Technical Reports


Display by Author:
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Search by for:

TR-488-95
Efficient Support for Irregular Applications on Distributed--Memory Machines
Authors: Mukherjee, Shubhendu S., Sharma, Shamik D., Hill, Mark D., Larus, James R., Rogers, Anne, Saltz, Joel
Date:April 1995
Pages:12
Download Formats: [Postscript]
Abstract:
Irregular computation problems underlie many important scientific applications. Although these problems are computationally expensive, and so would seem appropriate for parallel machines, their irregular and unpredictable run-time behavior makes this type of parallel program difficult to write and adversely affects run-time performance. This paper explores three issues---partitioning, mutual exclusion, and data transfer---crucial to the efficient execution of irregular problems on distributed-memory machines. Unlike previous work, we studied the same programs running in three alternative systems on the same hardware base (a Thinking Machines CM-5): the CHAOS irregular application library, Transparent Shared Memory (TSM), and eXtensible Shared Memory (XSM). CHAOS and XSM performed equivalently for all three applications. Both systems were somewhat (13%) to significantly faster (991%) than TSM.