Technical Reports


Display by Author:
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Search by for:

TR-257-90
Slimming Down by Adding: Selecting Heavily Covered Points
Authors: Chazelle, Bernard, Edelsbrunner, Herbert, Guibas, Leonidas J., Hershberger, John, Seidel, Raimund, Sharir, Micha
Date:April 1990
Pages:18
Download Formats:
Abstract:
We show that for any set P of n points in three-dimentional space there is a set Q of O(n1/2 log3 n) points so that the Delaunay triangulation of P union Q has at most O(n3/2 log3 n) edges - even though the Delaunay triangulation of P may have omega(n2) edges. The main tool of our construction is the following geometric covering result: For any set P of n points in three-dimensional space and any set S of m spheres, where each sphere passes through a distinct point pair in P, there exists a point x, not necessarily in P, that is enclosed by omega (m2/ n2 log6 (n2/m)) of the spheres in S. Our results generalize to arbitrary fixed dimensions, to geometric bodies other than sphere, and to geometric structures other than Delaunay triangulations.