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ABSTRACT
Motivation: One of the major challenges in cancer diagnosis
from microarray data is to develop highly accurate and ro-
bust classification models which are independent of the
analysis techniques used and can combine data from differ-
ent laboratories.
Methods: We propose a novel, robust meta-classification
scheme originally developed for phenotype identification
from mass spectrometry data. The method uses a robust
multivariate gene selection procedure and combines the
results of several machine learning tools trained on raw and
pattern data to produce an accurate meta-classifier. We il-
lustrate and validate our method by applying it to distinguish
diffuse large B-cell lymphoma (DLBCL) from follicular lym-
phoma (FL) on two independent gene expression datasets:
the oligonucleotide HuGeneFL microarray dataset of Shipp
et al. (www. genome.wi.mit.du/MPR/lymphoma) and the
Hu95Av2 Affymetrix dataset (DallaFavera’s laboratory, Co-
lumbia University).
Results: The pattern-based meta-classification technique
achieves higher predictive accuracies than each of the indi-
vidual classifiers trained on the same dataset, is robust
against various data perturbations and provides subsets of
predictive genes. We also find that combinations of p53 re-
sponsive genes are highly predictive of phenotype. In par-
ticular, we find that in DLBCL cases the mRNA level of at
least one of the three genes p53, PLK1 and CDK2 is ele-
vated, while in FL cases, the mRNA level of at most one of
them is elevated.
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1 INTRODUCTION
The rapid development of microarray technologies (Choud-
huri, 2004) (Lyons, 2003) allows the analysis of gene ex-
pression patterns to identify subsets of genes which are dif-
ferentially expressed between different phenotypes (e.g.,
different types of cancer), and to integrate data into person-
alized models capable of providing diagnosis and predicting
prognosis. There is a lot of ongoing research in developing
tools and methodologies to extract information from bio-
medical data (e.g., (Califano et al., 2000), (Armstrong et al.,
2004), (Slonim, 2002), (Wright et al., 2003)). However,
there remains  a need for a framework that can integrate the
data from different laboratories and predictions from differ-
ent techniques into a robust, noise insensitive predictive
tool.

The aim of this study is to present such a tool, recently
developed for cancer detection from SELDI-TOF mass
spectrometry data (Bhanot et al., 2004), and adapt it for can-
cer diagnosis from gene expression data. We first apply a
pattern-based multivariate approach to identify a subset of
predictive genes out of a pool of genes by requiring them to
satisfy stringent filtering criteria. Next, we combine the pre-
dictions of several machine learning tools trained on the
subset of predictive genes and on pattern data with the aim
of producing an accurate predictor. It is well-known (Merz,
1998) (Prodromidis et al., 1999) that combining individual
classifiers into a meta-classifier has the effect of improving
the error rate. In our method this effect is boosted by using
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“pattern data,” which is a structured representation of the
original data in a space in which patterns are viewed as
synthetic variables.

We demonstrate our approach by creating a diagnosis
model to accurately distinguish between follicular lym-
phoma (FL) and diffuse large B-cell lymphoma (DLBCL).
We will use the oligonucleotide microarray gene expression
data of Shipp et al. (2002) produced at the Whitehead Insti-
tute (WI data), and validate our findings on a separate Af-
fymetrix gene expression data produced by DallaFavera
laboratory at Columbia University (CU data, see
(Stolovitzky, 2005)). The WI and CU datasets report gene
expression data for DLBCL and FL cases which were ob-
tained by using different Affymetrix chips (HuGeneFL chip
for WI dataset and Hu95Av2 for the CU dataset). We also
show that one can combine the two datasets into a single
meta-dataset, while maintaining the accuracy of predictions.

To address the problem of differential diagnosis between
FL and DLBCL from the WI data, Shipp and coworkers
(2002) used a signal-to-noise (SNR) correlation-based
method to identify a subset of predictive genes and con-
structed a weighted-voting predictor based on the top 50
SNR correlated genes; their findings were validated through
a leave-one-out cross-validation scheme on the same set of
samples, and they obtained a sensitivity of  89%  and a
specificity of 100% for distinguishing FL from DLBCL
cases. By applying different criteria (a multivariate pattern-
based approach from Genes@Work (Lepre et al., 2004) and
a t-test (Stolovitzky, 2005) identified two additional subsets
of predictive genes in the WI data. Stolovitzky further
showed that about 88% of the genes in the union of his two
subsets with the subset identified by Shipp et al. (2002)
have a consistent behavior in the independent CU data (i.e..
are up-regulated or down-regulated in DLBCL vs. FL, re-
spectively).

Using our meta-classification method on a training sub-
set of the WI data, we identified a robust subset of 30 pre-
dictive genes and constructed a meta-classifier which mis-
classified only one FL case when validated on the test set of
the WI data and misclassified only two FL cases when vali-
dated on the external CU data. We obtained further biologi-
cal insight by focusing on the subset of p53 responsive
genes and extracted relevant patterns characteristic of FL
and DLBCL. Finally, we illustrated how noisy results might
be combined into a better predictive tool.

2 SYSTEM AND METHODS
Datasets
The WI dataset (http://www-genome.wi.mit.edu/MPR/ lym-
phoma) has 58 DLBCL samples and 19 FL samples. The
data was obtained by using Affymetrix oligonucleotide mi-

croarrays (HuGeneFL chips) containing probes for 6817
genes. The CU dataset (DallaFavera laboratory, Columbia
University) has 14 DLBCL and 7 FL samples obtained on
Affymetrix microarrays (Hu95Av2 chips) containing probes
for 12581 genes. In our study, DLBCL cases are referred to
as positive, and FL cases as negative.

Follicular lymphomas are one of the more common low
grade non-Hodgkin's lymphomas, which affect mostly
adults, particularly the elderly (Winter et al., 2004). They
are of B-cell lymphocyte origin. Most cases of follicular
lymphoma, especially those rich in small-cleaved cells, have
a t(14;18) gene translocation, which results in a rearrange-
ment and over-expression of the antiapoptotic gene BCL-2.
DLBCL is an aggressive form of non-Hodgkin lymphoma to
which 25-60% FLs evolve over time. The FL transformation
to DLBCL is associated with genetic alterations of p53
(Moller et al., 1999), p16 (Pyniol, 1998), p38MAPK
(Elenitoba-Johnson et al., 2003), c-myc (Lossos et al.,
2002), BCL-6 (Lossos et al, 2001). Besides the genetic link,
non-Hodgkin’ lymphomas could be caused by chemo and
radiation therapy, and may also arise due to infections with
the Epstein-Barr virus and HIV.
Overall methodology
Our approach consists of the following steps (see Figure 1):
1. Data preprocessing: involves creating training and test

data, data normalization, noise estimation.
2. Robust feature selection: involves a two-step procedure

for extracting a robust subset of predictive genes and
the creation of pattern data. It can also include a biol-
ogy-based extraction of a subset of genes and the crea-
tion of corresponding pattern data.

3. Multiple classifiers construction: involves applying
several classification methods on the raw and pattern
training data and evaluating their performance by leave-
one-out cross validation experiments on training data.

4. Meta-classifier construction and validation: involves
combining the predictions of individual classifiers to
generate a prediction of the phenotype. The accuracy of
the resulting meta-classifier is tested on test data, not
necessarily produced by the same laboratory.

Data preprocessing
From each dataset we selected only the genes that had pres-
ent calls in at least 50% of the samples. Then, following the
reasoning in a previous study (Shipp et al., 2002), we set an
upper ceiling of 16000 units and a lower ceiling of 20 units
for all gene expression levels. For each array, the expression
data was normalized by replacing the intensity level x of
each gene g  with (x-mean(g))/σ(g), where mean(g) and
σ(g) represent the mean and the standard deviation of the
intensity level of g across the samples in the dataset.
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Fig. 1. Flow chart of the meta-classifier approach.
The WI input data was 2/1 stratified sampled into a

training and a test dataset. The CU data was considered as
an external test data. Based on the assumption that a major-
ity of genes are not differentially expressed across the FL
and the DLBCL cases (McShane et al., 2002), the experi-
mental noise was estimated from the data as normally dis-
tributed with mean 0 and variance equal to the median of the
variances of all the genes across samples.
Robust feature selection
We applied a two-step feature selection procedure similar to
the wrapping approach presented in Alexe et al. (2003). We
first applied a robust single gene filtering procedure which
selected those genes which showed a relatively high (top
25%) signal-to-noise correlation with the phenotype. To
ensure robustness to experimental noise and sample compo-
sition, we created 500 perturbed training datasets in two
ways: (1)  by adding different levels of experimental noise
N(0, λ), where λ varies between 0.1 and 1, and (2) by boot-
strapping and jackknifing samples out of the training data
(see also (Tu et al., 2003)). By applying the filtering ap-
proach to each of the perturbed training datasets, as well as
to the original data, we selected a set of genes as the top
25% genes with respect to signal-to-noise correlation in at
least 90% of the perturbed datasets. The filtering criterion
was chosen based on a variant of the robustness index intro-
duced in (Stolovitzky, 2003).

In the second step, we used a combinatorial pattern rec-
ognition algorithm (Alexe et al., in press) to extract large
collections of high quality patterns (rules) from the training
data restricted to the genes in the pool selected in the previ-
ous step.

A positive pattern is defined by a set of bounding condi-
tions imposed on the intensity level of certain genes which
are satisfied by significantly many positive cases and by

significantly few negative cases. A negative pattern is de-
fined in a similar way. This definition for patterns differs
from that one used in (Lepre et al., 2004), where a pattern is
defined as a subset of genes with a very low variation of
their intensity level across significantly many positive cases
in the data. Patterns are characterized by several parameters:
(1) the degree of a pattern is the number of genes used in its
defining conditions; (2) the positive (negative) prevalence of
a pattern is the percentage of positive (negative) cases satis-
fying the defining conditions of the pattern; (3) the positive
(negative) homogeneity of a pattern is the percentage of
positive (negative) cases among all the cases satisfying the
defining conditions of the pattern. High quality positive
patterns have low degrees, and high positive prevalences
and homogeneities. Figure 2 gives an example of positive
and negative patterns in a 2 gene subspace.

Figure 2. Examples of  a positive pattern  (P) and of a negative pattern (N).
Each pattern can be interpreted as a synthetic 0-1 vari-

able associated with the samples in the dataset,  the value 1
being assigned when the corresponding sample satisfies the
defining conditions of the pattern, and the value 0 otherwise.
Each sample is then represented by a vector with 0-1 entries,
where each entry corresponds to a pattern. In this way, the
original data can be represented in an abstract space which
we call “pattern data” (see Figure 3).

We determined the optimal characteristic parameters of
the patterns by estimating the accuracy of a weighted-voting
model constructed on pattern data through 10-fold cross-
validation experiments on the training set, and chose those
parameters for which the estimated accuracy was maximal,
as detailed in (Bhanot et al., 2004). Out of the collection of
patterns satisfying the optimal parameters we selected
minimal subsets of patterns such that each case in the train-
ing data satisfies the defining conditions of at least 10 pat-
terns.

We define a support set as a set of predictive genes se-
lected by a certain procedure (e.g., t-test etc). In our case,
the support set was defined as a subset of pairwise low cor-
related genes occurring in the definition of the selected pat-
terns.
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Figure 3. Visualization of training and test sets representation as pattern
data: Each row corresponds to a case (DLBCL or FL) and each column
corresponds to a pattern (positive or negative). A positive (negative) pattern
is represented by a blue (or red) dot. Notice that in the training data
DLBCL cases satisfy only positive patterns, and  FL cases satisfy only
negative patterns.
Multiple classifier construction
Several different individual classifiers: artificial neural net-
works (ANN), support vector machines (SVM), weighted
voting systems (WV), k-nearest neighbors (kNN), decision
trees (C4.5) and logistic regression (LR) were trained and
calibrated through cross-validation experiments on the raw
and on the pattern training data as described in (Bhanot et
al., 2004). For this study we used the implementation of
ANN, SVM, decision trees and LR provided in Weka
(http://www.cs.waikato.ac.nz/ ~ml/weka/) and the imple-
mentations of WV and kNN provided in GenePattern
(http://www.broad.mit.edu/cancer/software/genepattern/)
and Genes@Work (http://www.research.ibm.com/FunGen).
The classification accuracy of each individual classifier was
estimated on the training data through a leave-one-out cross-
validation experiment.
Meta-classifier construction and validation
The meta-classifier was defined as a weighted combination
of the individual classifiers. The weight wi of the classifier
Ci  is defined as wi =vi /||v|| , where vi  = max[0, (specificityi –
50%)]max[0,(sensitivityi –50%)], ||v|| is the L1 norm of the
vector v having the components vi , and  specificityi  and
sensitivityi are the specificity and the sensitivity of the clas-
sifier Ci obtained on leave-one-out cross-validation experi-
ments on the training set. The meta-classifier prediction was
then given by P = ∑i Ci wi, where Ci=1 for DLBCL cases
and –1 for FL cases. The meta-classifier will predict
DLBCL with confidence P if P > 0, and FL with confidence
|P| if P < 0. To increase the robustness of the meta-classifier
with respect to the individual predictors, we imposed a
threshold p for the certainty of the classification. The
threshold p was computed on the training set as a p-value
associated to the accuracy of the meta-classifier with respect
to permutations of the sample class. Thus, a case was classi-
fied as DLBCL ( FL) if P > p (or P < -p). If |P| < p the clas-

sification was considered “uncertain”. In real situations, the
“uncertain” cases would need additional classifiers or im-
proved subsets of predictive genes.

To validate the meta-classifier predictions we applied it
to each sample in the WI test dataset and to each sample in
the CU dataset. Furthermore, as in (Bhanot et al., 2004), we
tested the robustness of the meta-classifier by perturbing the
WI training dataset with experimental noise and then com-
paring the changes occurring on the predictions on the test
set.
Biology-based gene selection: Role of p53 regulated
genes
Numerous studies e.g., (Sander et al., 1993), (LaCoco et al.,
1993) have noticed a correlation between over-expression of
p53 and FL progression to DLBCL, and also that mutations
of p53 are associated with histologic transformation in ap-
proximately 25% to 30% of FL cases. Other studies (Moller
et al., 1999), (Moller et al., 2002) suggest that over-
expression of MDM2 (and p53) identifies DLBCL and FL
cases with poor prognosis, presumably because of altera-
tions in the feedback loop between p53 and MDM2. We
therefore focused our attention on the family of p53 regu-
lated genes (Finlay et al., 1989), (Robins et al., in press)
since we expect them to provide a robust signal. Our goal
was to identify a subset of p53 responsive genes which, in-
dividually or in combinations, might be most predictive.
Meta-data analysis: extracting information from multi-
ple support sets
We tested the validity of the assumption that the information
provided by different support sets identified in gene expres-
sion data might boost the predictive power of a classifier
trained on the data. We created a meta-dataset by merging
the WI and CU datasets and trained a weighted voting (WV)
classifier on each of the support sets identified in previous
studies (Shipp et al., 2002), (Stolovitzky, 2005), and in the
current study. The predictions provided by each support set
were weighted based on the WV performance on leave-one-
out experiments and integrated into a novel meta-classifier.

3 RESULTS
Data preprocessing
The WI dataset was split into a training set consisting of 51
samples (38 DLBCL and 13 FL cases), and a test set con-
sisting of 20 DLBCL and 6 FL cases. After ceiling and
normalization, we eliminated the genes with no variation
across the samples in the WI data and in the CU data, re-
spectively. The 50% call filtering criterion was passed by
only 2055 out of the 6817 genes in the WI dataset. Of these
genes, only 1901 passed the filtering criterion in the CU
data. The WI training and test sets were described by the
selected 2055 genes, and the CU external test set by the se-
lected subset of 1901 genes.
Robust feature selection
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Filtering. We generated 200 datasets by perturbing the
training data with experimental noise N(0,λ), with λ = 0.1,
0.2, …, 1.0 (20 datasets for each value of λ). In addition, we
generated 300 other datasets by perturbing the sample com-
position of the training data. The perturbation of the sample
composition was performed by bootstrapping the samples
(extracting with replacement n=51 samples from the train-
ing data and retaining the subset of those samples which
were never extracted), and by k-folding (randomly dividing
the training data into k stratified parts and retaining in turn
only k-1 out of the k parts), k=3, 5, 10, and jackknifing (re-
taining in turn only 50 out of the 51 samples in the training
data).

In order to select a robust filtering procedure, we com-
puted a score which reflects the stability to data perturbation
for the signal to noise and for the t-test, and chose that pro-
cedure for which the value of the score was higher. The
score was defined as a variant R’ of the robustness index R
introduced in Stolovitzky (2003): In each experiment we
selected the top 25% of genes using criteria described
above. R’ equals the ratio of the intersection of the genes
selected which occur at least 90% of the time in the 500
experiments to the union of the genes selected by these ex-
periments.

For an “ideal” robust filtering procedure R’ should be
close to 1. At the other extreme, when the filtering proce-
dure is reduced to the random selection of n genes (where n
<< number of genes in the dataset) one expects R’ to be
small. To compute R’ in this situation, we simulated the
gene selection process assuming it was random. We found
that R’ is close to 0 whenever n < 500. R’ reflects the sta-
bility of the filtering selection criterion to noise and to sam-
ple composition perturbations.

In our case, the robustness index associated with the
signal to noise correlation was  R’=0.27, while the robust-
ness index of the t-test was R’=0.23. Based on these results,
we chose the signal-to-noise correlation as a filtering crite-
rion.

A pool of 73 genes passed the top 25% signal to noise
filtering criterion in at least 90% of the perturbed datasets.
We found that the selected pool contains only 51 of the 100
top genes selected by Shipp et al. (2002), 32 of the 100
genes selected by the method in Genes@Work
(Stolovitzky, 2005), 28 genes selected based on the t-
statistics (Stolovitzky, 2005), and only 9 p53 regulated
genes. In addition, we found that in fact, only 25 genes from
the Shipp et al. list remained in the list of top 100 in at least
90% of the perturbed training datasets.

The 95% CI of the absolute Pearson correlation coeffi-
cient among the pairs of the selected 73 genes was (0.33,
0,35) and only 19 pairs of genes had a correlation above
0.85 across all the samples. However, patterns extracted
with Genes@Work revealed that several subsets of genes,
e.g., G18, TXNIP, RPL13, NME1, TRIB2 have a low

variation (δ < 0.1), being up-regulated on significant sub-
groups of about 30% DLBCL cases and down-regulated on
subgroups of 50% FL cases (p-value 0.001). In fact, we
were able to detect about 500 subsets of genes which col-
lectively showed a variation < 0.1 on various subsets of 30-
50% FL cases, and about 800 subsets of genes having a
similar property on large subsets of DLBCL cases. The in-
formation provided by the groups of co-regulated genes is
yet to be explored in a future study.
Support set selection. A collection of 1595 positive and
667 negative patterns of degree 2 with positive (or negative)
prevalence above 50%, were extracted from the restriction
of the training dataset to the pool of 73 genes. Out of this
collection we selected a subset of 57 (37 positive and 20
negative) patterns based on the criterion that each case in
the training data satisfies at least 10 of the selected patterns.

Our support set was the collection of 30 (pairwise low-
correlated) genes that occurred in the definition of the se-
lected 57 patterns (see Table 1). Only 19 of  these 30 genes
were selected by Shipp et al. (2002) Out of the 11 genes in
our set which were not included in Shipp et al. study, 10 are
up-regulated in FLs and only one (STAT1) was up-
regulated in DLBCL. Moreover, 7 of these 11 genes
(CDKN2D, CCNG2, RBM5, STAT1, G18, LY86,
PPP2R5C) are well known to play a role in cancer (see e.g.,
http://www.infobiogen.fr/services/chromcancer/); the re-
maining 4 genes are mostly involved in cell metabolism or
transport.
Table 1. Support set of 30 robust genes sorted in decreasing order of their
signal-to-noise score. The top 16 genes are up-regulated in FL cases.
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The 19 genes in common with Shipp et al. (2002) are
known either to play an active role in cancer (e.g., BCL2A1,
DLG7, MCM7) or to be involved in cell metabolism, cell
growth, cell motility, cell adhesion etc.

Pattern data was defined with respect to the 57 selected
patterns and can be visualized in Figure 3. To illustrate how
pattern data provides structural information about the cases,
Table 2 presents some examples of patterns (combinations
of conditions) which are characteristic of large subgroups of
DLBCL and FL cases. The striking feature of Table 2 is the
fact that simple conditions on a few genes are able to gener-
ate a very clean classification of the training data and an
accurate prediction on the test data.
Table 2. Examples of characteristic patterns for DLBCL and FL

Meta-classifier construction and validation
We trained 6 individual classifiers (see Figure 1) on raw and
pattern training data using the 30 robust genes and assessed
their performance on the training data through leave-one-out
cross validation experiments. We found that the error distri-
bution of the individual classifiers on the training was un-
correlated, with only one false positive error for which 33%
of the predictors agreed. We noticed that the average per-
formance of the individual classifiers was better on the pat-
tern data (average sensitivity 100% and average specificity
96.2%) than on the raw data (average sensitivity 95.6% and
average specificity 91.0%) on the training set. Weighted
voting was the best individual classifier, and logistic regres-
sion the worst. Except for logistic regression, all the indi-
vidual classifiers performed with 100% accuracy on the
pattern data. (see Table 3)

We constructed the meta-classifier as a weighted combi-
nation of the individual classifiers. Figure 4 presents the
predictions of the individual classifiers and of the meta-
classifier on the test dataset. Notice that the predictions of
the meta-classifier are better than the predictions of any
individual classifier.
Table 3 Performance of classifiers on training and test data.

Figure 4. Error distribution of the meta-classifier and of the individual
classifiers trained on raw and pattern data.

We further perturbed the raw training data with experi-
mental noise, generated the corresponding pattern data, re-
trained the classifiers and constructed the meta-classifier on
the perturbed training dataset. The error distributions of the
individual classifiers and of the meta-classifiers had only a
small variance and are presented in Figure 5. The fact that
the meta-classifier predictions did not change is a confirma-
tion of its robustness, in particular of its stability to experi-
mental noise.

Figure 5. Error distribution of the meta-classifier and of the individual
classifiers trained on perturbed data.
Biology-based gene selection: Role of p53 regulated
genes

In a preliminary step, we identified 215 genes involved
in biologically relevant pathways for p53 (Robins et al., in
press) which were in both the WI and CU datasets. How-
ever, about 32% of these genes were not consistently regu-
lated in DLBCL vs. FL cases in both WI and CU datasets,
and only 90 genes were able to differentiate between
DLBCL and FL with a p-value below 0.01 (see Table 4). 10
of these 90 genes were selected by Genes@Work (Lepre et
al., 2004), 5 were selected by the t-test and by the signal to
noise correlation criterion (Shipp et al., 2004) (Stolovitzky,
2005), and 4 genes (MCM7, BC2A1, CDNK2D and
CCNG2) were selected in our support set of 30 genes. Four
additional genes (LDHA, PGAM1, RPL13 and HSPCB)
which were highly significant in differentiating between the
lymphoma phenotypes in the WI data but were not meas-
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ured accurately in the CU data and so were not included in
our list.

Table 4 presents the list of top 90 p53 responsive genes
which are significantly differentiating (p-value < 0.01)
DLBCL vs. FL cases  in both the WI and CU data. The
genes which are up-regulated in the FL cases are marked
with an asterisk (*).
Table 4. List of top 90 p53 responsive genes (p-value 0.01). The genes are
listed in increasing order of their p-values (from 3x10-11 to 0.005).

Our list of genes does not contain several important p53
regulated genes which are known to respond to activated
p53 in apoptosis (e.g., Pidd, Bax, Noxa, Puma, Siah, Perp,
etc), or in  inhibition of angiogenesis and metastasis (e.g.,
Pai, Bai1, Kai, etc). However, we found that several p53
genes in our list which are involved in cell cycle arrest (Cy-
clin E, Cdk2, p21, Cyclin B, Cdc2) are up-regulated in
DLBCLs’and down-regulated in FLs (p-value 0.01) in both
WI and CU datasets. The genes involved in DNA repair
(e.g., p48 and R2) are up-regulated for the DLBCL cases in
the WI data, but they do not have consistent behavior in the
CU data.

The core regulators of p53 which were identified in the
WI and CU datasets are MDM2 and E2F1, and their expres-
sion levels are consistently up-regulated (p-value 0.10) and
down-regulated (p-value 0.08) on the FL vs. DLBCL cases,
respectively.

We noticed in our data that p53 is consistently up-
regulated (p-value 0.005) in the DLBCL vs. FL cases in
both datasets, which is a confirmation of previous studies
e.g. (Sander et al., 1993). If used as a biomarker, p53 alone
can differentiate with a sensitivity of 70% and a specificity
of 50%. From p53-dependent patterns from WI data, we
identified that the best p53 responsive genes which were
able to discriminate between the atypical p53 FL and
DLBCL cases in our data were PLK1 and CDK2. Indeed, in
93% of the DLBCL cases with under-expressed p53 at least

one of the genes PLK1 or CDK2 is up-regulated. In each FL
case, at most one of the genes p53, PLK1 or CDK2 is up-
regulated and in 58% of the FL cases none of these genes is
over-expressed.

Figure 6. Histogram of % DLBCL (blue) and FL (red) cases having one up
to three genes (p53, PLK1, CDK2) over-expressed.
Figure 6 depicts the histograms of the % cases DLBCL and
FL for which 0, 1, 2, or 3 genes (p53, PLK1, CDK2) are
over-expressed. Thus, p53, PLK1 and CDK2 might consti-
tute a combinatorial biomarker for FL vs.  DLBCL.

Among other significant individual phenotype biomark-
ers identified in our list we mention MCM7, ZNF184,
ALDOA, BCL2A1, CCNB1, MDM4 (for example, MCM7
alone is able to distinguish between DLBCL and FL with
79.49% accuracy on the WI data). However, combinations
of p53 responsive genes may have even more predictive
value. In Table 5 we present some examples of combina-
tions of four p53 biomarkers which are characteristic for
large subgroups of DLBCLs and FLs.
Table 5. Examples of high prevalence p53 patterns.

Figure 7 presents the pattern data constructed on the WI
training data and its performance on the CU test data. We
found that MCM7, CCNG2, BCL2A1 and HLAE occur
with high frequency (above 25%)  in the definition of the
patterns used in pattern data; in particular, MCM7 occurred
in the definition of more than 90% of the patterns.

A weighted voting classifier trained on the patterns for
the 90 p53 genes (see Table 4) for the WI data made the
same 2 false positives on the CU test data  as our meta-
classifier, and one additional false negative (DLC14). We
consider this is an interesting result, given that the gene se-
lection in this case was imposed on the data on the basis of
biological expectation that p53 is relevant.

In a forthcoming study we intend to explore these issues
in greater  detail.

0

10

20

30

40

50

60

70

0 1 2 3

# of over-expressed 
genes in DLBCL vs. FL 

(p53, PLK1, CDK2)

%
 c

as
es

 

DLBCL

FL

P
os

N
eg

P
os

N
eg

P1 >−0.77 >−0.92 97 21 86 29
P2 >−0.77 >−0.85 97 26 57 14
N1 ≤−0.61 ≤−0.28 2 84 0 57
N2 ≤−0.74 >−0.1 2 58 0 0

Training set Test set
Gene symbol 

Pa
tte

rn

Prevalence (%) 

M
C

M
7

B
C

L2
A

1

JU
N

ZN
F1

84

CCNB1 EPRS TOPBP1 CDK7
MCM7 GSK3B PMAIP1 E2F3
BRCA1 COL6A1 ACAA2 MDM4
BCL2A1 HRAS E2F5* AMPD2
PPP2R4 SERPING1 POLA RBBP4
EIF2S2 CCNA2 HMGB2 CCNG2*
COMT CCT6A PSMB5 HARS
IARS MCM2 ACTA2 CASP6
MPI PRKDC INSR RPS6KA1
ALAS1 CAD SNRPA GRP58
MRPL3 TNFRSF1B G1P2 TP53
NCF2 ZNF184* IMPDH1 SMAD2
AARS ALDOA MAP2K2 ATP5C1
KIF11 KARS TOP2A TIMP3
CDK4 MAD2L1 CXCL1 THBS2
ATP1B1 GOT1 BAG1 MYCBP
CDC20 CDC25B TOP1 DTR
PRIM1 PSMA1 MAP4 TIMP3
CDC2 KIAA0101 FDFT1 CBS
TOP2A PCNA MTA1 CDKN2D*
CDK2 TCF3 CDKN1A RELA
MYC CYC1 HLAE*
CCNE1 UPP1 PLK1

Gene symbol



Alexe et al.

8

Figure 7. Visualization of p53-pattern data.

Meta-data analysis: extracting information from
multiple support sets

In this section we present a method to integrate the pre-
dictions of different support sets. In general, such an analy-
sis can be done using any classifier or meta-classifier.

We consider five different support sets: S1 is the support
set selected by Shipp et al. (2002)  which consists of 50 top
correlated genes for each of the phenotypes DLBCL and FL.
S2 and S3 are the support sets of Stolovitzky (2005) with
100 genes selected via a pattern-based method, and another
100 genes selected by t-test. S4 is the support set of our 30
genes discussed previously, and S5 is the support set of 90
p53 responsive genes. We use the weighted voting system
as a predictor.

If we use WI as our training dataset, we find that the er-
rors made by the weighted voting system on the 5 support
sets are highly correlated and even after a principal compo-
nent analysis, the results do not improve. Therefore, to il-
lustrate the method, we use instead the meta-data obtained
by combining the WI and CU datasets.

Table 6 presents the errors made by the weighted voting
system on the five different support sets.
Table 6. Meta-classifier on multiple support sets.

As Table 6 shows a weighted combination of predictions
from different support sets reduces the prediction error.

This example is meant to illustrate the general method
for combining noisy results from different mathematical and
statistical techniques and data from different laboratories
into a better “meta-”predictor.

4 SUMMARY AND CONCLUSIONS
In this study we proposed a pattern-based meta-
classification method for cancer detection from gene expres-
sion data and showed how it can differentiate between fol-
licular lymphoma and diffuse large B-cell lymphoma on
microarray data produced by two laboratories.

The method involves the selection of a robust subset of
genes with low sensitivity to data perturbations produced by
experimental noise or by altering the sample composition.
The selected subset of genes is used to create predictions
from several individual classifiers. The final phenotype pre-
diction is obtained by integrating the individual classifica-
tions into a robust meta-classifier. We noticed that because
the errors produced by the individual classifiers are un-
corellated, the overall performance of the meta-classifier is
superior to each individual predictor.

A novel approach used in our study was to train individ-
ual classifiers on pattern data, i.e., on a representation of the
raw data in which significant patterns characteristic for the
phenotype are viewed as synthetic variables. We showed
that this approach lead to the increase of the performance of
the individual classifiers.

Special attention was given to the role of p53 responsive
genes in differentiating between follicular and diffuse large
cell lymphomas. Although it is known that p53, PLK1 and
CDK2 are each over-expressed in DLBCL or poor progno-
sis FL cases, we found that a decision based on combination
of the expression levels of these three is a much more accu-
rate predictor of phenotype. As Figure 6 shows, if none of
them is elevated, the phenotype is FL 80% of the time,
whereas if at least one of them is up-regulated, the pheno-
type is DLBCL 70% of the time.
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