
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!



DRAFT

ii



DRAFT

Chapter 14

Algebraic computation models

The Turing machine model captures computations on bits (equivalently, integers), but it does not
always capture the spirit of algorithms which operate on, say the real numbers R or complex num-
bers C. Such algorithms arise in a variety of applications such as numerical analysis, computational
geometry, robotics, and symbolic algebra. A simple example is Newton’s method for finding roots
of a given real-valued function function f . It iteratively produces a sequence of candidate solutions
x0, x1, x2, . . . ,∈ R where xi+1 = xi− f(xi)/f ′(xi). Under appropriate conditions this sequence can
be shown to converge to a root of f .

Of course, a perfectly defensible position to take is that even the behavior of such algorithms
should be studied using TMs, since they will be run on real-life computers, which represent real
numbers using finite precision. In this chapter though, we take a different approach and study
models which do allow arithmetic operations on real numbers (or numbers from fields other than
R). Such an idealized model may not be implementable, strictly speaking, but it provides a useful
approximation to the asymptotic behavior as computers are allowed to use more and more precision
in their computations. Furthermore, one may be able to prove nontrivial lowerbounds for these
models using techniques from well-developed areas of mathematics such as algebraic geometry and
topology. (By contrast, boolean circuit lowerbounds have proven very difficult.)

However, coming up with a meaningful, well-behaved model of algebraic computation is not an
easy task, as the following example suggests.

Example 14.1 (Pitfalls awaiting designers of such models)
A real number can encode infinite amount of information. For example, a single real number is
enough to encode the answer to every instance of SAT (or any other language, in general). Thus,
a model that can store any real number with infinite precision may not be realistic. Shamir has
shown how to factor any integer n in poly(log n) time on a computer that can do real arithmetic
with arbitrary precision.

The usual way to avoid this pitfall is to restrict the algorithms’ ability to access individual
bits (e.g., the machine may require more than polynomial time to extract a particular digit from

Web draft 2007-01-08 22:02
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p14.1 (251)



DRAFT

p14.2 (252) 14.1. ALGEBRAIC CIRCUITS

a real number). Or, sometimes (as in case of Algebraic Computation Trees) it is OK to consider
unrealistically powerful models since the goal is to prove nontrivial lowerbounds —say, superlinear
or quadratic— rather than arbitrary polynomial lowerbounds. After all, lowerbounds for unrealis-
tically powerful models will apply to more realistic (and weaker) models as well.

This chapter is a sketchy introduction to algebraic complexity. It introduces three algebraic
computation models: algebraic circuits, algebraic computation trees, and algebraic Turing Ma-
chines. The algebraic TM is closely related to the standard Turing Machine model and allows
us to study similar questions for arbitrary fields — including decidability and complexity–that
we earlier studied for strings over {0, 1}. We introduce an undecidable problem (namely, deciding
membership in the Mandelbrot set) and and an NP-complete problem (decision version of Hilbert’s
Nullstellensatz) in this model.

14.1 Algebraic circuits

An algebraic circuit over a field F is defined by analogy with a boolean circuit. It consists of a
directed acyclic graph. The leaves are called input nodes and labeled x1, x2, . . . , xn, except these
take values in a field F rather than boolean variables. There are also special input nodes, labeled
with the constants 1 and −1 (which are field elements). Each internal node, called a gate, is labeled
with one of the arithmetic operations {+, ?} rather than with the boolean operations ∨,∧,¬ used
in boolean circuits. There is only output node. We restrict indegree of each gate to 2. The size of
the circuit is the number of gates in it. One can also consider algebraic circuits that allow division
(÷) at the gates. One can also study circuits that have access to “constants” other than 1; though
typically one assumes that this set is fixed and independent of the input size n. Finally, as in the
boolean case, if each gate has outdegree 1, we call it an arithmetic formula.

A gate’s operation consists of performing the operation it is labeled with on the numbers present
on the incoming wires, and then passing this output to all its outgoing wires. After each gate has
performed its operation, an output appears on the circuit’s lone output node. Thus the circuit may
be viewed as a computing a function f(x1, x2, . . . , xn) of the input variables, and simple induction
shows that this output function is a (multivariate) polynomial in x1, x2, . . . , xn. If we allow gates to
also be labeled with the division operation (denoted “÷”) then the function is a rational function
of x1, . . . , xn, in other words, functions of the type f1(x1, x2, . . . , xn)/f2(x1, . . . , xn) where f1, f2

are polynomials. Of course, if the inputs come from a field such as R, then rational functions can
be used to approximate —via Taylor series expansion —all “smooth” real-valued functions.

As usual, we are interested in the asymptotic size (as a function of n) of the smallest family
of algebraic circuits that computes a family of polynomials {fn} where fn is a polynomial in n
variables. The exercises ask you to show that circuits over GF (2) (with no ÷) are equivalent to
boolean circuits, and the same is true for circuits over any finite field. So the case when F is infinite
is usually of greatest interest.

Example 14.2
The discrete fourier transform of a vector a = (a0, a1, . . . , an−1) where ai ∈ C is vector M ·a, where
M is a fixed n × n matrix whose (i, j) entry is ωij where ω is an nth root of 1 (in other words, a
complex number satisfying ωn = 1).

Web draft 2007-01-08 22:02



DRAFT

14.1. ALGEBRAIC CIRCUITS p14.3 (253)

Interpreting the trivial algorithm for matrix-vector product as an arithmetic circuit, one obtains
an algebraic formula of size O(n2). Using the famous fast fourier transform algorithm, one can
obtain a smaller circuit (or formula??; CHECK) of size O(n log n).

status of lowerbounds??

Example 14.3
The determinant of an n× n matrix X = (Xij) is

det(X) =
∑
σ∈Sn

n∏
i=1

xiσ(i), (1)

where Sn is the set of all n! permutations on {1, 2, . . . , n}. This can be computed using the familiar
Gaussian elimination algorithm. Interpreting the algorithm as a circuit one obtains an arithmetic
circuit of size O(n3). Using the NC2 algorithm for Gaussian elimination, one obtains an arithmetic
formula of size 2O(log2 n). No matching lowerbounds are known for either upperbound.

The previous example is a good illustration of how the polynomial defining a function may have
exponentially many terms —in this case n!—but nevertheless be computable with a polynomial-size
circuit (as well as a subexponential-size formula).

By contrast, no polynomial-size algebraic circuit is conjectured to exist for the permanent
function, which at first sight seems is very similar to the determinant but as we saw in Section ??,
is #P-complete.

permanent(X) =
∑
σ∈Sn

(−1)sgn(σ)
n∏

i=1

xiσ(i), (2)

The determinant and permanent functions also play a vital role in the world of algebraic circuits,
since they are complete problems for two important classes. To give the definition, we need the
notion of degree of a multivariate polynomial, namely, the minimum d such that each monomial
term

∏
i x

di
i satisfies

∑
i di ≤ d. A family of polynomials in x1, x2, . . . , xn is poly-bounded if the

degree is at most O(nc) for some constant c > 0.

Definition 14.4 (AlgP)
The class AlgP is the class of polynomials of polynomial degree that are computable by arithmetic
formulae (using no ÷) of polynomial size.

Definition 14.5 (AlgNP)
AlgNP is the class of polynomials of polynomial degree that are definable as

f(x1, x2, . . . , xn) =
∑

e∈{0,1}m−n

gn(x1, x2, . . . , xn, en+1, . . . , em),

where gn ∈ AlgP and m is polynomial in n.

Web draft 2007-01-08 22:02



DRAFT

p14.4 (254) 14.2. ALGEBRAIC COMPUTATION TREES

Definition 14.6 (Projection reduction)
A function f(x1, . . . , xn) is a projection of a function g(y1, y2, . . . , ym) if there is a mapping σ from
{y1, y2, . . . , ym} to {0, 1, x1, x2, . . . , xn} such that f(x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . , σ(ym)).

We say that f is projection-reducible to g if f is a projection of g.

Theorem 14.7 (Valiant)
Every polynomial on n variables that is computable by a circuit of size u is projection reducible to
the Determinant function (over the same field) on u + 2 variables.

Every function in AlgNP is projection reducible to the Permanent function (over the same
field).

14.2 Algebraic Computation Trees

An algebraic computation tree is reminiscent of a boolean decision tree (Chapter ??) but it computes
a boolean-valued function f :Rn → {0, 1}. Consider for example the ELEMENT DISTINCTNESS
problem of deciding, given n numbers x1, x2, . . . , xn, whether any two of them are the same. To
study it in the decision tree model, we might study it by thinking of the input as a matrix of size n2

where the (i, j) entry indicates whether or or not xi > xj or xi = xj or xi < xj . But one can also
study it as a problem whose input is a vector of n real numbers. Consider the trivial algorithm in
either viewpoint: sort the numbers in O(n log n) time and then check if any two adjacent numbers
in the sorted order are the same. Is this trivial algorithm actually optimal? This question is
still open, but one can prove optimality with respect to a more restricted class of algorithms that
includes the above trivial algorithm.

Recall that comparison-based sorting algorithms only ask questions of the type “Is xi > xj?”,
which is the same as asking whether xi−xj > 0. The left hand side term of this last inequality is a
linear function. Other algorithms may use more complicated functions. In this section we consider
a model called Algebraic Computation Trees, where we examine the effect of allowing a) the use of
any polynomial function and b) the introduction of new variables together with the ability to ask
questions about them.

Definition 14.8 (Algebraic Computation Tree)
An Algebraic Computation Tree is a way to represent a function f :<n → {0, 1} by showing how
to compute f(x1, x2, . . . , xn) for any input vector (x1, x2, . . . , xn). It is a complete binary tree that
describes where each of the nodes has one of the following types:

• Leaf labeled “Accept” or “Reject”.

• Computation node v labeled with yv, where yv = yu ◦ yw and yu, yw are either one of
{x1, x2, . . . , xn} or the labels of ancestor nodes and the operator ◦ is in {+,−,×,÷,

√ }.

• Branch node with out-degree 2. The branch that is taken depends on the evaluation of some
condition of the type yu = 0 or yu ≥ 0 or yu ≤ 0 where yu is either one of {x1, x2, . . . , xn} or
the labels of an ancestor node in the tree.

Web draft 2007-01-08 22:02



DRAFT

14.2. ALGEBRAIC COMPUTATION TREES p14.5 (255)

Figure unavailable in pdf file.

Figure 14.1: An Algebraic Computation Tree

Figure unavailable in pdf file.

Figure 14.2: A computation path p of length d defines a set of constraints over the n input variables xi and d
additional variables yj , which correspond to the nodes on p.

The computation on any input (x1, x2, . . . , xn) follows a single path the root to a leaf, evaluating
functions at internal nodes (including branch nodes) in the obvious way. The complexity of the
computation on the path is measured using the following costs (which reflect real-life costs to some
degree):

• +,− are free.

• ×,÷,
√ are charged unit cost.

The depth of the tree is the maximum cost of any path in it.

A fragment of an algebraic decision tree is shown in figure 14.1. The following examples illustrate
some of the languages (over real numbers) whose complexity we want to study.

Example 14.9
[Element Distinctness Problem] Given n numbers x1, x2, . . . , xn we need to determine whether they
are all distinct. This is equivalent to the question whether

∏
i6=j(xi−xj) 6= 0. As indicated earlier,

this can be computed by a tree of depth O(n log n) whose internal nodes only compute functions
of the type xi − xj .

Example 14.10
[Real number version of subset sum] Given a set of n real numbers X = {x1, x2, . . . , xn} we ask
whether there is a subset S ⊆ X such that

∑
i∈S xi = 1.

Of course, a tree of depth d could have 2d nodes, so a small depth decision tree does not always
guarantee an efficient algorithm. This is why the following theorem (which we do not prove) does
not have any implication for P versus NP.

Theorem 14.11
The real number version of subset sum can be solved using an algebraic computation tree of depth
O(n5).

Web draft 2007-01-08 22:02



DRAFT

p14.6 (256) 14.2. ALGEBRAIC COMPUTATION TREES

This theorem suggests that Algebraic Computation Trees are best used to investigate lower-
bounds such as n log n or n2. To prove lowerbounds for a function f , we will use the topology of the
sets f−1(1) and f−1(0), specifically, the number of connected components. In fact, we will think of
any function f :Rn → R as being defined by a subset W ⊆ Rn, where W = f−1(1).

Definition 14.12
Let W ⊆ Rn. The algebraic computation tree complexity of W is

C(W ) = min
computation
trees C for W

{depth of C}

Definition 14.13 (connected components)
A set S ⊆ Rn is connected if for all x, y ∈ S there is path p that connects x and y and lies entirely
in S. For S ⊆ Rn we define #(S) to be the number of connected components of S.

Theorem 14.14
Let W = {(x1, . . . , xn)|

∏
i6=j (xi − xj) 6= 0}. Then,

#(W ) ≥ n!

Proof: For each permutation σ let

Wσ = {(x1, . . . , xn) | xσ(1) < xσ(2) < . . . < xσ(n)}.

That is, let Wσ be the set of n-tuples (x1, . . . , xn) to which σ gives order. It suffices to prove for
all σ′ 6= σ that the sets Wσ and Wσ′ are not connected.

For any two distinct permutations σ and σ′, there exist two distinct i, j with 1 ≤ i, j ≤ n, such
that σ−1(i) < σ−1(j) but σ−1(i) > σ−1(j). Thus, in Wσ we have Xj − Xi > 0 while in Wσ′ we
have Xi −Xj > 0. Consider any path from Wσ to Wσ′ . Since Xj −Xi has different signs at the
endpoints, the intermediate value principle says that somewhere along the path this term must
become 0. Definition 14.13 then implies that Wσ and Wσ′ cannot be connected. �

The connection between the two parameters we have defined thus far is the following theo-
rem, whose proof will use a fundamental theorem of topology. It also implies, using our obser-
vation above, that the algebraic computation tree complexity of ELEMENT DISTINCTNESS is
Ω(log(n!)) = Ω(n log n).

Theorem 14.15 (Ben-Or)

C(W ) = Ω
(

log (max {#(W ),#(Rn −W )})− n
)

This theorem is proved in two steps. First, we try to identify the property of functions with
low decision tree complexity: they can be defined using a “few” systems of equations.

Web draft 2007-01-08 22:02



DRAFT

14.2. ALGEBRAIC COMPUTATION TREES p14.7 (257)

Lemma 14.16
If f :<n → {0, 1} has a decision tree of depth d then f−1(1) (and also f−1(0)) is a union of at most

2d sets C1, C2, . . . , where Ci is the set of solutions to some algebraic system of up to d equations
of the type

pi(y1, . . . , yd, x1, . . . , xn) ./ 0,

where pi for i ≤ d is a degree 2 polynomial, ./ is in {≤,≥,=, 6=}, and y1, . . . , yd are new variables.
(Rabinovitch’s Trick) Additionally, we may assume without loss of generality (at the cost of

doubling the number of yi’s) that there are no 6= constraints in this system of equations.

Proof: The tree has 2d leaves, so it suffices to associate a set with each leaf. This is simply the set
of (x1, x2, . . . , xn) that end up at that leaf. Associate variables y1, y2, . . . , yd with the d tree nodes
appearing along the path from root to that leaf. For each tree nodes associate an equation with it
in the obvious way (see figure 14.2). For example, if the node computes yv = yu÷yw then it implies
the constraint yvyw − yu = 0. Thus any (x1, x2, . . . , xn) that end up at the leaf is a vector with an
associated value of y1, y2, . . . , yd such that the combined vector is a solution to these d equations.

To replace the “ 6=” constraints with “=” constraints we take a constraint like

pi(y1, . . . , ym) 6= 0,

introduce a new variable zi and impose the constraint

qi(y1, . . . , ym, zi) ≡ 1− zipi(y1, . . . , ym) = 0.

(This transformation holds for all fields.) Notice, the maximum degree of the constraint remains
2, because the trick is used only for the branch yu 6= 0 which is converted to 1− zvyu = 0.

�

Remark 14.17
We find Rabinovitch’s trick useful also in Section 14.3.2 where we prove a completeness result for
Hilbert’s Nullstellensatz.

Another version of the trick is to add the constraint

p2
i (y1, . . . , ym) > 0,

which doubles the degree and does not hold for all fields (e.g., the complex numbers).

Thus we need some result about the number of connected components of the set of solutions to
an algebraic system. The following is a central result in mathematics.

Theorem 14.18 (Simple consequence of Milnor-Thom)
If S ⊆ Rn is defined by degree d constraints with m equalities and h inequalities then

#(S) ≤ d(2d− 1)n+h−1

Remark 14.19
Note that the above upperbound is independent of m.

Web draft 2007-01-08 22:02



DRAFT

p14.8 (258) 14.3. THE BLUM-SHUB-SMALE MODEL

Figure unavailable in pdf file.

Figure 14.3: Projection can merge but not add connected components

Now we can prove Ben-Or’s Theorem.

Proof: (Theorem 14.15) Suppose that the depth of a computation tree for W is d, so that there
are at most 2d leaves. We will use the fact that if S ⊆ Rn and S|k is the set of points in S with
their n− k coordinates removed (projection on the first k coordinates) then #(S|k) ≤ #(S) (figure
14.3).

For every leaf there is a set of degree 2 constraints. So, consider a leaf ` and the corresponding
constraints C`, which are in variables x1, . . . , xn, y1, . . . , yd. Let W` ⊆ Rn be the subset of inputs
that reach ` and S` ⊆ Rn+d the set of points that satisfy the constraints C`. Note that W` = C`|n
i.e., W` is the projection of C` onto the first n coordinates. So, the number of connected components
in W` is upperbounded by #(C`). By Theorem 14.18 #(C`) ≤ 2 · 3n+d−1 ≤ 3n+d. Therefore the
total number of connected components is at most 2d3n+d, so d ≥ log(#(W ))−O(n). By repeating
the same argument for Rn −W we have that d ≥ log(#(Rn −W ))−O(n). �

14.3 The Blum-Shub-Smale Model

Blum, Shub and Smale introduced Turing Machines that compute over some arbitrary field K (e.g.,
K = R,C, Z2). This is a generalization of the standard Turing Machine model which operates over
the ring Z2. Each cell can hold an element of K, Initially, all but a finite number of cells are “blank.”
In our standard model of the TM, the computation and branch operations can be executed in the
same step. Here we perform these operations separately. So we divide the set of states into the
following three categories:

• Shift state: move the head to the left or to the right of the current position.

• Branch state: if the content of the current cell is a then goto state q1 else goto state q2.

• Computation state: replace the contents of the current cell with a new value. The machine
has a hardwired function f and the new contents of the cell become a← f(a). In the standard
model for rings, f is a polynomial over K, while for fields f is a rational function p/q where
p, q are polynomials in K[x] and q 6= 0. In either case, f can be represented using a constant
number of elements of K.

• The machine has a single “register” onto which it can copy the contents of the cell currently
under the head. This register’s contents can be used in the computation.

In the next section we define some complexity classes related to the BSS model. As usual, the
time and space complexity of these Turing Machines is defined with respect to the input size, which
is the number of cells occupied by the input.

Web draft 2007-01-08 22:02



DRAFT

14.3. THE BLUM-SHUB-SMALE MODEL p14.9 (259)

Remark 14.20
The following examples show that some modifications of the BSS model can increase significantly
the power of an algebraic Turing Machine.

• If we allow the branch states to check, for arbitrary real number a, whether a > 0 (in
other words, with arbitrary precision) the model becomes unrealistic because it can decide
problems that are undecidable on the normal Turing machine. In particular, such a machine
can compute P/poly in polynomial time; see Exercises. (Recall that we showed that P/poly
contains undecidable languages.) If a language is in P/poly we can represent its circuit family
by a single real number hardwired into the Turing machine (specifically, as the coefficient of
of some polynomial p(x) belonging to a state). The individual bits of this coefficient can be
accessed by dividing by 2, so the machine can extract the polynomial length encoding of each
circuit. Without this ability we can prove that the individual bits cannot be accessed.

• If we allow rounding (computation of bxc) then it is possible to factor integers in polynomial
time, using some ideas of Shamir. (See exercises.)

Even without these modifications, the BSS model seems more powerful than real-world com-
puters: Consider the execution of the operation x ← x2 for n times. Since we allow each cell to
store a real number, the Turing machine can compute and store in one cell (without overflow) the
number x2n

in n steps.

14.3.1 Complexity Classes over the Complex Numbers

Now we define the corresponding to P and NP complexity classes over C:

Definition 14.21 (PC,NPC)
PC is the set of languages that can be decided by a Turing Machine over C in polynomial time.
NPC is the set of languages L for which there exists a language L0 in PC, such that an input x is
in L iff there exists a string (y1, . . . , ync) in Cnc

such that (x, y) is in L0.

The following definition is a restriction on the inputs of a TM over C. These classes are useful
because they help us understand the relation between algebraic and binary complexity classes.

Definition 14.22 (0-1-NPC)

0-1-NPC = {L ∩ {0, 1}∗ | L ∈ NPC}

Note that the input for an NPC machine is binary but the nondeterministic “witness” may
consist of complex numbers. Trivially, 3SAT is in 0-1-NPC : even though the “witness” consists of
a string of complex numbers, the machine first checks if they are all 0 or 1 using equality checks.
Having verified that the guess represents a boolean assignment to the variables, the machine con-
tinues as a normal Turing Machine to verify that the assignment satisfies the formula.

It is known that 0-1-NPC ⊆ PSPACE. In 1997 Koiran proved that if one assumes the Riemann
hypothesis, then 0-1-NPC ⊆ AM[2]. Recall that AM[2] is BP ·NP so Koiran’s result suggests
that 0-1-NPC may not be much bigger than NP.

Web draft 2007-01-08 22:02



DRAFT

p14.10 (260) 14.3. THE BLUM-SHUB-SMALE MODEL

Figure unavailable in pdf file.

Figure 14.4: Tableau of Turing Machine configurations

14.3.2 Hilbert’s Nullstellensatz

The language HNC is defined as the decision version of Hilbert’s Nullstellensatz over C. The input
consists of m polynomials pi of degree d over x1, . . . , xn. The output is “yes” iff the polynomials
have a common root a1, . . . , an. Note that this problem is general enough to include SAT. We
illustrate that by the following example:

x ∨ y ∨ z ↔ (1− x)(1− y)(1− z) = 0.

Next we use this fact to prove that the language 0-1-HNC (where the polynomials have 0-1 coeffi-
cients) is complete for 0-1-NPC.

Theorem 14.23 (BSS)
0-1-HNC is complete for 0-1-NPC.

Proof: (Sketch) It is straightforward to verify that 0-1-HNC is in 0-1-NPC. To prove the hard-
ness part we imitate the proof of the Cook-Levin theorem; we create a computation tableau and
show that the verification is in 0-1-HNC.

To that end, consider the usual computation tableau of a Turing Machine over C and as in the
case of the standard Turing Machines express the fact that the tableau is valid by verifying all the
2×3 windows, i.e., it is sufficient to perform local checks (Figure 14.4). Reasoning as in the case of
algebraic computation trees (see Lemma 14.16) we can express these local checks with polynomial
constraints of bounded degree. The computation states c ← q(a, b)/r(a, b) are easily handled by
setting p(c) ≡ q(a, b) − cr(a, b). For the branch states p(a, b) 6= 0 we can use Rabinovitch’s trick
to convert them to equality checks q(a, b, z) = 0. Thus the degree of our constraints depends upon
the degree of the polynomials hardwired into the machine. Also, the polynomial constraints use
real coefficients (involving real numbers hardwired into the machine). Converting these polynomial
constraints to use only 0 and 1 as coefficients requires work. The idea is to show that the real
numbers hardwired into the machine have no effect since the input is a binary string. We omit this
mathematical argument here. �

14.3.3 Decidability Questions: Mandelbrot Set

Since the Blum-Shub-Smale model is more powerful than the ordinary Turing Machine, it makes
sense to revisit decidability questions. In this section we show that some problems do indeed remain
undecidable. We study the decidability of the Mandelbrot set with respect to Turing Machines over
C. Roger Penrose had raised this question in his meditation regarding artificial intelligence.

Web draft 2007-01-08 22:02



DRAFT

14.3. THE BLUM-SHUB-SMALE MODEL p14.11 (261)

Definition 14.24 (Mandelbrot set decision problem)
Let PC(Z) = Z2 + C. Then, the Mandelbrot set is defined as

M = {C | the sequence PC(0), PC(PC(0)), PC(PC(PC(0))) . . . is bounded }.

Note that the complement of M is recognizable if we allow inequality constraints. This is
because the sequence is unbounded iff some number P k

C(0) has complex magnitude greater than 2
for some k (exercise!) and this can be detected in finite time. However, detecting that P k

C(0) is
bounded for every k seems harder. Indeed, we have:

Theorem 14.25
M is undecidable by a machine over C.

Proof: (Sketch) The proof uses the topology of the Mandelbrot set. Let M be any TM over the
complex numbers that supposedly decides this set. Consider T steps of the computation of this
TM. Reasoning as in Theorem 14.23 and in our theorems about algebraic computation trees, we
conclude that the sets of inputs accepted in T steps is a finite union of semialgebraic sets (i.e., sets
defined using solutions to a system of polynomial equations). Hence the language accepted by M
is a countable union of semi-algebraic sets, which implies that its Hausdorft dimension is 1. But it
is known Mandelbrot set has Hausdorff dimension 2, hence M cannot decide it. �

Exercises

§1 Show that if field F is finite then arithmetic circuits have exactly the same power —up to
constant factors—as boolean circuits.

§2 Equivalence of circuits of depth d to straight line programs of size exp(d). (Lecture 19 in
Madhu’s notes.)

§3 Bauer-Strassen lemma?

§4 If function computed in time T on algebraic TM then it has algebraic computation tree of
depth O(d).

§5 Prove that if we give the BSS model (over R) the power to test “a > 0?” with arbitrary preci-
sion, then all of P/poly can be decided in polynomial time. (Hint: the machine’s “program”
can contain a constant number of arbitrary real numbers.)

§6 Shamir’s trick?

Chapter notes and history

needs a lot
General reference on algebraic complexity

Web draft 2007-01-08 22:02



DRAFT

p14.12 (262) 14.3. THE BLUM-SHUB-SMALE MODEL

P. Brgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory, Springer-Verlag,
1997.

Best reference on BSS model
Blum Cucker Shub Smale.
Algebraic P and NP from Valiant 81 and Skyum-Valiant’86.
Roger Penrose: emperor’s new mind.
Mandelbrot : fractals.

Web draft 2007-01-08 22:02


	Algebraic computation models
	Algebraic circuits
	Algebraic Computation Trees
	The Blum-Shub-Smale Model
	Complexity Classes over the Complex Numbers
	Hilbert's Nullstellensatz
	Decidability Questions: Mandelbrot Set

	Exercises
	Chapter notes and history


