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A major objective in post-genome research is to fully

understand the transcriptional control of each gene and the

targets of each transcription factor. In yeast, large-scale

experimental and computational approaches have been

applied to identify co-regulated genes, cis regulatory

elements, and transcription factor DNA binding sites

in vivo. Methods for modeling and predicting system behavior,

and for reconciling discrepancies among data types,

are being explored. The results indicate that a complete

and comprehensive yeast transcriptional network

will ultimately be achieved.
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Introduction
Microarray analysis has provided abundant evidence that

sets of functionally related genes are coordinately induced

or repressed in response to developmental or environ-

mental cues, presumably via the action of sequence-

specific DNA-binding transcription factors (TFs). This

provides a mechanism to control specific aspects of phy-

siology; it also enables the use of gene co-regulation to

predict gene function, and underlies the fact that expres-

sion profiles can be used to classify samples. Creating a

full network diagram of transcriptional control will reveal

how far these concepts can be extended.

The intriguing problem of determining how each gene

is transcriptionally regulated, and which genes are con-
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trolled by each TF, has been attacked over the past few

years by a variety of experimental and computational

approaches. Here, we review recent accomplishments

and challenges in this endeavor, focusing on the budding

yeast Saccharomyces cerevisiae, in which many of these

approaches have been field-tested. We also refer readers

to several other recent reviews on the same general topic

[1–7].

So that the significance of recent work can be appreciated,

we begin by considering the overall problem.

Problem definition, expectations and
success criteria
Deciphering a transcriptional network is a reverse-

engineering problem. The goal is to understand how an

existing system works, without being told. We are able to

perturb the inputs (changes in growth conditions and/or

genetic alterations) and monitor reaction of the outputs

(measurements of relative abundance of transcripts in

treatment versus control experiments, usually using micro-

arrays). This is not a black box problem, because we have

a working knowledge of the general architecture of the

system. We have a relatively complete list of the TFs, and

we expect that each of them will regulate a minority of

genes (i.e. several to a few hundred) and that the genes

controlled by any one factor will tend to be functionally

related. We expect that TFs bind to regulatory sites in the

promoters of genes, and that they may tend to work

together with a limited number of other TFs. The reg-

ulatory sites are expected to be more conserved over

evolution than background sequence. Moreover, the wir-

ing of the network can be uncovered to considerable extent

using biochemistry (e.g. by assessing the DNA-binding

specificity of any specific TF in vitro and in vivo).

How will we know when we have succeeded in (correctly)

modeling the global transcriptional network? Certainly,

the basic observations must be explained. Estimates

regarding the number of yeast TFs that are likely to

directly regulate specific groups of genes vary from 141

to 209, depending on selection criteria [8��,9]. We

obtained a list of 173 by taking those that contain a

DNA-binding domain typical of TFs, and removing

the few candidates that are known to have other func-

tions. Searching through Medline and other databases

reveals that something is known about the physiological

function of most of these 173 (around 97). Among

these 97, the majority (around 61) are involved in

small-molecule metabolism or transport, processes easily
www.sciencedirect.com
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Figure 1
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A selection of non-overlapping, biologically meaningful clusters in yeast. This diagram is not comprehensive, but was constructed to ask

whether observed gene-expression measurements can be explained on the basis of current literature and databases. Two hundred

clusters were obtained from 424 microarray experiments compiled from the literature [11] using average linkage hierarchical clustering with

Pearson correlation. Each cluster was analyzed for biological ‘significance’ using the hypergeometric P value against gene ontology

annotations using FunSpec (http://funspec.med.utoronto.ca/). Fifty clusters encompassing 1226 genes were retained and each was

analyzed manually using TRANSFAC [10], YRSA [36], Medline, and the Saccharomyces Genome Database (http://www.yeastgenome.org/)

to identify known or putative transcriptional regulators.
manipulated experimentally by changing growth condi-

tions. However, an additional 76 of the 173 appear to

be poorly characterized. Presently, TRANSFAC [10], a

reference database of established TF-binding sites, con-

tains a total of 319 targets that bind directly (demon-

strated by gel shifts or DNaseI footprinting) to 88 of these

173 TFs. Thus it appears that much is known in general,

but much is uncertain in detail.

These observations are consistent with results of cluster-

ing microarray expression data. From a collection of 424
www.sciencedirect.com
microarray experiments [11] we compiled 50 non-over-

lapping, biologically meaningful clusters encompassing

1226 genes (Figure 1). Most of these clusters also relate

to small-molecule metabolism and transport, although

these in fact account for only a small fraction of the target

genes. The expression patterns of some of the clusters are

complicated and resemble patterns of other clusters,

suggesting multiple regulators. It is heartening that for

most of the clusters (40/50) at least one putative DNA-

binding regulator can be identified. However, most of the

individual TF–target inferences are unproven, and some
Current Opinion in Microbiology 2004, 7:638–646
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of the largest clusters cannot yet be associated with

specific TFs. Two of the most frequently observed clus-

ters in yeast microarray data are the mitochondrial ribo-

some, for which no promoter elements or binding factors

have yet been identified, and the ribosome biogenesis/

RNA processing regulon, for which two promoter ele-

ments (PAC and RRPE) have been identified by many

studies (e.g. [12]) but for which no binding factors have

yet been identified. Hence, there is still much experi-

mental work to be done before all of the observations can

be explained.

Another classical test of whether a system is understood is

to ask whether one can predict how the system behaves in

response to any new condition or modification. Herrgard

et al. [7] pointed out that models must ultimately consist

of equations describing dynamics, as is already possible in

metabolic analysis. However, we are still short of drawing

even a complete and accurate ball-and-arrow diagram. We

focus here on how completion of the ball-and-arrow

diagram is progressing, beginning with the experimental

data, and progressing through computational approaches.

Perturbing transcription factors for
microarray expression analysis
Perhaps the most obvious experiment to define transcrip-

tional targets would be microarray expression analysis of

deletion mutants or overexpressors in all yeast TF-encod-

ing genes. Indeed, at least 61 yeast TFs have been

perturbed experimentally and analyzed using microarrays

[13]. There are two major difficulties with this approach.

The first is that one cannot rule out that any expression

changes observed are secondary effects. However, the

major obstacle appears to be ensuring that the TF is

active under the chosen growth condition. Of the 173 TFs

on our list, only six (3.4%) are essential for cell viability in

rich medium, in comparison to around 19% of yeast genes

on the whole. This suggests that most of these TFs are

either redundant with other TFs, that they regulate non-

essential processes, or that they are inactive in yeast

grown under standard laboratory conditions. This latter

possibility is supported by analysis of both expression

data and promoter binding assays ([14�,15��]; see below).

A strategy to identify the conditions that activate a TF of

interest (and to identify physiological functions of the

TF) is to screen for conditions that cause hypersensitivity

for the TF mutant, because this may indicate that the TF

is required for the proper response to this perturbation

(for recent examples, see [16,17�]). In these conditions,

comparison of the wild-type and TF mutant strains often

results in differential gene expression of targets [18–22].

Identifying the activating conditions might be difficult

for many TFs. Three approaches to artificial activation

of TFs circumvent this problem, and these have been

successful in discovering TF targets. First, Wilcox et al.
Current Opinion in Microbiology 2004, 7:638–646
[23] identified potential targets of Upc2p by expression

profiling an activated allele of the TF. Second, the over-

expression of native HAP4 was sufficient to induce genes

enriched in mitochondrial function consistent with its

role in respiration [24]. Third, activated forms of several

Zn2Cys6 zinc-finger TFs have been engineered by fusion

of the DNA-binding domain of the TF and a constitutive

transcription-activating domain [13,25,26�].

ChIP–chip: microarray analysis of promoter
binding in vivo
The ‘chIP–chip’ methodology involves the chromatin

immunoprecipitation of an epitope-tagged TF bound

to DNA fragments containing target promoters, followed

by the hybridization of those amplified DNA fragments to

an intergenic microarray [27,28]. Two major studies have

been conducted under nutrient rich conditions; one con-

sists of an extensive chIP–chip investigation on 106 TFs

[8��], while the other [29] focuses on 11 TFs that function

at the G1/S transition.

ChIP–chip data do not prove physiological relevance of

the bound sites, but do have the advantage that they

provide a direct biochemical link between TFs and

promoters, and should be devoid of secondary effects.

ChIP–chip data also have the potential to identify targets

without knowing the activating conditions, if the TFs are

promoter-bound in an inactive state. However, it appears

as if this may not generally be the case. Manual exam-

ination of the Lee et al. [8��] chIP–chip data indicates

that known targets were detected for only around 50% of

the TFs. Many of these TFs are involved in basic aspects

of cell growth, such as cell cycle regulation (e.g. ABF1,

ACE2, FKH1, FKH2, MCM1, NDD1, STB1, SWI4, SWI5
and SWI6) as well as nitrogen (e.g. DAL81, DAL82 and

GLN3), glucose (e.g. GCR1, GCR2 and MIG1) and fatty

acid metabolism (e.g. INO2 and INO4). By contrast, TFs

that play roles in stress responses, and thus are not

required for growth in rich medium, did not bind to their

known targets (HAL9, HSF1, MSN1, MSN2, MSN4,

PDR1, RIM101, ROX1, SKN7, YAP5, and YAP7). This

observation is supported by other more sophisticated

analyses (e.g. [15��]; see below).

Consequently, the chIP–chip technology has begun to be

extended to include perturbations as a means to increase

the range of their targets and to uncover new biological

roles not detected in the previous studies [30�,31]. In a

few cases, the comparison of chIP–chip binding profiles of

a TF under non-stimulating and stimulating conditions

has resulted in identification of additional potential tar-

gets. For example, Ste12p bound to the promoters of 30

and 106 genes when cells were grown in the absence and

presence of pheromone, respectively [31]. Harbison et al.
[32] have recently extended the chIP-chip technique to a

wide variety of yeast transcription factors under different

growth conditions (see also Update).
www.sciencedirect.com
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Computational identification of cis
regulatory sites
A major mechanism by which TFs recognize genes to

be regulated is the presence of cognate DNA-binding

sequence of TFs in the promoter. Two general computa-

tional approaches have emerged for finding TF binding

sites (TFBSs) in promoters de novo: analysis of co-regu-

lated genes; and phylogenetic footprinting. Both methods

aim to distinguish small (6–15 bp) conserved (or enriched)

elements against the remainder of intergenic sequence

(around 500 bp in yeast). These elements can then be

compared with the binding specificity of known TFs,

and/or subjected to more traditional biochemical and

genetic analyses, such as reporter and gel-shift assays,

to prove that they are functional and to determine binding

factors.

Correlation of promoter sequence with
expression
A variety of statistical algorithms have been developed

for identifying sequence elements common to promoters

of co-regulated genes, typically expression clusters

(reviewed in [5]). The most popular of these algorithms

use stochastic search methods, such as Gibbs sampling,

to find sequences that are over-represented among the

promoter sequences in the cluster (it is rare to find a

sequence motif that is unique to a set of co-regulated

genes and common to all of them; this is what makes the

problem challenging). The algorithms differ in the way

that they represent the binding profile of TFs and in

the assumptions they make about the presence and

location of TFBSs in the promoter sequence. The most

popular model for TF-binding profiles is the positional

weight matrix (PWM); although the assumption that the

positions are independent is incorrect [33,34], it is not

disastrously inaccurate [35].

Yeast regulatory sequence analysis (YRSA) [36] is one

recent extension of these approaches. It consists of a web

implementation that automatically couples Gibbs sam-

pling of the promoters of yeast genes with a comparison

of the sequences identified to the sites of known yeast

TFs. An advanced algorithm, stochastic dictionary data

augmentation (SDDA [37�]), finds binding sites for multi-

ple TFs, does not require the length of the binding site

to be pre-specified, and allows for TFBSs that contain

large, variable-sized gaps between conserved elements.

An alternative to the cluster-based approach has also

been developed in which regression is used to identify

sequences that correlate with expression levels derived

from a single experiment: Roven and Bussemaker [38]

have created a web implementation called REDUCE

(regulatory element detection using correlation with

expression).

A common outcome of all of these approaches is that one

is faced with a large number of candidate regulatory
www.sciencedirect.com
sequences. A promising approach for downstream analysis

is to find ‘discriminative’ sequence elements (i.e. combi-

nations of TFBSs that are represented only in the co-

regulated cluster; for example, [39��], discussed below).

Sequence conservation of regulatory
sequences
It is also possible to predict TFBSs using multiple-

sequence alignments to identify conserved features.

The compared species need to be similar enough to

reliably align their intergenic regions, but distinct enough

that there is a discernible difference in the conservation of

functional sequence elements (i.e. TFBSs) compared

with that of the non-functional flanking sequence. On

the basis of a preliminary sequencing study of 13 yeast

species, Cliften et al. [40] argued that the complete

genomes of three other sensu stricto Saccharomyces species

would be sufficient to reliably detect functional elements

in S. cerevisiae. This work prompted two groups — Cliften

et al. [41��] and Kellis et al. [42��] — independently to

sequence the required three genomes. Kellis et al. used S.
mikatae, S. paradoxus and S. bayanus; whereas Cliften et al.
replaced S. paradoxus with S. kudriavzevii, and added two

sensu lato species for additional reference.

The two groups also used different algorithms for detect-

ing conserved regulatory elements. Cliften et al. [44��]
enumerated all 6- to 30-mers perfectly conserved in either

four- or six-way alignments of intergenic regions. They

found more than 16 000 conserved elements of which

around 25% matched a characterized TF-binding profile,

matching, in total, 53 of 62 characterized, ungapped

profiles. Of the remaining conserved elements, Cliften

et al. identified 79 candidate TFBSs by finding those

whose associated gene set was significantly enriched for

either co-expression, functional annotation or TF binding

as measured by chIP–chip [8��].

By contrast, Kellis et al. [42��] used an algorithm that

allows gaps in TFBSs, and whose output is a degenerate

sequence motif. Over 2400 mini-motifs — high-scoring

intergenic sequences with two conserved 3-mers flanking

a gap of length 0–21 bp — were initially identified, and

then iteratively extended and clustered to obtain 72

motifs that satisfy a ‘motif conservation score’ threshold,

taken as the ratio of conservation of a given motif to

that of a random motif having the same length and

degeneracy. Among the 72 emerging motifs were strong

matches to 35 known motifs. Of the novel putative

TFBSs, 25 had associated gene sets that were signifi-

cantly enriched for either co-expression, specific Gene

Ontology annotations, or chIP–chip binding.

Variations on phylogenetic footprinting can also be

applied even if the positions of regulatory sites have

re-arranged over evolution, complicating multiple align-

ment. A phylogeny can be used to distinguish between
Current Opinion in Microbiology 2004, 7:638–646



642 Growth and development
conserved non-functional sequences which have not yet

diverged in closely related species and less conserved

functional sequence whose variation across the species

pool recapitulates its phylogeny. Blanchette and Tompa

[43] described an algorithm, Footprinter, that finds

sequence elements which have less than a user-specified

parsimony with respect to a supplied phylogeny and

allows the absence of these elements in certain parts of

the phylogeny, to model changes in the regulatory struc-

ture of distantly related species. In a different approach,

Pritsker et al. [44] generated a large set of putative TFBSs

by running Gibbs sampling on sets of orthologous pro-

moters from 13 hemiascomycetous yeast species. These

were then filtered by ‘network-level conservation’ (i.e.

the genes with strong matches to a TFBS in one species

[S. cerevisiae] should be the orthologs of those with strong

matches in another, closely related species [in this case, S.
bayanus]). Many known motifs (e.g. binding sites for

Rap1p, Ume6p, Abf1p) received high network-level con-

servation scores, and the algorithm had an overall sensi-

tivity of 82% in identifying 48 known TFBSs conserved

between S. cerevisiae and S. bayanus. Specificity was not

reported, although the authors estimated that they

detected around 400 different binding sites, which is at

least twice the estimated number of yeast DNA-binding

transcription factors. Nonetheless, high-scoring putative

TFBSs showed high levels of conservation of position and

orientation.

How do the different data types compare?
The types of data described thus far (gene expression, TF

DNA-binding, promoter elements) all represent aspects

of the same regulatory networks, and can presumably be

combined to formulate global or more accurate models, or

both. It is logical to ask first how well they correspond to

one another. Figure 2 shows that there is, apparently, not

a high degree of agreement between some of the most

commonly cited datasets. The highest correspondence to

TRANSFAC [10] appears to be the expression clusters

from a compilation of published microarray data [11].

This suggests that some effort will be required to recon-

cile all types of information. Indeed, much of the litera-

ture over the past two years has been aimed at coupling

one or more data types together with other information or

laboratory assays, or both, to more rigorously identify and

verify ‘modules’ of the network (i.e. groups of genes

controlled by the same TF or group of TFs). To illustrate

this, Table 1 displays a (non-exhaustive) list of recent

papers describing methods to identify yeast transcrip-

tional networks, and the data types each utilized to do

so. We discuss several that introduce or address key

points.

Expression data alone: beyond clustering
To use microarray expression data alone to identify

regulatory modules, Segal et al. [45] presented a prob-
Current Opinion in Microbiology 2004, 7:638–646
abilistic graphical model algorithm to infer regulation

‘programs’. Given a list of probable regulatory factors,

and assuming the regulator has a similar expression profile

to the target genes (at least on a subset of conditions), the

algorithm groups genes into modules that show coordi-

nate expression with the factor (or factors). This facilitates

testing hypotheses of the form ‘regulator X regulates

module Y under conditions W’. Segal et al. [45] confirmed

some well-known mechanisms, and shed light on poten-

tial new programs.

One difficulty with this and related approaches (Table 1)

is that the expression of the regulator itself might not

correlate well with expression of its targets (e.g. if the TF

is regulated post-transcriptionally). In fact, Herrgard et al.
[46��] showed that significant correlations between

known TF–target pairs are infrequent, occurring in less

than 20% of 925 ‘known’ regulator–target pairs tested.

This is also supported by the results of Qian et al. [14�],
who took a supervised learning approach to identify

relationships in gene expression measurements among

known TF–target pairs.

Expression data combined with chIP–chip
A tried-and-true approach to reduce false-positives with

noisy biological data is to use multiple data sources.

Bar-Joseph et al. [30�] described the GRAM (genetic

regulatory modules) algorithm, which creates initial gene

regulatory modules with strict criteria for both chIP–chip

binding confidence and expression correlation. Having

identified a putative regulatory module, the algorithm

revisits less significantly bound genes and appends them

to the module if they are sufficiently co-expressed. The

approach recapitulated many known regulatory modules,

and identified new TF–target pairs that seem functionally

relevant. Although the authors commented on the large

number of connected gene modules, an equally signif-

icant result is that they obtained many unconnected or

low-connectivity regulatory modules (i.e. groups of func-

tionally related genes regulated by only one or a few

TFs), suggesting that the structure of the yeast transcrip-

tional network may become simpler as noise in the data is

reduced.

Gao et al. [15��] employed a multiple linear regression

approach to infer the ‘activity profile’ of a TF from both

gene expression data over 750 diverse expression patterns

and ChIP occupancy data of 113 TFs from Lee et al. [8��].
(Although Lee et al. [8��] described analysis of 106 TFs,

the downloadable data includes 113 TFs.) They defined

the notion of ‘coupling’ as the co-expression of a gene

with its activity profile. Genes that are both bound and

coupled (i.e. the genes bound by the same TF that also

display coordinate expression) are likely to be functional

direct targets. This analysis produced several important

quantitative results. Among the 113 TFs analyzed by Lee

et al. [8��], only 37 were significant predictors of mRNA
www.sciencedirect.com
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Figure 2
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Correspondence between information in the TRANSFAC database of TF-binding sites, and other datasets reflective of gene regulation

mechanisms. The 104 TFs do not all contain a DNA-binding domain, and the target genes shown include only those that can be associated

with a single yeast gene. TRANSFAC-derived targets were ordered to place genes regulated by the same factor(s) adjacent on the vertical axis.

This order of genes was held fixed in the other four datasets. For microarray data and gene functions, the horizontal axis was ordered by

clustering (i.e. if the data agreed with TRANSFAC then blocks of color would be formed). For the Lee et al. and Kellis et al. datasets, the

horizontal axis is the same as that in the TRANSFAC panel, and only the TFs shared with TRANSFAC are shown (i.e. if the data agreed

perfectly with TRANSFAC, it would form the same diagonal line as is shown left).
expression. Among these 37, on average 58% of signif-

icantly bound genes were coupled. For most of the 37, the

coupled targets displayed a strong tendency to be func-

tionally related, whereas the non-coupled targets did not.

This suggests that chIP–chip results which do not corre-

late with expression data might be less physiologically

relevant. The corresponding TFs could be prioritized

for analysis under other growth conditions, for example

those under which the TF is required for normal growth

or behavior (e.g. [17�,31]).

Expression data combined with promoter
sequence
Pilpel et al. [47] introduced the combinatorial analysis

of promoter elements from gene expression data. Their

study illustrated several examples of ‘expression coher-
www.sciencedirect.com
ence’ among the genes having the promoter elements of

two TFs compared with those genes whose promoters

have binding sites of two TFs compared with those genes

whose promoters have the binding site of only one of the

TFs. Their analysis also showed that, by virtue of the

fact that some genes share multiple regulatory factors, an

interconnected network diagram can be constructed.

More recently, Beer and Tavazoie [39��] made a major

conceptual advance by using a Bayesian network learning

algorithm to predict the positional, orientational and

combinatorial constraints of upstream sequence elements

which are predictive of expression patterns. An initial

set of putative TFBSs, discovered using Gibbs sampling,

was culled for those predictive of whether each of 2587

genes belonged to each of 49 partially overlapping gene
Current Opinion in Microbiology 2004, 7:638–646
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Table 1

Recently reported methods and types of data used for identifying regulatory modules.

Analysis paper Gene

expression data

Binding

data

Intergenic

sequence

Functional

annotation

Method

Segal et al. [45] * Module networks

Qian et al. [14�] * Support vector machine

Tringe et al. [49] * Graph reconstruction

Lee et al. [8��] * ChIP–chip

Kellis et al. [42] * Comparative genomics

Chiang et al. [50] * Conserved word pairs

Gao et al. [15��] * * Multiple regression-coupling

Banerjee et al. [51] * * Cooperativity analysis

Bar-Joseph et al. [30�] * * Genetic regulatory modules

Cliften et al. [41��] * * Phylogenetic fingerprinting

Pilpel et al. [47] * * Expression coherence

Haverty et al. [52] * * Computational ascertainment of regulatory

relationships inferred from expression (CARRIE)

Beer and Tavazoie [39��] * * Bayesian networks with constraints

Chen et al. [53] * * * Functional clustering

Wang et al. [48] * * * Expression-weighted profiles
expression clusters. The algorithm used a ‘greedy’ itera-

tive search to find the combination (and other constraints)

of TFBSs that best distinguished between genes present

and absent in the cluster. The cluster assignments of 73%

of the genes included in the analysis were correctly

classified from upstream sequence alone. The fact that

26% of genes could be classified correctly at random

suggests that the initial gene and cluster selection sub-

stantially simplified the problem. Nonetheless, this is a

highly significant result, and both the analytical frame-

work and the evaluation criteria applied raise the bar from

correlation or overlap between datasets, to using one data

type to predict the results of the other in a blind test.

Conclusions and future prospects
Reverse-engineering the transcriptional regulatory net-

work architecture in yeast has now been attacked by

several approaches on a large scale. Computational anal-

ysis of extensive network structures is now possible.

However, models constructed from current data sources

are likely to contain many errors, because different

approaches produce different lists of regulator–target

associations. They will certainly be incomplete, because

roughly one third of all TFs appear to be uncharacterized

with respect to physiological function, and the observed

regulation of many genes cannot yet be associated with a

direct regulator, known or putative.

The realization that current datasets have not yielded

a harmonized view of yeast transcriptional regulation is,

in our view, one of the most significant results in the

field in the past few years. Before progressing to more

quantitative and dynamic models of whole-cell transcrip-

tional regulation, considerably more work will be required

to simply ensure that all of the connections are drawn

properly. Consequently, one of the current challenges in

the field remains to ascertain and confirm the individual
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regulatory modules (i.e. identify the physiological targets

of each TF, and the mechanism underlying each gene

regulation, including the upstream cues and signaling

pathway that control each TF).

Although the wealth of data now available is often

extolled, there is little doubt that much more data are

needed. It will be invaluable to obtain mutant compared

with wild-type expression profiles (and chIP–chip bind-

ing profiles) under conditions that activate each TF.

Several network motif analysis approaches automatically

predict the appropriate conditions for these experiments

[45,48]. Microarray data and chIP–chip data resulting

from artificial activation of TFs will also be extremely

valuable. To take maximum advantage of promoter

sequences, it would also be advantageous to know the

sequence specificity of all of the known and predicted

TFs, and to ask what protein(s) can bind to each putative

cis element.

Despite these caveats, it is encouraging that virtually all

approaches discussed here can yield coherent data, and

they do relate to one another somewhat. This indicates

that, although achievement of a comprehensive network

might be more difficult than expected, the overall goal of

reverse-engineering transcriptional networks is tractable

with existing techniques and following current tenets.

Update
In a follow up paper to Lee et al. [8��], Harbison et al. [32]

have extended chIP-chip analysis to 203 yeast TFs in rich

media conditions and 84 of these regulators in at least

one environmental perturbation. Many of the binding

profiles appear to differ considerably with growth condi-

tion, generally with more promoters bound by the TFs

under perturbed conditions.
www.sciencedirect.com
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