Technical Reports


Display by Author:
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
Search by for:

TR-103-87
Amortized Analysis of Algorithms for Set Union with Backtracking
Authors: Westbrook, Jeffrey, Tarjan, Robert E.
Date:May 1987
Pages:20
Download Formats:
Abstract:
Mannila and Ukkonen have studied a variant of the classical disjoint set union (equivalence) problem in which an extra operation, called deunion, can undo the most recently performed union operation not yet undone. They proposed a way to modify standard set union algorithms to handle deunion operations. We analyze several algorithms based on their approach. The most efficient such algorithms have amortized running time of O(log n/log log n) per operation, where n is the total number of elements in all the sets. These algorithms use O(n log n) space, but the space usage can be reduced to O(n) by a simple change. We prove that any separable pointer-based algorithm for the problem requires omega(log n/log log n) time per operation, thus showing that our upper bound is tight.