δ′PGk−1H + · · ·+ δ′kPHk .

But since δ′ = δ/2 and ε > 2(1− δ/2)k and PGk ≤ 1 we get

1/2 + ε/2 ≤ 1/2 + ε− (1− δ′)k ≤ (1− δ′)k−1δ′PGk−1H + · · ·+ δ′kPHk .

Notice, the coefficients of all distributions on the right hand side sum up to less than one, so there
must exist a distribution D that has at least one H component such that PD ≥ 1/2 + ε/2. Suppose
that D = Gk−1H (all other cases are handled in a similar way). Then, we get that

Pr
X1,...,Xk−1∈RG,Xk∈RH

[C(X1, . . . , Xk−1, Xk) =
k∑

i=1

f(Xi) (mod 2)] ≥ 1/2 + ε/2 . (4)

By the averaging principle, (4) implies that there exist k − 1 strings x1, . . . , xk−1 such that if
b =

∑k−1
i=1 f(xi) (mod 2) then,

Pr
Xk∈RH

[C(x1, . . . , xk−1, Xk) = b + f(Xk) (mod 2)] ≥ 1/2 + ε/2 . (5)

But by “hardwiring” the values x1, . . . , xk and b into the circuit C, (5) shows a direct contradiction
to the fact that H is a hardcore distribution for the function f . �

17.3 Proof of Impagliazzo’s Lemma

Let f be a function with H1−δ
avg (f) ≥ S. To Prove Lemma 17.5 we need to show a distribution H over

{0, 1}n (with no element of weight more than 2 · 2−n/δ) on which every circuit C of size S′ cannot
compute f with probability better than 1/2 + ε (where S′,ε are as in the Lemma’s statement).

Web draft 2007-01-08 22:03

DRAFT

17.3. PROOF OF IMPAGLIAZZO’S LEMMA p17.5 (319)

Let’s think of this task as a game between two players named Russell and Noam. Russell first
sends to Noam some distribution H over {0, 1}n with density at least δ. Then Noam sends to
Russell some circuit C of size at most S′. Russell then pays to Noam Ex∈RH [RightC(x)] dollars,
where RightC(x) is equal to 1 if C(x) = f(x) and equal to 0 otherwise. What we need to prove is
that there is distribution that Russell can choose, such that no matter what circuit Noam sends,
Russell will not have to pay him more than 1/2 + ε dollars.

An initial observation is that Russell could have easily ensured this if he was allowed to play
second instead of first. Indeed, under our assumptions, for every circuit C of size S (and so, in
particular also for circuits of size S′ which is smaller than S), there exists a set SC of at least
δ2n ≥ (δ/2)2n inputs such that C(x) 6= f(x) for every x ∈ SC . Thus, if Noam had to send his
circuit C, then Russell could have chosen H to be the uniform distribution over SC . Thus H would
have density at least δ/2 and Ex∈RH [RightC(x)] = 0, meaning that Russell wouldn’t have to pay
Noam a single cent.

Now this game is a zero sum game, since whatever Noam gains Russell loses and vice versa,
tempting us to invoke von-Neumann’s famous Min-Max Theorem (see Note 17.7) that says that
in a zero-sum game it does not matter who plays first as long as we allow randomized strategies.1

What does it mean to allow randomized strategies in our context? It means that Noam can
send a distribution C over circuits instead of a single circuit, and the amount Russell will pay is
EC∈RCEx∈RH [RightC(x)]. (It also means that Russell is allowed to send a distribution over δ/2-
density distributions, but this is equivalent to sending a single δ/2-density distribution.)

Thus, we only need to show that, when playing second, Russell can still ensure a payment
of at most 1/2 + ε dollars even when Noam sends a distribution C of S′-sized circuits. For every
distribution C, we say that an input x ∈ {0, 1}n is good for Noam (good for short) with respect to
C if EC∈RC [RightC(x)] ≥ 1/2 + ε. It suffices to show that for every distribution C over circuits of size
at most S′, the number of good x’s with respect to C is at most 1− δ/2. (Indeed, this means that
for every C, Russell could choose as its distribution H the uniform distribution over the bad inputs
with respect to C.)

Suppose otherwise, that there is at least a 1 − δ/2 fraction of inputs that are good for C. We
will use this to come up with an S-sized circuit C that computes f on at least a 1 − δ fraction
of the inputs in {0, 1}n, contradicting the assumption that H1−δ

avg (f) ≥ S. Let t = 10 log(1/δε)/ε2,
choose C1, . . . , Ct at random from C and let C = maj{C1, . . . , Ct} be the circuit of size tS′ < S
circuit that on input x outputs the majority value of {C1(x), . . . , Ct(x)}. If x is good for C, then
by the Chernoff bound we have that C(x) = f(x) with probability at least 1− δ/2 over the choice
of C1, . . . , Ct. Since we assume at least 1− δ/2 of the inputs are good for C, we get that

Ex∈R{0,1}nEC1∈RC,...,Ct∈RC [Rightmaj{C1,...,Ct}(x)] ≥ (1− δ
2)(1− δ

2) ≥ 1− δ . (6)

But by linearity of expectation, we can switch the order of expectations in (6) obtaining that

EC1∈RC,...,Ct∈RCEx∈R{0,1}n [Rightmaj{C1,...,Ct}(x)] ≥ 1− δ ,

1The careful reader might note that another requirement is that the set of possible moves by each player is finite,
which does not seem to hold in our case as Russell can send any one of the infinitely many δ/2-density distributions.
However, by either requiring that the probabilities of the distribution are multiples of ε

100·2n (which won’t make any
significant difference in the game’s outcome), or using the fact that each such distribution is a convex sum of uniform
distributions over sets of size at least (δ/2)2n (see Exercise 9 of Chapter 16), we can make this game finite.

Web draft 2007-01-08 22:03

DRAFT

p17.6 (320) 17.3. PROOF OF IMPAGLIAZZO’S LEMMA

which in particular implies that there exists a circuit C of size at most S such that Ex∈RUn [RightC(x)] ≥
1− δ, or in other words, C computes f on at least a 1− δ fraction of the inputs. �

Remark 17.6
Taken in the contrapositive, Lemma 17.5 implies that if for every significant chunk of the inputs
there is some circuit that computes f with on this chunk with some advantage over 1/2, then there
is a single circuit that computes f with good probability over all inputs. In machine learning such
a result (transforming a way to weakly predict some function into a way to strongly predict it) is
called Boosting of learning methods. Although the proof we presented here is non-constructive,
Impagliazzo’s original proof was constructive, and was used to obtain a boosting algorithm yielding
some new results in machine learning, see [?].

Web draft 2007-01-08 22:03

DRAFT

17.3. PROOF OF IMPAGLIAZZO’S LEMMA p17.7 (321)

Note 17.7 (The Min-Max Theorem)
A zero sum game is, as the name implies, a game between two parties in
which whatever one party loses is won by the other party. It is modeled
by an m × n matrix A = (ai,j) of real numbers. The game consists of only
a single move. One party, called the minimizer or column player, chooses
an index j ∈ [n] while the other party, called the maximizer or row player,
chooses an index i ∈ [m]. The outcome is that the column player has to pay
ai,j units of money to the row player (if ai,j is negative then actually the row
player has to pay). Clearly, the order in which players make their moves is
important. Surprisingly, if we allow the players randomized strategies, then
the order of play becomes unimportant.

The game with randomized (also known as mixed) strategies is as follows.
The column player chooses a distribution over the columns; that is, a vector
p ∈ [0, 1]n with

∑n
i=1 pi = 1. Similarly, the row player chooses a distribution

q over the rows. The amount paid is the expectation of ai,j for j chosen from
p and i chosen from q. If we think of p as a column vector and q as a row
vector then this is equal to qAp. The min-max theorem says:

min
p∈[0,1]n

Σipi=1

max
q∈[0,1]m

Σiqi=1

qAp = max
q∈[0,1]m

Σiqi=1

min
p∈[0,1]n

Σipi=1

qAp (7)

The min-max theorem can be proven using the following result, known as
Farkas’ Lemma:2 if C and D are disjoint convex subsets of Rm, then there
is an m − 1 dimensional hyperplane that separates them. That is, there is
a vector z and a number a such that for every x ∈ C, 〈x, z〉 =

∑
i xizi ≤ a

and for every y ∈ D, 〈y, z〉 ≥ a. (A subset C ⊆ Rm is convex if
whenever it contains a pair of points x,y, it contains the line segment
{αx + (1− α)y : 0 ≤ α ≤ 1} that lies between them.) We ask you to prove
Farkas’ Lemma in Exercise 2 but here is a “proof by picture” for the two
dimensional case:

C
D

hyperplane

Farkas’ Lemma implies the min-max theorem by noting that
maxq minp qAp ≥ c if and only if the convex set D =
{Ap : p ∈ [0, 1]n

∑
i pi = 1} does not intersect with the convex set

C =
{
x ∈ Rm : ∀i∈[m]xi < c

}
and using the Lemma to show that this

implies the existence of a probability vector q such that 〈q,y〉 ≥ c for every
y ∈ D (see Exercise 3). The Min-Max Theorem is equivalent to another
well-known result called linear programming duality, that can also be proved
using Farkas’ Lemma (see Exercise 4).

Web draft 2007-01-08 22:03

DRAFT

p17.8 (322)

17.4. ERROR CORRECTING CODES: THE INTUITIVE CONNECTION TO HARDNESS
AMPLIFICATION

17.4 Error correcting codes: the intuitive connection to hardness
amplification

Now we construct average-case hard functions using functions that are only worst-case hard. To do
so, we desire a way to transform any function f to another function g such that if there is a small
circuit that computes g approximately (i.e., correctly outputs g(x) for many x) then there is a small
circuit that computes f at all points. Taking the contrapositive, we can conclude that if there is
no small circuit that computes f then there is no small circuit that computes g approximately.

Let us reason abstractly about how to go about the above task.
View a function f : {0, 1}n → {0, 1} as its truth table, namely, as a string of length 2n, and

view any circuit C for computing this function as a device that, given any index x ∈ [2n], gives the
x’th bit in this string. If the circuit only computes g on ”average” then this device may be thought
of as only partially correct; it gives the right bit only for many indices x’s, but not all. Thus we
need to show how to turn a partially correct string for g into a completely correct string for f .
This is of course reminiscent of error correcting codes (ECC), but with a distinct twist involving
computational efficiency of decoding, which we will call local decoding.

The classical theory of ECC’s (invented by Shannon in 1949) concerns the following problem.
We want to record some data x ∈ {0, 1}n on a compact disk to retrieve at a later date, but that
compact disk might scratched and say 10% of its contents might be corrupted. The idea behind
error correcting codes is to encode x using some redundancy so that such corruptions do not prevent
us from recovering x.

The naive idea of redundancy is to introduce repetitions but that does not work. For example
suppose we repeat each bit three times, in other words encode x as the string y = x1x1x1x2x2x2 . . . xnxnxn.
But now if the first three coordinates of y are corrupted then we cannot recover x1, even if all other
coordinates of y are intact. (Note that the first three coordinates take only a 1/n � 10% fraction
of the entire string y.) Clearly, we need a smarter way.

Definition 17.8 (Error Correcting Codes)
For x, y ∈ {0, 1}m, the fractional Hamming distance of x and y, denoted ∆(x, y), is
equal to 1

m |{i : xi 6= yi}|.
For every δ ∈ [0, 1], a function E : {0, 1}n → {0, 1}m is an error correcting code
(ECC) with distance δ, if for every x 6= y ∈ {0, 1}n, ∆(E(x), E(y)) ≥ δ. We call the
set Im(E) = {E(x) : x ∈ {0, 1}n} the set of codewords of E.

Suppose E : {0, 1}n → {0, 1}m is an ECC of distance δ > 0.2. Then the encoding x → E(x)
suffices for the CD storage problem (momentarily ignoring issues of computational efficiency).
Indeed, if y is obtained by corrupting 0.1m coordinates of E(x), then ∆(y, E(x)) < δ/2 and by the
triangle inequality ∆(y, E(x′)) > δ/2 for every x′ 6= x. Thus, x is the unique string that satisfies

2Many texts use the name Farkas’ Lemma only to denote a special case of the result stated in Note 17.7. Namely
the result that there is a separating hyperplane between any disjoint sets C, D such that C is a single point and D
is a set of the form {Ax : ∀ixi > 0} for some matrix A.

Web draft 2007-01-08 22:03

DRAFT

17.4. ERROR CORRECTING CODES: THE INTUITIVE CONNECTION TO HARDNESS
AMPLIFICATION p17.9 (323)

δ/2 δ/2
E(x) E(x’)

E(x’’)

y

Figure 17.1: In a δ-distance error correcting code, ∆(E(x), E(x′)) ≥ δ for every x 6= x′. We can recover x from
every string y satisfying ∆(y, E(x)) < δ/2 since the δ/2-radius ball around every codeword z = E(x) does not contain
any other codeword.

∆(y, E(x)) < δ/2. (See Figure 17.1.)
Of course, we still need to show that error correcting codes with minimum distance 0.2 actually

exist. The following lemma shows this. It introduces H(δ), the so-called entropy function, which
lies strictly between 0 and 1 when δ ∈ (0, 1).

Lemma 17.9
For every δ < 1/2 and sufficiently large n, there exists a function E : {0, 1}n → {0, 1}2n/(1−H(δ))

that is an error correcting code with distance δ, where H(δ) = δ log(1/δ) + (1− δ) log(1/(1− δ)).

Proof: We simply choose the function E : {0, 1}n → {0, 1}m at random for m = 2n/(1−H(δ)n.
That is, we choose 2n random strings y1, y2, . . . , y2n and E will map the input x ∈ {0, 1}n (which
we can identify with a number in [2n]) to the string yx.

It suffices to show that the probability that for some i < j with i, j ∈ [2n], ∆(yi, yj) < δ is less
than 1. But for every string yi, the number of strings that are of distance at most δ to it is

(
m

d δm e
)

which at most 0.99 · 2H(δ)m for m sufficiently large (see Appendix A) and so for every j > i, the
probability that yj falls in this ball is bounded by 0.99 · 2H(δ)m/2m. Since there are at most 22n

such pairs i, j, we only need to show that

0.99 · 22n 2H(δ)m

2m
< 1 .

which is indeed the case for our choice of m. �

Remark 17.10
By a slightly more clever argument, we can get rid of the constant 2 above, and show that there
exists such a code E : {0, 1}n → {0, 1}n/(1−H(δ)) (see Exercise 6). We do not know whether this is
the smallest value of m possible.

Why half? Lemma 17.9 only provides codes of distance δ for δ < 1/2 and you might wonder
whether this is inherent or can we have codes of even greater distance. It turns out we can have
codes of distance 1/2 but only if we allow m to be exponentially larger than n (i.e., m ≥ 2n/2). For

Web draft 2007-01-08 22:03

DRAFT

p17.10 (324)

17.4. ERROR CORRECTING CODES: THE INTUITIVE CONNECTION TO HARDNESS
AMPLIFICATION

every δ > 1/2, if n is sufficiently large then there is no ECC E : {0, 1}n → {0, 1}m that has distance
δ, no matter how large m is. Both these bounds are explored in Exercise 7.

The mere existence of an error correcting code is not sufficient for most applications: we need
to actually be able to compute them. For this we need to show an explicit function E : {0, 1}n →
{0, 1}m that is an ECC satisfying the following properties:

Efficient encoding There is a polynomial time algorithm to compute E(x) from x.

Efficient decoding There is a polynomial time algorithm to compute x from every y such that
∆(y, E(x)) < ρ for some ρ. (For this to be possible, the number ρ must be less than δ/2,
where δ is the distance of E.)

There is a very rich and still ongoing body of work dedicated to this task, of which Section 17.5
describes a few examples.

17.4.1 Local decoding

For use in hardness amplification, we need ECCs with more than just efficient encoding and decoding
algorithms: we need local decoders, in other words, decoding algorithms whose running time is
polylogarithmic. Let us see why.

Recall that we are viewing a function from {0, 1}n to {0, 1} as a string of length 2n. To amplify
its hardness, we take an ECC and map function f to its encoding E(f). To prove that this works,
it suffices to show how to turn any circuit that correctly computes many bits of E(f) into a circuit
that correctly computes all bits of f . This is formalized using a local decoder, which is a decoding
algorithm that can compute any desired bit in the string for f using a small number of random
queries in any string y that has high agreement with (in other words, low hamming distance to)
E(f). Since we are interested in the circuits of size poly(n)— in other words, polylogarithmic in 2n

—this must also be the running time of the local decoder.

Definition 17.12 (Local decoder)
Let E : {0, 1}n → {0, 1}m be an ECC and let ρ and q be some numbers. A local decoder for E
handling ρ errors is an algorithm L that, given random access to a string y such that ∆(y, E(x)) < ρ
for some (unknown) x ∈ {0, 1}n, and an index j ∈ N, runs for polylog(m) time and outputs xj with
probability at least 2/3.

Remark 17.13
The constant 2/3 is arbitrary and can be replaced with any constant larger than 1/2, since the
probability of getting a correct answer can be amplified by repetition.

Notice, local decoding may be useful in applications of ECC’s that have nothing to do with
hardness amplification. Even in context of CD storage, it seems nice if we do not to have to read
the entire CD just to recover one bit of x.

Using a local decoder, we can turn our intuition above of hardness amplification into a proof.

Web draft 2007-01-08 22:03

DRAFT

17.4. ERROR CORRECTING CODES: THE INTUITIVE CONNECTION TO HARDNESS
AMPLIFICATION p17.11 (325)

Note 17.11 (High dimensional geometry)
While we are normally used to geometry in two or three dimensions, we can
get some intuition on error correcting codes by considering the geometry of
high dimensional spaces. Perhaps the strongest effect of high dimension is the
following: compare the cube with all sides 1 and the ball of radius 1/4. In one
dimension, the ratio between their areas is 1/(1/2) = 2, in two dimensions
it is 1/(π1/42) = 16/π, while in three dimensions it is 1/(4/3π1/43) = 48/π.
Note that as the number of dimension grows, this ratio grows exponentially
in the number of dimensions. (Similarly for any two radii r1 > r2 the volume
of the m-dimension ball of radius r1 is exponentially larger than the volume
of the r2-radius ball.)

0 1/4 3/4 1
Ball volume=1/2

0 1/4 3/4 1 0 1/4 3/4 1

 1 3/4 1/4

B.V. = π(1/4)2~3.14/16 B.V. =4/3π(1/4)3 ~ 3.14/48

This intuition lies behind the existence of an error correcting code with
distance 1/4 mapping n bit strings into m = 5n bit strings. We can have 2m/5

codewords that are all of distance at least 1/4 from one another because, also
in the Hamming distance, the volume of the radius 1/4 ball is exponentially
smaller than the volume of the cube {0, 1}n. Therefore, we can “pack” 2m/5

such balls within the cube.

Web draft 2007-01-08 22:03

DRAFT

p17.12 (326) 17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES

x

E(x)

corrupted E(x)

x

f

E(f)

algorithm computing f
w/ prob 1-ρ

length n string function on {0,1}n =
string of length 2n

algorithm computing f perfectly

Figure 17.2: An ECC allows to map a string x to E(x) such as x can be reconstructed from a corrupted version of

E(x). The idea is to treat a function f : {0, 1}n → {0, 1} as a string in {0, 1}2
n

, encode it using an ECC to a function
f̂ . Intuitively, f̂ should be hard on the average case if f was hard on the worst case, since an algorithm to solve f̂
with probability 1− ρ could be transformed (using the ECC’s decoding algorithm) to an algorithm computing f on
every input.

Theorem 17.14
Suppose that there is an ECC with polynomial-time encoding algorithm and a local decoding
algorithm handling ρ errors (where ρ is a constant independent of the input length). Suppose also
that there is f ∈ E with Hwrs(f)(n) ≥ S(n) for some function S : N → N satisfying S(n) ≥ n. Then,
there exists ε > 0 and g ∈ E with Hwrs(g)(n) ≥ S(εn)ε

The proof of Theorem 17.14 follows essentially from the definition, and we will prove it for the
case of a particular code later on in Theorem 17.24.

17.5 Constructions of Error Correcting Codes

We now describe some explicit functions that are error correcting codes, building up to the con-
struction of an explicit ECC of constant distance with polynomial-time encoding and decoding.
Section 17.6 describes local decoding algorithms for some of these codes.

17.5.1 Walsh-Hadamard Code.

For two strings x, y ∈ {0, 1}n, define x � y to be the number
∑n

i=1 xiyi (mod 2). The Walsh-
Hadamard code is the function WH : {0, 1}n → {0, 1}2n

that maps a string x ∈ {0, 1}n into the
string z ∈ {0, 1}2n

where for every y ∈ {0, 1}n, the yth coordinate of z is equal to x� y (we identify
{0, 1}n with [2n] in the obvious way).

Claim 17.15
The function WH is an error correcting code of distance 1/2.

Web draft 2007-01-08 22:03

DRAFT

17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES p17.13 (327)

x

E(x)

corrupted E(x)

local
decoder

compute x
j

Figure 17.3: A local decoder gets access to a corrupted version of E(x) and an index i and computes from it xi

(with high probability).

Proof: First, note that WH is a linear function. By this we mean that if we take x + y to be the
componentwise addition of x and y modulo 2, then WH(x + y) = WH(x) + WH(y). Now, for every
x 6= y ∈ {0, 1}n we have that the number of 1’s in the string WH(x)+WH(y) = WH(x+ y) is equal
to the number of coordinates on which WH(x) and WH(y) differ. Thus, it suffices to show that for
every z 6= 0n, at least half of the coordinates in WH(z) are 1. Yet this follows from the random
subsum principle (Claim A.5) that says that the probability for y ∈R {0, 1}n that z � y = 1 is
exactly 1/2. �

17.5.2 Reed-Solomon Code

The Walsh-Hadamard code has a serious drawback: its output size is exponential in the input size.
By Lemma 17.9 we know that we can do much better (at least if we’re willing to tolerate a distance
slightly smaller than 1/2). To get towards explicit codes with better output, we need to make a
detour to codes with non-binary alphabet.

Definition 17.16
For every set Σ and x, y ∈ Σm, we define ∆(x, y) = 1

m |{i : xi 6= yi}|. We say that E : Σn → Σm is
an error correcting code with distance δ over alphabet Σ if for every x 6= y ∈ Σn, ∆(E(x), E(y)) ≥ δ.

Allowing a larger alphabet makes the problem of constructing codes easier. For example, every
ECC with distance δ over the binary ({0, 1}) alphabet automatically implies an ECC with the same
distance over the alphabet {0, 1, 2, 3}: just encode strings over {0, 1, 2, 3} as strings over {0, 1} in
the obvious way. However, the other direction does not work: if we take an ECC over {0, 1, 2, 3}
and transform it into a code over {0, 1} in the natural way, the distance might grow from δ to 2δ
(Exercise 8).

The Reed-Solomon code is a construction of an error correcting code that can use as its alphabet
any field F:

Web draft 2007-01-08 22:03

DRAFT

p17.14 (328) 17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES

x

E1:{0,1}n-->Σm

E2 E2 E2:Σ-->{0,1}k

E2
oE1:{0,1}n-->{0,1}km

E1(x)1 E1(x)m

.....

E2(E1(x)1) E2(E1(x)m)

Figure 17.4: If E1,E2 are ECC’s such that E1 : {0, 1}n → Σm and E2 : σ → {0, 1}k, then the concatenated code
E : {0, 1}n → {0, 1}nk maps x into the sequence of blocks E2(E1(x)1), . . . , E2(E1(x)m).

Definition 17.17
Let F be a field and n, m numbers satisfying n ≤ m ≤ |F|. The Reed-Solomon code from Fn to
Fm is the function RS : Fn → Fm that on input a0, . . . , an−1 ∈ Fn outputs the string z0, . . . , zm−1

where

zj =
n−1∑
i=0

aif
i
j

and fj denotes the jth element of F under some ordering.

Lemma 17.18
The Reed-Solomon code RS : Fn → Fm has distance 1− n

m .

Proof: As in the case of Walsh-Hadamard code, the function RS is also linear in the sense that
RS(a + b) = RS(a) + RS(b) (where addition is taken to be componentwise addition in F). Thus, as
before we only need to show that for every a 6= 0n, RS(a) has at most n coordinates that are zero.
But this immediate from the fact that a nonzero n− 1 degree polynomial has at most n roots (see
Appendix A). �

17.5.3 Concatenated codes

The Walsh-Hadamard code has the drawback of exponential-sized output and the Reed-Solomon
code has the drawback of a non-binary alphabet. We now show we can combine them both to
obtain a code without neither of these drawbacks:

Definition 17.19
If RS is the Reed-Solomon code mapping Fn to Fm (for some n, m, F) and WH is the Walsh-

Hadamard code mapping {0, 1}log |F| to {0, 1}2log |F|
= {0, 1}|F|, then the code WH ◦ RS maps

{0, 1}n log |F| to {0, 1}m|F| in the following way:

1. View RS as a code from {0, 1}n log |F| to Fm and WH as a code from F to {0, 1}|F| using the
canonical representation of elements in F as strings in {0, 1}log |F|.

2. For every input x ∈ {0, 1}n log |F|, WH◦RS(x) is equal to WH(RS(x)1), . . . ,WH(RS(x)m) where
RS(x)i denotes the ith symbol of RS(x).

Web draft 2007-01-08 22:03

DRAFT

17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES p17.15 (329)

Note that the code WH ◦ RS can be computed in time polynomial in n, m and |F|. We now
analyze its distance:
Claim 17.20
Let δ1 = 1− n/m be the distance of RS and δ2 = 1/2 be the distance of WH. Then WH ◦ RS is an
ECC of distance δ1δ2.

Proof: Let x, y be two distinct strings in {0, 1}log |F|n. If we set x′ = RS(x′) and y′ = RS(y′) then
∆(x′, y′) ≥ δ1. If we let x′′ (resp. y′′) to be the binary string obtained by applying WH to each of
these blocks, then whenever two blocks are distinct, the corresponding encoding will have distance
δ2, and so δ(x′′, y′′) ≥ δ1δ2. �

Remark 17.21
Because for every k ∈ N, there exists a finite field |F| of size in [k, 2k] (e.g., take a prime in [k, 2k] or
a power of two) we can use this construction to obtain, for every n, a polynomial-time computable
ECC E : {0, 1}n → {0, 1}20n2

of distance 0.4.

Both Definition 17.19 and Lemma 17.20 easily generalize for codes other than Reed-Solomon
and Hadamard. Thus, for every two ECC’s E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k their
concatenation E2 ◦ E1 is a code from {0, 1}n to {0, 1}mk that has distance at least δ1δ2 where δ1

(resp. δ2) is the distance of E1 (resp. E2), see Figure 17.6. In particular, using a different binary
code than WH, it is known how to use concatenation to obtain a polynomial-time computable ECC
E : {0, 1}n → {0, 1}m of constant distance δ > 0 such that m = O(n).

17.5.4 Reed-Muller Codes.

Both the Walsh-Hadamard and and the Reed-Solomon code are special cases of the following family
of codes known as Reed-Muller codes:
Definition 17.22 (Reed-Muller codes)
Let F be a finite field, and let `, d be numbers with d < |F|. The Reed Muller code with parameters

F, `, d is the function RM : F(`+d
d) → F|F|` that maps every `-variable polynomial P over F of total

degree d to the values of P on all the inputs in F`.
That is, the input is a polynomial of the form

g(x1, . . . , x`) =
∑

i1+i2+...+i`≤`

ci1,...,i`x
i1
1 xi2

2 · · ·xi`
`

specified by the vector of
(
`+d
d

)
coefficients {ci1,...,i`} and the output is the sequence {g(x1, . . . , x`)}

for every x1, . . . , x` ∈ F.

Setting ` = 1 one obtains the Reed-Solomon code (for m = |F|), while setting d = 1 and
F = GF(2) one obtains a slight variant of the Walsh-Hadamard code. (I.e., the code that maps
every x ∈ {0, 1}n into the 2·2n long string z such that for every y ∈ {0, 1}n,a ∈ {0, 1}, zy,a = x�y+a
(mod 2).)

The Schwartz-Zippel Lemma (Lemma A.25 in Appendix A) shows that the Reed-Muller code
is an ECC with distance 1 − d/|F|. Note that this implies the previously stated bounds for the
Walsh-Hadamard and Reed-Solomon codes.

Web draft 2007-01-08 22:03

DRAFT

p17.16 (330) 17.5. CONSTRUCTIONS OF ERROR CORRECTING CODES

17.5.5 Decoding Reed-Solomon.

To actually use an error correcting code to store and retrieve information, we need a way to
efficiently decode a data x from its encoding E(x) even if E(x) has been corrupted in a fraction ρ
of its coordinates. We now show this for the Reed-Solomon code, that treats x as a polynomial g,
and outputs the values of this polynomial on m inputs.

We know (see Theorem A.24 in Appendix A) that a univariate degree d polynomial can be
interpolated from any d + 1 values. Here we consider a robust version of this procedure, whereby
we wish to recover the polynomial from m values of which ρm are “faulty” or “noisy”.

Let (a1, b1), (a2, b2), . . . , (am, bm) be a sequence of (point, value) pairs. We say that a degree d
polynomial g(x) describes this (ai, bi) if g(ai) = bi.

We are interested in determining if there is a degree d polynomial g that describes (1− ρ)m of
the pairs. If 2ρm > d then this polynomial is unique (exercise). We desire to recover it, in other
words, find a degree d polynomial g such that

g(ai) = bi for at (1− ρ)m least values of i. (8)

The apparent difficulty is in identifying the noisy points; once those points are identified, we
can recover the polynomial.

Randomized interpolation: the case of ρ < 1/(d + 1)

If ρ is very small, say, ρ < 1/(2d) then we can actually use the standard interpolation technique:
just select d+1 points at random from the set {(ai, bi)} and use them to interpolate. By the union
bound, with probability at least 1− ρ(d+1) > 0.4 all these points will be non-corrupted and so we
will recover the correct polynomial. (Because the correct polynomial is unique, we can verify that
we have obtained it, and if unsuccessful, try again.)

Berlekamp-Welch Procedure: the case of ρ < (m− d)/(2m)

The Berlekamp-Welch procedure works when the error rate ρ is bounded away from 1/2; specifically,
ρ < (m− d)/(2m). For concreteness, assume m = 4d and ρ = 1/4.

1. We claim that if the polynomial g exists then there is a degree 2d polynomial c(x) and a
degree d nonzero polynomial e(x) such that

c(ai) = bie(ai) for all i. (9)

The reason is that the desired e(x) can be any nonzero degree d polynomial whose roots are
precisely the ai’s for which g(ai) 6= bi, and then just let c(x) = g(x)e(x). (Note that this is
just an existence argument; we do not know g yet.))

2. Let c(x) =
∑

i≤2d cix
i and e(x) =

∑
i≤d eix

i. The ei’s and ci’s are our unknowns, and these
satisfy 4d linear equations given in (??), one for each ai. The number of unknowns is 3d + 2,
and our existence argument in part 1 shows that the system is feasible. Solve it using Gaussian
elimination to obtain a candidate c, e.

Web draft 2007-01-08 22:03

DRAFT

17.6. LOCAL DECODING OF EXPLICIT CODES. p17.17 (331)

3. Let c, e are any polynomials obtained in part 2. Since they satisfy (9) and bi = g(ai) for at
least 3d values of i, we conclude that

c(ai) = g(ai)e(ai) for at least 3d values of i.

Hence c(x) − g(x)e(x) is a degree 2d polynomial that has at least 3d roots, and hence is
identically zero. Hence e divides c and that in fact c(x) = g(x)e(x).

4. Divide c by e to recover g.

17.5.6 Decoding concatenated codes.

Decoding concatenated codes can be achieved through the natural algorithm. Recall that if E1 :
{0, 1}n → Σm and E2 : Σ → {0, 1}k are two ECC’s then E2 ◦ E1 maps every string x ∈ {0, 1}n to
the string E2(E1(x)1) · · ·E2(E1(x)n). Suppose that we have a decoder for E1 (resp. E2) that can
handle ρ1 (resp. ρ2) errors. Then, we have a decoder for E2 ◦E1 that can handle ρ2ρ1 errors. The
decoder, given a string y ∈ {0, 1}mk composed of m blocks y1, . . . , ym ∈ {0, 1}k, first decodes each
block yi to a symbol zi in Σ, and then uses the decoder of E1 to decode z1, . . . , zm. The decoder
can indeed handle ρ1ρ2 errors since if ∆(y, E2 ◦ E1(x)) ≤ ρ1ρ2 then at most ρ1 of the blocks of y
are of distance at least ρ2 from the corresponding block of E2 ◦ E1(x).

17.6 Local Decoding of explicit codes.

We now show local decoder algorithm (c.f. Definition 17.12) for several explicit codes.

17.6.1 Local decoder for Walsh-Hadamard.

The following is a two-query local decoder for the Walsh-Hadamard code that handles ρ errors for
every ρ < 1/4. This fraction of errors we handle is best possible, as it can be easily shown that there
cannot exist a local (or non-local) decoder for a binary code handling ρ errors for every ρ ≥ 1/4.

Walsh-Hadamard Local Decoder for ρ < 1/4:

Input: j ∈ [n], random access to a function f : {0, 1}n → {0, 1} such that Pry[g(y) 6= x � y] ≤ ρ
for some ρ < 1/4 and x ∈ {0, 1}n.

Output: A bit b ∈ {0, 1}. (Our goal: xj = b.)

Operation: Let ej be the vector in {0, 1}n that is equal to 0 in all the coordinates except for
the jth and equal to 1 on the jth coordinate. The algorithm chooses y ∈R {0, 1}n and
outputs f(y) + f(y + ej) (mod 2) (where y + ej denotes componentwise addition modulo 2,
or equivalently, flipping the jth coordinate of y).

Analysis: Since both y and y+ej are uniformly distributed (even though they are dependent), the
union bound implies that with probability 1−2ρ, f(y) = x�y and f(y+ej) = x�(y+ej). But
by the bilinearity of the operation �, this implies that f(y)+f(y+ej) = x�y+x�(y+ej) =

Web draft 2007-01-08 22:03

DRAFT

p17.18 (332) 17.6. LOCAL DECODING OF EXPLICIT CODES.

Lx

x

Figure 17.5: Given access to a corrupted version of a polynomial P : F` → F, to compute P (x) we pass a random
line Lx through x, and use Reed-Solomon decoding to recover the restriction of P to the line Lx.

2(x � y) + x � ej = x � ej (mod 2). Yet, x � ej = xj and so with probability 1 − 2ρ, the
algorithm outputs the right value.

Remark 17.23
This algorithm can be modified to locally compute not just xi = x� ej but in fact the value x� z
for every z ∈ {0, 1}n. Thus, we can use it to compute not just every bit of the original message x
but also every bit of the uncorrupted codeword WH(x). This property is sometimes called the self
correction property of the Walsh-Hadamard code.

17.6.2 Local decoder for Reed-Muller

We now show a local decoder for the Reed-Muller code. (Note that Definition 17.12 can be easily
extended to the case of codes, such as Reed-Muller, that use non-binary alphabet.) It runs in
time polynomial in ` and d, which, for an appropriate setting of the parameters, is polylogarithmic
in the output length of the code. Convention: Recall that the input to a Reed-Muller code is
an `-variable d-degree polynomial P over some field F. When we discussed the code before, we
assumed that this polynomial is represented as the list of its coefficients. However, below it will be
more convenient for us to assume that the polynomial is represented by a list of its values on its
first

(
d+`

`

)
inputs according to some canonical ordering. Using standard interpolation, we still have

a polynomial-time encoding algorithm even given this representation. Thus, it suffices to show an
algorithm that, given access to a corrupted version of P , computes P (x) for every x ∈ F`

Reed-Muller Local Decoder for ρ < (1− d/|F|)/4− 1/|F|.

Input: A string x ∈ F`, random access to a function f such that Prx∈F` [P (x) 6= f(x)] < ρ, where
P : F` → F is an `-variable degree-d polynomial.

Output: y ∈ F (Goal: y = P (x).)

Operation: 1. Let Lx, be a random line passing through x. That is Lx = {x + ty : t ∈ F} for a
random y ∈ F`.

Web draft 2007-01-08 22:03

DRAFT

17.6. LOCAL DECODING OF EXPLICIT CODES. p17.19 (333)

x

E1:{0,1}n-->Σm

E2 E2 E2:Σ-->{0,1}k

E2
oE1:{0,1}n-->{0,1}km

E1(x)1 E1(x)m

.....

E2(E1(x)1) E2(E1(x)m)

E1 decoder

E2 decoder E2 decoder

q1 queries

O(q2 log q1) queries

Figure 17.6: To locally decode a concatenated code E2 ◦ E1 we run the decoder for E1 using the decoder for E2.
The crucial observation is that if y is within ρ1ρ2 distance to E2 ◦ E1(x) then at most a ρ1 fraction of the blocks in
y are of distance more than ρ2 the corresponding block in E2 ◦ E1(x).

2. Query f on all the |F| points of Lx to obtain a set of points {(t, f(x + ty))} for every
t ∈ F.

3. Run the Reed-Solomon decoding algorithm to obtain the univariate polynomial Q : F →
F such that Q(t) = f(x + ty) for the largest number of t’s (see Figure 17.5).3

4. Output Q(0).

Analysis: For every d-degree `-variable polynomial P , the univariate polynomial Q(t) = P (x+ ty)
has degree at most d. Thus, to show that the Reed-Solomon decoding works, it suffices to
show that with probability at least 1/2, the number of points on z ∈ Lx for which f(z) 6= P (z)
is less than (1 − d/|F|)/2. Yet, for every t 6= 0, the point x + ty is uniformly distributed
(independently of x), and so the expected number of points on Lx for which f and P differ
is at most ρ|F| + 1. By Markov inequality, the probability that there will be more than
2ρ|F|+ 2 < (1− d/|F|)|F|/2 such points is at most 1/2 and hence Reed-Solomon decoding will
be successful with probability 1/2. In this case, we obtain the correct polynomial q that is the
restriction of Q to the line Lx and hence q(0) = P (x).

17.6.3 Local decoding of concatenated codes.

Given two locally decodable ECC’s E1 and E2, we can locally decode their concatenation E1 ◦ E2

by the natural algorithm. Namely, we run the decoder for E1, but answer its queries using the
decoder for E2 (see Figure 17.6).

Local decoder for concatenated code: ρ < ρ1ρ2

The code: If E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k are codes with decoders of q1 (resp. q2)
queries with respect to ρ1 (resp. ρ2) errors, let E = E2◦E1 be the concatenated code mapping
{0, 1}n to {0, 1}mk.

3If ρ is sufficiently small, (e.g., ρ < 1/(10d)), then we can use the simpler randomized Reed-Solomon decoding
procedure described in Section 17.5.5.

Web draft 2007-01-08 22:03

DRAFT

p17.20 (334) 17.6. LOCAL DECODING OF EXPLICIT CODES.

Input: An index i ∈ [n], random access to a string y ∈ {0, 1}km such that ∆(y, E1 ◦E2(x)) < ρ1ρ2

for some x ∈ {0, 1}n.

Output: b ∈ {0, 1}n (Goal: b = xi)

Operation: Simulate the actions of the decoder for E1, whenever the decoder needs access to the
jth symbol of E1(x), use the decoder of E2 with O(q2 log q1 log |Σ|) queries applied to the jth

block of y to recover all the bits of this symbol with probability at least 1− 1/(2q1).

Analysis: The crucial observation is that at most a ρ1 fraction of the length k blocks in y can
be of distance more than ρ2 from the corresponding blocks in E2 ◦ E1(x). Therefore, with
probability at least 0.9, all our q1 answers to the decoder of E1 are consistent with the answer
it would receive when accessing a string that is of distance at most ρ1 from a codeword of E1.

17.6.4 Putting it all together.

We now have the ingredients to prove our second main theorem of this chapter: transformation of
a hard-on-the-worst-case function into a function that is “mildly” hard on the average case.

Theorem 17.24 (Worst-case hardness to mild hardness)
Let S : N → N and f ∈ E such that Hwrs(f)(n) ≥ S(n) for every n. Then there exists
a function g ∈ E and a constant c > 0 such that H0.99

avg (g)(n) ≥ S(n/c)/nc for every
sufficiently large n.

Proof: For every n, we treat the restriction of f to {0, 1}n as a string f ′ ∈ {0, 1}N where N = 2n.
We then encode this string f ′ using a suitable error correcting code E : {0, 1}N → {0, 1}NC

for
some constant C > 1. We will define the function g on every input x ∈ {0, 1}Cn to output the xth

coordinate of E(f ′).4 For the function g to satisfy the conclusion of the theorem, all we need is for
the code E to satisfy the following properties:

1. For every x ∈ {0, 1}N , E(x) can be computed in poly(N) time.

2. There is a local decoding algorithm for E that uses polylog(N) running time and queries and
can handle a 0.01 fraction of errors.

But this can be achieved using a concatenation of a Walsh-Hadamard code with a Reed-Muller
code of appropriate parameters:

1. Let RM denote the Reed-Muller code with the following parameters:

• The field F is of size log5 N .

• The number of variables ` is equal to log N/ log log N .
4By padding with zeros as necessary, we can assume that all the inputs to g are of length that is a multiple of C.

Web draft 2007-01-08 22:03

DRAFT

17.7. LIST DECODING p17.21 (335)

• The degree is equal to log2 N .

RM takes an input of length at least (d
`)

` > N (and so using padding we can assume its input
is {0, 1}n). Its output is of size |F|` ≤ poly(n). Its distance is at least 1− 1/ log N .

2. Let WH denote the Walsh-Hadamard code from {0, 1}log F = {0, 1}5 log log N to {0, 1}|F| =
{0, 1}log5 N .

Our code will be WH◦RM. Combining the local decoders for Walsh-Hadamard and Reed-Muller
we get the desired result. �

Combining Theorem 17.24 with Yao’s XOR Lemma (Theorem 17.2), we get the following corol-
lary:

Corollary 17.25
Let S : N → N and f ∈ E with Hwrs(f)(n) ≥ S(n) for every n. Then, there exists an S(

√
`)ε-

pseudorandom generator for some constant ε > 0.

Proof: By Theorem 17.24, under this assumption there exists a function g ∈ E with H0.99
avg (g)(n) ≥

S′(n) = S(n)/poly(n), where we can assume S′(n) ≥
√

S(n) for sufficiently large n (otherwise S
is polynomial and the theorem is trivial). Consider the function g⊕k where k = c log S′(n) for a
sufficiently small constant c. By Yao’s XOR Lemma, on inputs of length kn, it cannot be computed
with probability better than 1/2 +2−cS′(n)/1000 by circuits of size S′(n). Since S(n) ≤ 2n, kn <

√
n,

and hence we get that Havg(g⊕k) ≥ Sc/2000. �

As already mentioned, this implies the following corollaries:

1. If there exists f ∈ E such that Hwrs(f) ≥ 2nΩ(1)
then BPP ⊆ QuasiP.

2. If there exists f ∈ E such that Hwrs(f) ≥ nω(1) then BPP ⊆ SUBEXP.

However, Corollary 17.25 is still not sufficient to show that BPP = P under any assumption on
the worst-case hardness of some function in E. It only yields an S(

√
`)Ω(1)-pseudorandom generator,

while what we need is an S(Ω(`))Ω(1)-pseudorandom generator.

17.7 List decoding

Our approach to obtain stronger worst-case to average-case reduction will be to bypass the XOR
Lemma, and use error correcting codes to get directly from worst-case hardness to a function that
is hard to compute with probability slightly better than 1/2. However, this idea seems to run into
a fundamental difficulty: if f is worst-case hard, then it seems hard to argue that the encoding
of f , under any error correcting code is hard to compute with probability 0.6. The reason is that
any error-correcting code has to have distant at most 1/2, which implies that there is no decoding
algorithm that can recover x from E(x) if the latter was corrupted in more than a 1/4 of its locations.
Indeed, in this case there is not necessarily a unique codeword closest to the corrupted word. For
example, if E(x) and E(x′) are two codewords of distance 1/2, let y be the string that is equal to

Web draft 2007-01-08 22:03

DRAFT

p17.22 (336) 17.7. LIST DECODING

E(x) on the first half of the coordinates and equal to E(x′) on the second half. Given y, how can
a decoding algorithm know whether to return x or x′?

This seems like a real obstacle, and indeed was considered as such in many contexts where
ECC’s were used, until the realization of the importance of the following insight: “If y is obtained
by corrupting E(x) in, say, a 0.4 fraction of the coordinates (where E is some ECC with good
enough distance) then, while there may be more than one codeword within distance 0.4 to y, there
can not be too many such codewords.”

Theorem 17.26 (Johnson Bound)
If E : {0, 1}n → {0, 1}m is an ECC with distance at least 1/2 − ε, then for every x ∈ {0, 1}m, and
δ ≥

√
ε, there exist at most 1/(2δ2) vectors y1, . . . , y` such that ∆(x, yi) ≤ 1/2− δ for every i ∈ [`].

Proof: Suppose that x, y1, . . . , y` satisfy this condition, and define ` vectors z1, . . . , z` in Rm as
follows: for every i ∈ [`] and k ∈ [m], set zi,k to equal +1 if yk = xk and set it to equal −1 otherwise.
Under our assumptions, for every i ∈ [`],

m∑
k=1

zi,k ≥ 2δm , (10)

since zi agrees with x on an 1/2 + δ fraction of its coordinates. Also, for every i 6= j ∈ [`],

〈zi, zj〉 =
m∑

k=1

zi,kzj,k ≤ 2εm ≤ 2δ2m (11)

since E is a code of distance at least 1/2 − ε. We will show that (10) and (11) together imply that
` ≤ 1/(2δ2).

Indeed, set w =
∑`

i=1 zi. On one hand, by (11)

〈w,w〉 =
∑̀
i=1

〈zi, zi〉+
∑
i6=j

〈zi, zj〉 ≤ `m + `22δ2m .

On the other hand, by (10),
∑

k wk =
∑

i,j zi,j ≥ 2δm` and hence

〈w,w〉 ≥ |
∑

k

wk|2/m ≥ 4δ2m`2 ,

since for every c, the vector w ∈ Rm with minimal two-norm satisfying
∑

k wk = c is the uniform
vector (c/m, c/m, . . . , c/m). Thus 4δ2m`2 ≤ `m + 2`2δ2m, implying that ` ≤ 1/(2δ2). �

17.7.1 List decoding the Reed-Solomon code

In many contexts, obtaining a list of candidate messages from a corrupted codeword can be just as
good as unique decoding. For example, we may have some outside information on which messages
are likely to appear, allowing us to know which of the messages in the list is the correct one.

Web draft 2007-01-08 22:03

DRAFT

17.8. LOCAL LIST DECODING: GETTING TO BPP = P. p17.23 (337)

However, to take advantage of this we need an efficient algorithm that computes this list. Such an
algorithm was discovered in 1996 by Sudan for the popular and important Reed-Solomon code. It
can recover a polynomial size list of candidate codewords given a Reed-Solomon codeword that was
corrupted in up to a 1 − 2

√
d/|F| fraction of the coordinates. Note that this tends to 1 as |F|/d

grows, whereas the Berlekamp-Welch unique decoding algorithm of Section 17.5.5 gets “stuck”
when the fraction of errors surpasses 1/2.

On input a set of data points {(ai, bi)}m
i=1 in F2, Sudan’s algorithm returns all degree d poly-

nomials g such that the number of i’s for which g(ai) = bi is at least 2
√

d/|F|m. It relies on the
following observation:

Lemma 17.27
For every set of m data pairs (a1, b1), . . . , (am, bm), there is a bivariate polynomial Q(z, x) of degree
at most d

√
me + 1 in z and x such that Q(bi, ai) = 0 for each i = 1, . . . ,m. Furthermore, there is

a polynomial-time algorithm to construct such a Q.

Proof: Let k = d
√

me+ 1. Then the unknown bivariate polynomial Q =
∑k

i=0

∑k
j=0 Qijz

ixj has
(k + 1)2 coefficients and these coefficients are required to satisfy m linear equations of the form:

k∑
i=0

k∑
j=0

Qij(bt)i(at)j for t = 1, 2, . . . ,m.

Note that the at’s, bt’s are known and so we can write down these equations.
Since the system is homogeneous and the number of unknowns exceeds the number of con-

straints, it has a nonzero solution. Furthermore this solution can be found in polynomial time. �

Lemma 17.28
Let d be any integer and k > (d + 1)(d

√
me+ 1). If p(x) is a degree d polynomial that describes k

of the data pairs, then z−p(x) divides the bivariate polynomial Q(z, x) described in Lemma 17.27.

Proof: By construction, Q(bt, at) = 0 for every data pair (at, bt). If p(x) describes this data
pair, then Q(p(at), at) = 0. We conclude that the univariate polynomial Q(p(x), x) has at least k
roots, whereas its degree is d(d

√
ne + 1) < k. Hence Q(p(x), x) = 0. By the division algorithm

for polynomials, Q(p(x), x) is exactly the remainder when Q(z, x) is divided by (z − p(x)). We
conclude that z − p(x) divides Q(z, x). �

Now it is straightforward to describe Sudan’s list decoding algorithm. First, find Q(z, x) by
the algorithm of Lemma 17.27. Then, factor it using a standard algorithm for bivariate factoring
(see [?]). For every factor of the form (z − p(x)), check by direct substitution whether or not p(x)
describes 2

√
d/|F|m data pairs. Output all such polynomials.

17.8 Local list decoding: getting to BPP = P.

Analogously to Section 17.4.1, to actually use list decoding for hardness amplification, we need to
provide local list decoding algorithms for the codes we use. Fortunately, such algorithms are known
for the Walsh-Hadamard code, the Reed-Muller code, and their concatenation.

Web draft 2007-01-08 22:03

DRAFT

p17.24 (338) 17.8. LOCAL LIST DECODING: GETTING TO BPP = P.

Definition 17.29 (Local list decoder)
Let E : {0, 1}n → {0, 1}m be an ECC and let ρ > 0 and q be some numbers. An algorithm L is
called a local list decoder for E handling ρ errors, if for every x ∈ {0, 1}n and y ∈ {0, 1}m satisfying
∆(E(x), y) ≤ ρ, there exists a number i0 ∈ [poly(n/ε)] such that for every j ∈ [m], on inputs i0, j
and with random access to y, L runs for poly(log(m)/ε) time and outputs xj with probability at
least 2/3.

Remark 17.30
One can think of the number i0 as the index of x in the list of poly(n/ε) candidate messages output
by L. Definition 17.29 can be easily generalized to codes with non-binary alphabet.

17.8.1 Local list decoding of the Walsh-Hadamard code.

It turns out we already encountered a local list decoder for the Walsh-Hadamard code: the proof
of the Goldreich-Levin Theorem (Theorem 10.14) provided an an algorithm that given access to
a “black box” that computes the function y 7→ x � y (for x, y ∈ {0, 1}n) with probability 1/2 + ε,
computes a list of values x1, . . . , xpoly(n/ε) such that xi0 = x for some i0. In the context of that
theorem, we could find the right value of x from that list by checking it against the value f(x)
(where f is a one-way permutation). This is a good example for how once we have a list decoding
algorithm, we can use outside information to narrow the list down.

17.8.2 Local list decoding of the Reed-Muller code

We now present an algorithm for local list decoding of the Reed-Muller code. Recall that the
codeword of this code is the list of evaluations of a d-degree `-variable polynomial P : F` → F. The
local decoder for Reed-Muller gets random access to a corrupted version of P and two inputs: an
index i and x ∈ F`. Below we describe such a decoder that runs in poly(d, `, |F|) and outputs P (x)
with probability at least 0.9 assuming that i is equal to the “right” index i0. Note: To be a valid
local list decoder, given the index i0, the algorithm should output P (x) with high probability for
every x ∈ F`. The algorithm described below is only guaranteed to output the right value for most
(i.e., a 0.9 fraction) of the x’s in F`. We transform this algorithm to a valid local list decoder by
combining it with the Reed-Muller local decoder described in Section 17.6.2.

Reed-Muller Local List Decoder for ρ < 1− 10
√

d/|F|

Inputs: • Random access to a function f such that Prx∈F` [P (x) = f(x)] > 10
√

d/|F| where
P : F` → F is an `-variable d-degree polynomial. We assume |F| > d4 and that both
d > 1000. (This can always be ensured in our applications.)

• An index i0 ∈ [|F|`+1] which we interpret as a pair (x0, y0) with x0 ∈ F`, y0 ∈ F,

• A string x ∈ F`.

Output: y ∈ F (For some pair (x0, y0), it should hold that P (x) = y with probability at least 0.9
over the algorithm’s coins and x chosen at random from F`.)

Web draft 2007-01-08 22:03

DRAFT

17.8. LOCAL LIST DECODING: GETTING TO BPP = P. p17.25 (339)

Operation: 1. Let Lx,x0 be a random degree 3 curve passing through x, x0. That is, we find a
random degree 3 univariate polynomial q : F → F` such that q(0) = x and q(r) = x0 for
some random r ∈ F. (See Figure 17.7.)

2. Query f on all the |F| points of Lx,x0 to obtain the set S of the |F| pairs {(t, f(q(t)) :
t ∈ F)}.

3. Run Sudan’s Reed-Solomon list decoding algorithm to obtain a list g1, . . . , gk of all degree
3d polynomials that have at least 8

√
d|F| agreement with the pairs in S.

4. If there is a unique i such that gi(r) = y0 then output gi(0). Otherwise, halt without
outputting anything.

Lx,x0

x

x0

Figure 17.7: Given access to a corrupted version of a polynomial P : F` → F and some index (x0, y0), to compute
P (x) we pass a random degree-3 curve Lx,x0 through x and x0, and use Reed-Solomon list decoding to recover a list
of candidates for the restriction of P to the curve Lx,x0 . If only one candidate satisfies that its value on x0 is y0,
then we use this candidate to compute P (x).

We will show that for every f : F` → F that agrees with an `-variable degree d polynomial
on a 10

√
d/|F| fraction of its input, and every x ∈ F`, if x0 is chosen at random from F` and

y0 = P (x0), then with probability at least 0.9 (over the choice of x0 and the algorithm’s coins) the
above decoder will output P (x). By a standard averaging argument, this implies that there exist
a pair (x0, y0) such that given this pair, the algorithm outputs P (x) for a 0.9 fraction of the x’s in
F`.

Let x ∈ F`, if x0 is chosen randomly in F` and y0 = P (x0) then the following
For every x ∈ F`, the following fictitious algorithm can be easily seen to have an identical output

to the output of our decoder on the inputs x, a random x0 ∈R F` and y0 = P (x0):

1. Choose a random degree 3 curve L that passes through x. That is, L = {q(t) : t ∈ F} where
q : F → F` is a random degree 3 polynomial satisfying q(0) = x.

2. Obtain the list g1, . . . , gm of all univariate polynomials over F such that for every i, there are
at least 6

√
d|F| values of t such that gi(t) = f(q(t)).

3. Choose a random r ∈ F. Assume that you are given the value y0 = P (q(r)).

Web draft 2007-01-08 22:03

DRAFT

p17.26 (340) 17.8. LOCAL LIST DECODING: GETTING TO BPP = P.

4. If there exists a unique i such that gi(r) = y0 then output gi(0). Otherwise, halt without an
input.

Yet, this fictitious algorithm will output P (x) with probability at least 0.9. Indeed, since all
the points other than x on a random degree 3 curve passing through x are pairwise independent,
Chebyshev’s inequality implies that with probability at least 0.99, the function f will agree with
the polynomial P on at least 8

√
d|F| points on this curve (this uses the fact that

√
d/|F| is smaller

than 10−6). Thus the list g1, . . . , gm we obtain in Step 2 contains the polynomial g : F → F defined
as g(t) = P (q(t)). We leave it as Exercise 9 to show that there can not be more than

√
|F |/4d

polynomials in this list. Since two 3d-degree polynomials can agree on at most 3d + 1 points, with

probability at least (3d+1)
√
|F |/4d

|F| < 0.01, if we choose a random r ∈ F, then g(r) 6= gi(r) for every
gi 6= g in this list. Thus, with this probability, we will identify the polynomial g and output the
value g(0) = P (x). �

17.8.3 Local list decoding of concatenated codes.

If E1 : {0, 1}n → Σm and E2 : Σ → {0, 1}k are two codes that are locally list decodable then so
is the concatenated code E2 ◦ E1 : {0, 1}n → {0, 1}mk. As in Section 17.6.3, the idea is to simply
run the local decoder for E1 while answering its queries using the decoder of E2. More concretely,
assume that the decoder for E1 takes an index in the set I1, uses q1 queries, and can handle 1− ε1
errors, and that I2, q2 and ε2 are defined analogously. Our decoder for E2 ◦ E1 will take a pair
of indices i1 ∈ I1 and i2 ∈ I2 and run the decoder for E1 with the index i1, and whenever this
decoder makes a query answer it using the decoder E2 with the index i2. (See Section 17.6.3.) We
claim that this decoder can handle 1/2 − ε1ε2|I2| number of errors. Indeed, if y agrees with some
codeword E2 ◦E1(x) on an ε1ε2|I2| fraction of the coordinates then there are ε1|I2| blocks on which
it has at least 1/2 + ε2 agreement with the blocks this codeword. Thus, by an averaging argument,
there exists an index i2 such that given i2, the output of the E2 decoder agrees with E1(x) on ε1
symbols, implying that there exists an index i1 such that given (i1, i2) and every coordinate j, the
combined decoder will output xj with high probability.

17.8.4 Putting it all together.

As promised, we can use local list decoding to transform a function that is merely worst-case hard
into a function that cannot be computed with probability significantly better than 1/2:

Theorem 17.31 (Worst-case hardness to strong hardness)
Let S : N → N and f ∈ E such that Hwrs(f)(n) ≥ S(n) for every n. Then there exists

a function g ∈ E and a constant c > 0 such that Havg(g)(n) ≥ S(n/c)1/c for every
sufficiently large n.

Proof sketch: As in Section 17.6.4, for every n, we treat the restriction of f to {0, 1}n as a

Web draft 2007-01-08 22:03

DRAFT

17.8. LOCAL LIST DECODING: GETTING TO BPP = P. p17.27 (341)

string f ′ ∈ {0, 1}N where N = 2n and encode it using the concatenation of a Reed-Muller code
with the Walsh-Hadamard code. For the Reed-Muller code we use the following parameters:

• The field F is of size S(n)1/100. 5

• The degree d is of size log2 N .

• The number of variables ` is 2 log N/ log S(n).

The function g is obtained by applying this encoding to f . Given a circuit of size S(n)1/100

that computes g with probability better than 1/2 + 1/S(n)1/50, we will be able to transform it, in
S(n)O(1) time, to a circuit computing f perfectly. We hardwire the index i0 to this circuit as part
of its description. �

What have we learned?

• Yao’s XOR Lemma allows to amplify hardness by transforming a Boolean
function with only mild hardness (cannot be computed with say 0.99 success)
into a Boolean function with strong hardness (cannot be computed with 0.51
success).

• An error correcting code is a function that maps every two strings into a pair
of strings that differ on many of their coordinates. An error correcting code
with a local decoding algorithm can be used to transform a function hard in
the worst-case into a function that is mildly hard on the average case.

• A code over the binary alphabet can have distance at most 1/2. A code with
distance δ can be uniquely decoded up to δ/2 errors. List decoding allows to
a decoder to handle almost a δ fraction of errors, at the expense of returning
not a single message but a short list of candidate messages.

• We can transform a function that is merely hard in the worst case to a function
that is strongly hard in the average case using the notion of local list decoding
of error correcting codes.

Chapter notes and history

many attributions still missing.

Impagliazzo and Wigderson [?] were the first to prove that BPP = P if there exists f ∈ E such
that Hwrs(f) ≥ 2Ω(n) using a derandomized version of Yao’s XOR Lemma. However, the presentation

5We assume here that S(n) > log N1000 and that it can be computed in 2O(n) time. These assumptions can
be removed by slightly complicating the construction (namely, executing it while guessing that S(n) = 2k, and
concatenating all the results.)

Web draft 2007-01-08 22:03

DRAFT

p17.28 (342) 17.8. LOCAL LIST DECODING: GETTING TO BPP = P.

here follows Sudan, Trevisan, and Vadhan [?], who were the first to point the connection between
local list decoding and hardness amplification, and gave (a variant of) the Reed-Muller local list
decoding algorithm described in Section 17.8. They also showed a different approach to achieve
the same result, by first showing that the NW generator and a mildly hard function can be used
to obtain from a short random seed a distribution that has high pseudoentropy, which is then
converted to a pseudorandom distribution via a randomness extractor (see Chapter 16).

The question raised in Problem 5 is treated in O’Donnell [?], where a hardness amplification
lemma is given for NP. For a sharper result, see Healy, Vadhan, and Viola [?].

Exercises

§1 Let X1, . . . , Xn be independent random variables such that Xi is equal to 1 with probability
1− δ and equal to 0 with probability δ. Let X =

∑k
i=1 Xi (mod 2). Prove that Pr[X = 1] =

1/2 + (1− 2δ)k.

Hint:DefineYi=(−1)
Xi

andY=∏k
i=1Yi.Then,usethefact

thattheexpectationofaproductofindependentrandomvariables
istheproductoftheirexpectations.

§2 Prove Farkas’ Lemma: if C,D ⊆ Rm are two convex sets then there exists a vector z ∈ Rm

and a number a ∈ R such that

x ∈ C ⇒ 〈x, z〉 ≥ a

y ∈ D ⇒ 〈y, z〉 ≤ a

Hint:StartbyprovingthisinthecasethatCandDareε-
separated,whichmeansthatforsomeε>0,‖x−y‖2≥εforevery
x∈Candy∈D.Inthiscaseyoucantakeztobetheshortest
vectoroftheformx−yforx∈Candy∈D.

§3 Prove the Min-Max Theorem (see Note 17.7) using Farkas’ Lemma.

§4 Prove the duality theorem for linear programming using Farkas’ Lemma. That is, prove that
for every m× n matrix A, and vectors c ∈ Rn, b ∈ Rn,

max
x∈Rns.t.
Ax≤b
x≥0

〈x, c〉 = min
y∈Rms.t.
A†y≥c
y≥0

〈y,b〉

where A† denotes the transpose of A and for two vectors u,v we say that u ≥ v if ui ≥ vi

for every i.

§5 Suppose we know that NP contains a function that is weakly hard for all polynomial-size
circuits. Can we use the XOR Lemma to infer the existence of a strongly hard function in
NP? Why or why not?

Web draft 2007-01-08 22:03

DRAFT

17.8. LOCAL LIST DECODING: GETTING TO BPP = P. p17.29 (343)

§6 For every δ < 1/2 and sufficiently large n, prove that there exists a function E : {0, 1}n →
{0, 1}n/(1−H(δ)) that is an error correcting code with distance δ, where H(δ) = δ log(1/δ) +
(1− δ) log(1/(1− δ)).

Hint:Useagreedystrategy,toselectthecodewordsofEoneby
one,neveraddingacodewordthatiswithindistanceδtoprevious
ones.Whenwillyougetstuck?

§7 Show that for every E : {0, 1}n → {0, 1}m that is an error correcting code of distance 1/2,
2n < 10

√
n. Show if E is an error correcting code of distance δ > 1/2, then 2n < 10/(δ − 1/2).

§8 Let E : {0, 1}n → {0, 1}m be a δ-distance ECC. Transform E to a code E′ : {0, 1, 2, 3}n/2 →
{0, 1, 2, 3}m/2 in the obvious way. Show that E′ has distance δ. Show that the opposite
direction is not true: show an example of a δ-distance ECC E′ : {0, 1, 2, 3}n/2 → {0, 1, 2, 3}m/2

such that the corresponding binary code has distance 2δ.

§9 Let f :F → F be any function. Suppose integer d ≥ 0 and number ε satisfy ε > 2
√

d
|F| . Prove

that there are at most 2/ε degree d polynomials that agree with f on at least an ε fraction of
its coordinates.

Hint:Thefirstpolynomialdescribesfinanεfractionofpoints
sayS1,thesecondpolynomialdescribesfinε−d/|F|fractionof
pointsS2whereS1∩S2=∅,etc.

§10 (Linear codes) We say that an ECC E : {0, 1}n → {0, 1}m is linear if for every x, x′ ∈ {0, 1}n,
E(x+x′) = E(x)+E(x′) where + denotes componentwise addition modulo 2. A linear ECC
E can be described by an m × n matrix A such that (thinking of x as a column vector)
E(x) = Ax for every x ∈ {0, 1}n.

(a) Prove that the distance of a linear ECC E is equal to the minimum over all nonzero
x ∈ {0, 1}n of the fraction of 1’s in E(x).

(b) Prove that for every δ > 0, there exists a linear ECC E : {0, 1}n → {0, 1}1.1n/(1−H(δ))

with distance δ, where H(δ) = δ log(1/δ) + (1− δ) log(1/(1− δ))¿

Hint:Usetheprobabilisticmethod-showthisholdsforarandom
matrix.

(c) Prove that for some δ > 0 there is an ECC E : {0, 1}n → {0, 1}poly(n) of distance δ with
polynomial-time encoding and decoding mechanisms. (You need to know about the field
GF(2k) to solve this, see Appendix A.)

Hint:UsetheconcatenationofReed-SolomonoverGF(2
k
)with

theWalsh-Hadamardcode.

(d) We say that a linear code E : {0, 1}n → {0, 1}m is ε-biased if for every non-zero x ∈
{0, 1}n, the fraction of 1’s in E(x) is between 1/2−ε and 1/2+ε. Prove that for every ε > 0,
there exists an ε-biased linear code E : {0, 1}n → {0, 1}poly(n/ε) with a polynomial-time
encoding algorithm.

Web draft 2007-01-08 22:03

DRAFT

p17.30 (344) 17.8. LOCAL LIST DECODING: GETTING TO BPP = P.

Web draft 2007-01-08 22:03

	Hardness Amplification and Error Correcting Codes
	Hardness and Hardness Amplification.
	Mild to strong hardness: Yao's XOR Lemma.
	Proof of Yao's XOR Lemma using Impagliazzo's Hardcore Lemma.

	Proof of Impagliazzo's Lemma
	Error correcting codes: the intuitive connection to hardness amplification
	Local decoding

	Constructions of Error Correcting Codes
	Walsh-Hadamard Code.
	Reed-Solomon Code
	Concatenated codes
	Reed-Muller Codes.
	Decoding Reed-Solomon.
	Randomized interpolation: the case of < 1/(d+1)
	Berlekamp-Welch Procedure: the case of < (m-d)/(2m)

	Decoding concatenated codes.

	Local Decoding of explicit codes.
	Local decoder for Walsh-Hadamard.
	Local decoder for Reed-Muller
	Local decoding of concatenated codes.
	Putting it all together.

	List decoding
	List decoding the Reed-Solomon code

	Local list decoding: getting to BPP =P.
	Local list decoding of the Walsh-Hadamard code.
	Local list decoding of the Reed-Muller code
	Local list decoding of concatenated codes.
	Putting it all together.

	Chapter notes and history
	Exercises

