Quick links

CSML

Towards more human-like learning in machines: Bridging the data and generalization gaps

Date and Time
Tuesday, February 27, 2024 - 12:30pm to 1:30pm
Location
Computer Science Small Auditorium (Room 105)
Type
CSML
Host
Tom Griffiths

Brenden Lake
There is an enormous data gap between how AI systems and children learn: The best LLMs now learn language from text with a word count in the trillions, whereas it would take a child roughly 100K years to reach those numbers through speech (Frank, 2023, "Bridging the data gap"). There is also a clear generalization gap: whereas machines struggle with systematic generalization, children can excel. For instance, once a child learns how to "skip," they immediately know how to "skip twice" or "skip around the room with their hands up" due to their compositional skills. In this talk, I'll describe two case studies in addressing these gaps.

1) The data gap: We train deep neural networks from scratch (using DINO, CLIP, etc.), not on large-scale data from the web, but through the eyes and ears of a single child. Using head-mounted video recordings from a child as training data (<200 hours of video slices over 26 months), we show how deep neural networks can perform challenging visual tasks, acquire many word-referent mappings, generalize to novel visual referents, and achieve multi-modal alignment. Our results demonstrate how today's AI models are capable of learning key aspects of children's early knowledge from realistic input.

2) The generalization gap: Can neural networks capture human-like systematic generalization? We address a 35-year-old debate catalyzed by Fodor and Pylyshyn's classic article, which argued that standard neural networks are not viable models of the mind because they lack systematic compositionality -- the algebraic ability to understand and produce novel combinations from known components. We'll show how neural networks can achieve human-like systematic generalization when trained through meta-learning for compositionality (MLC), a new method for optimizing the compositional skills of neural networks through practice. With MLC, neural networks can match human performance and solve several machine learning benchmarks.

Given these findings, we'll discuss the paths forward for building machines that learn, generalize, and interact in more human-like ways based on more natural input.

Related articles
Vong, W. K., Wang, W., Orhan, A. E., and Lake, B. M (2024). Grounded language acquisition through the eyes and ears of a single child. Science, 383, 504-511.

Orhan, A. E., and Lake, B. M. (in press). Learning high-level visual representations from a child’s perspective without strong inductive biases. Nature Machine Intelligence.

Lake, B. M. and Baroni, M. (2023). Human-like systematic generalization through a meta-learning neural network. Nature, 623, 115-121.

Bio: Brenden M. Lake is an Assistant Professor of Data Science and Psychology at New York University. He received his M.S. and B.S. in Symbolic Systems from Stanford University in 2009, and his Ph.D. in Cognitive Science from MIT in 2014. He was a postdoctoral Data Science Fellow at NYU from 2014-2017. Brenden is a recipient of the Robert J. Glushko Prize for Outstanding Doctoral Dissertation in Cognitive Science and the MIT Technology Review 35 Innovators Under 35. His research was also selected by Scientific American as one of the 10 most important advances of 2016. Brenden's research focuses on computational problems that are easier for people than they are for machines, such as learning new concepts from just a few examples, learning by asking questions, learning by generating new goals, and learning by producing novel combinations of known components.


To request accommodations for a disability please contact Andrea LaBella, alabella@princeton.edu, at least one week prior to the event.

CSML Seminar - Physics-Guided AI for Learning Spatiotemporal Dynamics

Date and Time
Monday, March 27, 2023 - 12:30pm to 1:30pm
Location
Bendheim Finance 103
Type
CSML
Speaker
Rose Yu, from University of California, San Diego
Host
Ryan Adams and Peter Ramadge

Rose Yu
Applications in climate science, epidemiology, and transportation often require learning complex dynamics from large-scale spatiotemporal data. While deep learning has shown tremendous success in these domains, it remains a grand challenge to incorporate physical principles in a systematic manner into the design and training of such models. In this talk, I will demonstrate how to principally incorporate physics in AI models to improve sample complexity, prediction accuracy, and physical consistency. I will showcase the applications of these models to challenging problems such as turbulence forecasting, jet tagging in particle physics, and trajectory prediction for autonomous vehicles.

Bio: Dr. Rose Yu is an assistant professor at the University of California San Diego, Department of Computer Science and Engineering. She earned her Ph.D. in Computer Sciences at USC in 2017. She was subsequently a Postdoctoral Fellow at Caltech. Her research focuses on advancing machine learning techniques for large-scale spatiotemporal data analysis, with applications to sustainability, health, and physical sciences. A particular emphasis of her research is on physics-guided AI which aims to integrate first principles with data-driven models. Among her awards, she has won NSF CAREER Award, Faculty Research Award from JP Morgan, Facebook, Google, Amazon, and Adobe, Several Best Paper Awards, Best Dissertation Award at USC, and was nominated as one of the ’MIT Rising Stars in EECS’.


To request accommodations for a disability please contact Andrea LaBella, alabella@princeton.edu, at least one week prior to the event.

Machine Learning and the Physical World

Date and Time
Monday, December 10, 2018 - 4:00pm to 5:00pm
Location
Julis Romo Rabinowitz Building 399
Type
CSML
Host
Ryan P. Adams, CSML

Machine learning is a data driven endeavor, but real world systems are physical and mechanistic. In this talk we will review approaches to integrating machine learning with real world systems. Our focus will be on emulation (otherwise known as surrogate modeling).
                    

Neil Lawrence
Bio:
Neil Lawrence is Professor of Machine Learning at the University of Sheffield and the co-host of Talking Machines. He is currently on leave of absence based at Amazon in Cambridge where he is a Director of Machine Learning. Neil’s main research interest is machine learning through probabilistic models. He focuses on both the algorithmic side of these models and their application. His recent focus has been on the deployment of machine learning technology in practice, particularly under the banner of data science. He is also the co-host of the Talking Machines podcast. 

Follow us: Facebook Twitter Linkedin