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Agenda

• Biological pathways
♦ simple example of a pathway
♦ simple example of pharmaceutical interest

• Building a mathematical model of 
biological networks

• Computational challenges
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Motivation

• Build as complete a model of as much of a cell or 
organism as possible

♦ E. coli is the archetypical prototype

• Figure out what to do with it once we get it
What if we had a perfect model?  Then what?

model
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What is a Pathway?
For the purposes of this talk:

A network of interaction biological entities represented as a 
directed graph.

So network and pathway are equivalent under this definition.

Saturated Fatty Acid Elongation
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Pharmaceutical Interest in Pathways

• Predicting culture conditions for overproduction of 
biopharmaceuticals and drug targets,  bioengineering 
of target assays, enzymes, receptors, etc.

• Understanding compound modes of action
• Identifying novel behaviors and new behaviors of 

known pathways
♦ clues to new intervention approaches
♦ selecting and prioritizing of new targets

• Identifying and validating bio-markers
♦ animal ⇔⇔⇔⇔ human correlation

• Interpreting and integrating system biology data:
♦ transcriptomics, proteomics and metabolomics  and other ‘omics’
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A Simple Pharmaceutical Pathway 
Example

• Risperidone is a psychotropic agent used for treating 
schizophrenia or psychosis

• 2.1% of patients develop extrapyramidal symptoms:
♦ involuntary movements
♦ tremors and rigidity
♦ body restlessness
♦ muscle contractions 
♦ changes in breathing and heart rate

• Hypothesis for the extrapyramidal symptoms:
Dopamine receptor antagonism
Yamada, et al, Synapse 46, 32-37 (2002)
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Mechanism of dopamine receptor inhibition

Receptor Binding: DA + D2 ⇔ DA•D2

Formation of active complex: DA•D2 + T ⇔ DA•D2•T

R + D2 ⇔R•D2
R + HT2 ⇔ R•HT2
OH + D2 ⇔ OH•D2
OH + HT2⇔ OH•HT2

R → OHRisperidone conversion
to 9-hydroxyrisperidone
Binding to D2 and 5-HT2
receptors 

DA: Dopamine
D2: Receptor
T: Transmitter
R: Risperidone
OH: 9-hydroxyR
HT2: Receptor
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clearance
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dosing
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Non-antagonized system
Risperidone dosing and clearance
Risperidone metabolism
Risperidone antagonism
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Yamada model for Risperidone PK

Oral dose of 
Risperidone

Gut

Blood

R , OH
clearance

Yamada et al, 2002, Synapse, 46:32-37

1-compartment PK model for Risperidone concentration

Input 
(from gut)

cR(t)
cOH(t)
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The ODE Model Approach

Biological model

Mathematical model
Numerical simulations

   ′x = f (x,λλλλ ) + D(t)
ODEs

d[R]gut

dt
 = - ka
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d[OH]gut
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OH  [OH]gut
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OH  [OH]

d[DAgD2]
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DAgD2  [DA][D2] - KA

DAgD2 k+
DAgD2  [DAgD2] 

d[DAgD2gT]
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 =  k+
DAgD2 gT  [DAgD2][T] - KA

DAgD2 gTk+
DAgD2 gT  [DAgD2gT]
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[DA]total =  [DA] + [DAgD2] + [DAgD2gT]
[T]total =  [T] + [DAgD2gT]
[D2]total =  [D2] + [DAgD2] + [DAgD2gT] + [RgD2] +  [OHgD2] 
[HT2]total =  [HT2] + [RgHT2] +  [OHgHT2] 
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Daily Dosing Differs from a Single Dose
Plasma Concentration

R, OH exptl data from Ishigooka et al., Clin Eval 19, 93-163 (1991) 
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Daily dosing causes differences in predicted side-effects

Multiple dosing results in increased ESRS shift, increasing with daily dose 
administered
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Receptor Occupancy as a function of cumulative dosing
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Real Pathways are More Complex
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Mathematical Complexity

• Consider a small, relatively unsophisticated bacterium: 
Escherichia coli

♦ ≈ 2000 genes
♦ 2500 proteins 
♦ at least several hundred small molecules
♦ 3 interactions per entity X 5000 entities
♦ 3 parameters per equation
♦ ≈ 15 000 equations with 45 000 parameters!

• Now add on spatial change - 15 000 PDEs!

 

′ X = F(X;λ ) continuous,discrete, stochastic
0 = G(X;λ ) analytic constraints
0 = H(X;λ) non − analytic constraints
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The Modeling Process

Building the 
model

Getting it right

Getting value 
out of it

1A Building the model  -- forward problem
♦ Static
♦ Kinetic

− Rate law determination
− Parameter determination

1B Reconstructing the model -- inverse problem
2 Validating the model

♦ Experimental data comparison
♦ Plausible biology from analytic analysis/simulation
♦ Examining and assertions testing results

· 3 Simulation 
♦ Hypothesis testing
♦ Hypothesis generation
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• Only connectivity (topology) of the interactions
• Visualised as connection or interaction graph
• Used for initial model verification and testing 
• Types

♦ Metabolic
♦ Gene Regulation
♦ Gene-Product, and Protein-Protein Interactions

Static Model
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Kinetic Model

• First phase: Kinetic models - time dependency incorporated
♦ Kinetic behaviour (rate laws) added to static model
♦ May or may not obey mass action kinetics

• Second phase: Kinetic constants determined from experimental data
• Third phase Mathematical model - equations generated

♦ Time variation of all concentrations and fluxes can be simulated
♦ Model analyses possible: sensitivity, linear stability theory, asymptotic 

analysis, etc.

Receptor
Inhibitor

Ligand

Static model Numerical Simulation

Kinetic Model
R + L ⇔ R ⋅ L
R + I ⇔ R ⋅ I

R[ ]′ = −k1 R[ ] L[ ] + k2 RL[ ] − k3 R[ ] I[ ] + k4 RI[ ]
RL[ ]′ = k1 R[ ] L[ ] −k2 RL[ ]
RI[ ]′ = k3 R[ ] I[ ] − k4 RI[ ]
L[ ]′ = −k1 R[ ] L[ ] + k2 RL[ ]
I[ ]′ = −k3 R[ ] I[ ] + k4 RI[ ]
L0 = L[ ] + RL[ ]
I0 = I[ ] + RI[ ]
R0 = R[ ] + RL[ ] + RI[ ]

Mathematical Model
Example:  Inhibition of a Ligand-Receptor Complex Formation
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• The resulting system of equations:

• Very large dimensionalities in:
♦ the number of species, X
♦ the number of interactions
♦ the number of parameters, λ
♦ the number of constraint equations

• Uncertainty, error, ambiguity, approximations, etc
Fatty Acid ACP Biosynthesis

The Resulting System
Very Large, Flawed, and Damned Useful!

′ x = F(x,l )
0 = G(x, l ) algebraic relationships
0 = H(x,l ) analytic constraints
0 = I(x,l ) non - analytic constraints
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As the pathways grow large, the 
nature of the problems change.

• Building the model
♦ knowledge management
♦ knowledge updating
♦ incomplete knowledge 
♦ Automation
♦ Updating the model - versioning

• Analysis of the model
♦ Too much for a human to peruse
♦ Theory gaps
♦ Automation

• Analysis of the simulation results
♦ Too much for a human to peruse
♦ New techniques
♦ Automation

Phytanic Acid Peroxisomal Oxidation
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Automation

• No human intervention whatsoever
♦ None, nada, zip!
♦ If it takes a human to setup, run or analyze - its not automated

• Robust algorithms
♦ Graceful failure
♦ Knowledge of domain of applicability
♦ Pathological data happens very often - Murphy is omnipresent

• Not as easy as it main seem at first

• Many existing algorithms are not automatable in 
current usage
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The Model Understanding Roadmap
Biology

Understanding

Analyzing Results

Static model

Kinetic model

Dynamics model

graph theory

analytic theory

analytic theory

Automate
Exhaustive Analysis

Analysis

New experiments
Find model errors

“Gaps”

Computational Opportunities

Simulations
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Theory Gap for Large Systems

• Large but not infinite dimensionality is the problem
• Analytical and numerical determination:

♦ Finding ‘true’ null states - there may be a great number
♦ Finding linear null states- there may be a great number
♦ Asymptotic behaviors
♦ Controllability, predictability, integrability, ...
♦ Steady state, non-linear behaviors
♦ Bifurcation analyses
♦ Perturbed behaviors  - drug dosing, environment, mutants, etc.
♦ ...

• How to calculate in a computationally efficient manner
• Can’t afford to calculate everything
• Need to a priori determine which are to be done
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Continuousness / Stochasticity/ 
Discreteness / Ambiguity

• Continuous approximation breaks down
♦ Need to use master equations or some other form of involving stochasticity
♦ May need to dynamically switch as system evolves

• Some processes are truly discrete
♦ Consider cellular automatons, Petri Nets, discrete events, etc.

• Some parts of the model are only known qualitatively
♦ Qualitative simulation techniques. 

• Uncertainty and variation in the system
♦ Initial conditions
♦ Rate constants and rate laws
♦ Population variations
♦ Interval or fuzzy integration

• Multiscale - time, length, concentration, etc.
• Constraints - DAEs

The challenge: one hybrid integrator
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Parameter challenges

• The larger the model:
♦ the more parameters compared to the experiments

• Static guessing - filling in the gaps
♦ guessing gene function by analogy
♦ looking for missing reactions - i.e. enzyme

• Kinetic guessing - integrating kinetic islands - guessing 
plausible rate laws and parameters

♦ Analogy approaches, similarity across species(‘multiple alignment’)
♦ From flux analysis?

• Do we need to know all parameters? Accuracy?

PyrD: DHO + Q = Or + QH2 
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Parameter challenges
• Determine parameters of rate laws from an 

optimization to fit experimental kinetics data
♦ noisy and incomplete data
♦ ill-posed, possibly severely

• How do we scale this up as the model gets bigger?
♦ One huge model fitting?  - Can we even afford this approach?
♦ One sub-systems at a time fitting?
♦ Hierarchical fitting?  - Stitching together pieces individually 

calibrated does not a priori mean the model is calibrated

• What’s the best way to optimize?
♦ Is L2 the best objective function?
♦ Constraints - incorporating and coming up with better ones

• How do we know how well we’ve done?

UTP (mM)
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Inverse Problems and Biological 
Plausibility

• What makes a model more biological than another?
♦ thermodynamic constraints
♦ numerical integrity - semi-definite solutions
♦ asymptotic behaviors
♦ stability properties
♦ information  theory constraints
♦ physico-chemical constraints
♦ environmental constraints
♦ evolution constraints
♦ flux distributions
♦ mass and energy balance

• Parameter determination needs also
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• Visualization in a large graph with too much detail
♦ Analysis of results - what’s interesting?
♦ Drill down, hyperbolic viewers, database driven for large models
♦ Visualizing fluxes in a meaningful way

• How do you visualize huge networks?

• Tools needed for panning, zooming, drill-down, scalable, 
incrementally updatable from a database, etc.

• Pathway editors for input
• Animation  - visualizing temporal fluxes

Visualization Challenges 

Experiments By T. Munzer, 
UBC, for visualizing Web 
connections
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Discovering “New” Biology
Assumption:  if we didn’t know anything any biology per se, 

could we rediscover it from the model?

Caveat: if we can find “old” biology, then presumably we 
could find “new” biology
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Discovering “New” Biology

• Finding new cooperative or emergent phenomena:
♦ pathways and “distinguishable” sub-systems
♦ cycles and “clocks”
♦ oscillatory systems
♦ regulatory systems
♦ “states” or “modes” of the system

• The resulting biology acts as plausible checks on the model

• Some ideas:
♦ Persistent - pathway behavior is or is not independent of initial conditions
♦ Conditional - pathway is active only for certain  initial conditions - the nub of 

course is how to identify this
♦ Model ⇒⇒⇒⇒ graph ⇒⇒⇒⇒ matrix ⇒⇒⇒⇒ permutation matrix reordering 

⇒⇒⇒⇒ structure  ⇒⇒⇒⇒ biology?
♦ Pattern recognition approaches.  Model comparison?   Different 

organisms/species?
♦ Some type of flux or domain decomposition?
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How do you know they’re right?
Assertions checking

• Provide a means to formally represent biology that went into 
the model

♦ aspects of computer language parsing, AI-knowledge representation, inference

• Purposes
♦ as a formal computer language for incorporation into software
♦ for automation of the biology knowledge comparisons against data
♦ allow checking model accuracy
♦ used as criteria for optimisation - e.g. parameter determination of rate laws

• Consequences of the assertions
♦ require certain behaviours to be present in the model
♦ expect, but not require some behaviours
♦ search for speculative behaviours
♦ provide diagnostic tools for examining the quality of the data
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Assertions - Bacterial Aerobicity Example
Different genes are expressed under different environments conditions - temperature, media 
composition,  pH, and oxygen.  Regulatory systems control expression, but assertions can be 
used to ensure the basic regulatory processes of the model are accurate.

# Find the time when the system changes from anaerobic to aerobic behaviour and then
# make sure that the key regulations appear to be happening

Regulation_time = time > change.time('ANAEROBIC', 'AEROBIC')
AND 'ArcA-P' >> 'ArcA' #positive regulation (activation) of ArcA by ArcA-P
OR 'FNR-ox' >> 'FNR-red’ #FNR repressed aerobically 

#Then, if regulation appears to be happening, for each protein behaving aerobically:

ForEach aerobic_protein=aerobic(*) #look at each aerobic protein, one at a time
{
b = flux.value(aerobic_protein); #get the flux of each aerobic protein concentration
c = gene.name(aerobic_protein); #time course of expression of the parent gene
if (regulation_time AND (b > 0))
{
Success Action: #if the assertion for this protein is true

Message ("'AerobicityState' confirmed by the expression profile of gene %s",c)
Failure Action: #if the assertion for this protein is false

Message ("Gene %s does not have the expected 'AerobicityState' expression pattern",c)
Status = WARNING  #indicate a non-fatal problem

}
}
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What Else Is There?
Much, Much More !

Only limited by our imaginations
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