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Agenda

* Biological pathways
+ simple example of a pathway
+ simple example of pharmaceutical interest

 Building a mathematical model of
biological networks

« Computational challenges
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Motivation

* Build as complete a model of as much of a cell or
organism as possible
¢+ E. coli is the archetypical prototype

* Figure out what to do with it once we get it
What if we had a perfect model? Then what?
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What is a Pathway?

For the purposes of this talk:

A network of interaction biological entities represented as a
directed graph.

So network and pathway are equivalent under this definition.

Saturated Fatty Acid Elongation
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Pharmaceutical Interest in Pathways

* Predicting culture conditions for overproduction of
biopharmaceuticals and drug targets, bioengineering
of target assays, enzymes, receptors, etc.

e Understanding compound modes of action

* Identifying novel behaviors and new behaviors of
known pathways

¢ clues to new intervention approaches

¢ selecting and prioritizing of new targets

* Identifying and validating bio-markers

¢ animal < human correlation

* Interpreting and integrating system biology data:

¢ transcriptomics, proteomics and metabolomics and other ‘omics’
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A Simple Pharmaceutical Pathway
Example

* Risperidone is a psychotropic agent used for treating
schizophrenia or psychosis

« 2.1% of patients develop extrapyramidal symptoms:
involuntary movements

tremors and rigidity

body restlessness

muscle contractions

changes in breathing and heart rate

* Hypothesis for the extrapyramidal symptoms:

Dopamine receptor antagonism
Yamada, et al, Synapse 46, 32-37 (2002)
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Mechanism of dopamine receptor inhibition

dosing

g @b

clearance Non-antagonized system
—JP Risperidone dosing and clearance
""" P> Missing from Yamada Model -~ Risperidone metabolism
------ P> Incorrectly specified in Yamada ——Jp Risperidone antagonism
Receptor Binding: DA + D, « DA-D,
Formation of active complex: DAsD, + T < DAeD, T
Risperidone conversion R - OH
to 9-hydroxyrisperidone
. .y YHSP R+D, «RD,

Binding to D2 and 5-HT2 R + HT2 - Re HT2
receptors OH + D2 - OH'D2

OH + HT,~ OHeHT,
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DA: Dopamine
D,: Receptor
T. Transmitter
R: Risperidone
OH: 9-hydroxyR
HT,: Receptor



Yamada model for Risperidone PK
Yamada et al, 2002, Synapse, 46:32-37

1-compartment PK model for Risperidone concentration

Oral dose of /pf Input_ Kap | cr(D) | Keir

S PR —r——» Clearance
Risperidone (fromgut)  Kaon | con(®) | Keion

c(t) = ACo.K, ky) [exp(-k,t) - exp(-k,b]

)
o
o
o
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O OH-1mg dose
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Y am - ® R-2mgdose
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0 [ | ~ R - 2mg dose
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The ODE Model Approach

gut
dn:t] - R
gut
d[od:'] - k:}H [OH]gm
= KRR

d05|.ng d[OH] _ Ko [OH]™ - K [OH]
. dt a el

d[DﬁthZ] = k% [DAI[D,] - K"k [DAQD, ]
d[DAD,dT] _

ﬁ T = KT DA, I - KT DA, 7]
dRdD,]
———2 = k(® B,[RID,]- Ki¥*k( ™ [RD,]

dt

% = K%' B [OH][D,] - K'®:k™'®: [OHED,]
clearance d[Rg:Tz] = k7™ BIRIHT,I - KR¥ k™ [RHT,]
d[o'l?ﬂz] = kM g [OH][HT,] - K"k [OHEHT,]
: : [DA],,, = [DA] +[DAPD,] + [DAD,gT]
Biological model M. = 7]+ DA,

[D,]a = [D,] +[DAD,] + [DAPD,dT] + [RP,] + [OHPD, ]
HT, ) = [HT,] +[RHT,] + [OHEHT,]

Mathematical model
Numerical simulations

)4

x' =f(x,A) + D(t)
ODEs

@cmnhmu -00 Scientific Computing and Mathematical Modeling + 00



Daily Dosing Differs from a Single Dose
Plasma Concentration

1o
?ES) Average OH conc.
-
1
8 Average R conc.
3
© mmmm OH simulation
E 0.1 = R simulation
% [ ] OH - single dose
E O R - single dose
0.01 = dlaily dose
o) 24 48 72 96 120
time (h)

R, OH exptl data from Ishigooka et al., Clin Eval 19, 93-163 (1991)
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Effect of multiple dosing on receptor occupancy

100
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301
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dose (mg/day)
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Dally dosing causes differences in predicted side-effects

= Single Dose
@ Experimental Data - single dose 1 25
== Multiple dose (daily, 5 days)

N
4

N
N

= 1
= =
n (7))}
Nis {10 15
a4 h
n 0 .
L 1 jw | W Single dose
W= 5 daily doses
0.5} 0.5
% 20 40 60 80 100 91 10

1 10
D, receptor occupancy dose (mg/day)

Multiple dosing results in increased ESRS shift, increasing with daily dose
administered
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Receptor Occupancy as a function of cumulative dosing

100————————— 100
90§
80f | 80 i R + OH
70}
9 | 0
g 60f - Cumulative 60 o
3 sof _ changes in §
o occupancy Only R 8
20
0 O
0 24 48 72 96 120 0 24 48 72 96 120
time(h) time (h)
T First 24 hours identical ‘
between single and multiple

doses
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Real Pathways are More Complex
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Mathematical Complexity

e Consider a small, relatively unsophisticated bacterium:
Escherichia coli

¢ =2000 genes

¢+ 2500 proteins

¢ at least several hundred small molecules

¢+ 3 interactions per entity X 5000 entities

¢+ 3 parameters per equation

¢ = 15000 equations with 45 000 parameters!
X" = F(X;A) continuous,discrete, stochastic
0 = G(X;A) analytic constraints
0 = H(X;A) non —analytic constraints

* Now add on spatial change - 15 000 PDEs!
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The Modeling Process

1A Building the model -- forward problem
¢+ Static

¢+ Kinetic
— Rate law determination
—  Parameter determination

1B Reconstructing the model -- inverse problem
2 Validating the model

¢+ Experimental data comparison
¢+ Plausible biology from analytic analysis/simulation
¢+ Examining and assertions testing results

3 Simulation
¢+ Hypothesis testing
¢+ Hypothesis generation

E*,-- GlasoSmithkine =00 Scientific Computing and Mathematical Modeling

Building the
model

Getting it right

Getting value
out of it
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Static Model

*  Only connectivity (topology) of the interactions /
* Visualised as connection or interaction graph 0 0
e Used for initial model verification and testing
* Types

¢  Metabolic

¢  Gene Regulation

(@)
0 . DNA
© RNA
® Protein
0 O Metabolites

¢  Gene-Product, and Protein-Protein Interactions *
\
Metabolic network 4« Gene-Product interactions neévork Genetic network

D-glucose
R1 <>HPI'-> M\

R RP
\
2.7.1.69 - P
Y > HPFr R - R-Sh-G-S-rD 'y r
D-gllICOSE 6-phosphate Ai R-G i‘
52 S

-Sh:
43 R-G-S-r \

5319 vy RSh-G-S-r R_GP rT I Ny /
R D-frucﬁo e 6-phosphate \i if OPERON
19 R-GAP
AT R-G-S
2.7.1.11 R- -S-rT
AD v
D-fructose 1,6-bisphosphate
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Kinetic Model

* First phase:

e Third phase

* Second phase:

Kinetic models - time dependency incorporated

¢ Kinetic behaviour (rate laws) added to static model

¢+ May or may not obey mass action kinetics

Kinetic constants determined from experimental data

Mathematical model - equations generated
¢ Time variation of all concentrations and fluxes can be simulated

¢ Model analyses possible: sensitivity, linear stability theory, asymptotic
analysis, etc.

Example: Inhibition of a Ligand-Receptor Complex Formation

Static model

Receptor
Inhibitor

_I_

Kinetic Model
R+L « RIL
R+ <« Rl

Mathematical Model Numerical Simulation

[RI = —[RI[L] + k[RU - kRN + ke [RI] | _

[RL = K[RI[L] -k[RL] e 7/

[RI] = KJRI[1]-ky[RI]

LI = lRI[L]+ kolRL] N,

= «[F::][mmm] N

Ly = L(+ RL] T

IO = I + RI] -E‘) ’ 0 2,000 4,000 6,000 8,000 10,000
Ry, = [R]+[RL]+[RI] = | " Time | |




The Resulting System
Very Large, Flawed, and Damned Usetul!

* The resulting system of equations:
X"=F(x,1I)
0=G(xl) algebraic relationships
0=H(x,1I) analytic constraints
=1(x,1) non - analytic constraints

* Very large dimensionalities iIn: ™
the number of species, X

the number of interactions

the number of parameters, A

the number of constraint equations

* & o o

Fatty Acid ACP Biosynthesis

* Uncertainty, error, ambiguity, approximations, etc
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* Building the model

* Analysis of the model

e Analysis of the simulation results

%)Ghmnsmﬂhmnn

As the pathways grow large, the
nature of the problems change.

|
¢+ knowledge management
¢+ knowledge updating
¢+ incomplete knowledge [

. Z-mmnglutaraia
¢+ Automation
II-.II"E 1.1811.14 l"&
¢+ Updating the model - versioning SuEra i
£35)-7-hydroeyp hytanoy-Cod, [3F)-2- hycromyphytancyi-Cod —a

] ']

4.1

¢ Too much for a human to peruse

¢+ Theory gaps
¢ Automation

¢ Too much for a human to peruse

¢ New techniques
¢ Automation

-00 Scientific Computing and Mathematical Modeling + 00

20



=h
ClaxwoSmithEkng

Automation

No human intervention whatsoever
¢+ None, nada, zip!
¢ If it takes a human to setup, run or analyze - its not automated

Robust algorithms

¢ Graceful failure
¢+ Knowledge of domain of applicability
+ Pathological data happens very often - Murphy is omnipresent

Not as easy as it main seem at first

Many existing algorithms are not automatable in
current usage
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Theory Gap for Large Systems

e Large but not infinite dimensionality is the problem

e Analytical and numerical determination:
Finding ‘true’ null states - there may be a great number
Finding linear null states- there may be a great number
Asymptotic behaviors

Controllability, predictability, integrability, ...

Steady state, non-linear behaviors

Bifurcation analyses

Perturbed behaviors - drug dosing, environment, mutants, etc.

® & & O O o o o

* How to calculate in a computationally efficient manner
 Can’t afford to calculate everything
* Need to a priori determine which are to be done
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Continuousness / Stochasticity/
Discreteness / Ambiguity

Continuous approximation breaks down

¢+ Need to use master equations or some other form of involving stochasticity
¢+ May need to dynamically switch as system evolves

Some processes are truly discrete
¢ Consider cellular automatons, Petri Nets, discrete events, etc.

Some parts of the model are only known qualitatively
¢ Qualitative simulation techniques.

Uncertainty and variation in the system
¢ Initial conditions
¢+ Rate constants and rate laws
¢+ Population variations
¢ Interval or fuzzy integration

Multiscale - time, length, concentration, etc.
Constraints - DAEs

The challenge: one hybrid integrator

Chv"cumnmnn =00 Scientific Computing and Mathematical Modeling + 00
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Parameter challenges

The larger the model:

¢+ the more parameters compared to the experiments

PyrD: DHO + Q = Or + QH,

Static guessing - filling in the gaps
¢+ guessing gene function by analogy
¢ looking for missing reactions - i.e. enzyme

Kinetic guessing - integrating Kinetic islands - guessing
plausible rate laws and parameters

¢+ Analogy approaches, similarity across species(‘multiple alignment’)
¢ From flux analysis?

Do we need to know all parameters? Accuracy?

G‘.r GlasoSmithkine =00 Scientific Computing and Mathematical Modeling + 00
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Parameter challenges

* Determine parameters of rate laws from an
optimization to fit experimental Kinetics data

¢+ noisy and incomplete data |
¢+ ill-posed, possibly severely L

.

UMP =0.1mM

 How do we scale this up as the model gets bigger?

¢ One huge model fitting? - Can we even afford this approach?

¢ One sub-systems at a time fitting?

¢+ Hierarchical fitting? - Stitching together pieces individually
calibrated does not a priori mean the model is calibrated

* What’s the best way to optimize?
¢ Is L, the best objective function?
¢+ Constraints - incorporating and coming up with better ones

e How do we know how well we’ve done?
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Inverse Problems and Biological
Plausibility

 What makes a model more biological than another?

flux distributions G o TG

% -Iflts i ok

¢+ thermodynamic constraints

¢+ numerical integrity - semi-definite solutions

¢+ asymptotic behaviors |

¢ stability properties ?_ =

¢ information theory constraints | ;':fi:—'lm =l
¢+ physico-chemical constraints | \1;,_,_{%_‘; } (' _"’ s
¢ environmental constraints Beaiah ﬁm';ﬂ e

¢ evolution constraints /1, Vit A%y (o
. e A i,p-iwwmswm.g_a ) -__.
¢

mass and energy balance

* Parameter determination needs also

HoOME oF THID MEMNS A THIMG.
WIHAT e wou THIMK ©F THAT 7 BT
| :
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Visualization Challenges

Visualization in a large graph with too much detail
¢ Analysis of results - what’s interesting?
¢ Drill down, hyperbolic viewers, database driven for large models
¢ Visualizing fluxes in a meaningful way

How do you visualize huge networks?

2 @i, BB

I UBC, for visualizing Web
' f connections

Tools needed for panning, zooming, drill-down, scalable,
incrementally updatable from a database, etc.

Pathway editors for input
Animation - visualizing temporal fluxes
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Discovering “New” Biology

Assumption: if we didn’t know anything any biology per se,
could we rediscover it from the model?

surface remnants

Y

Vap
(LRP&HSPG) L DLR
© > v 5 HL V6 . putative scavenger
li VLDL 2 IDL v LDL )pathway
iver | — LPL e
# Vi
(overflow) CETP/HL o Vi
putative
ptor (cubulin) nt HDL
4 Vs
FAY]
ive LIDL <8 HDL Véa HDL _LCAT DISC
putative receptor €-----%----] < IR
SRBI 2| LCAT (LPL) 3] Vs . A
Vis!
CETP v
(overflow)
Via enhanced by LPL
—1 5 : Vv
v LPL Via ! HL 4a
intestine Chyl C-remnapts —Y—>V8 LRP ﬁv_>
VB ; Vlz@ HL downregulation of LDLR
pulativevscaven ger Y LDLR and VLDL synthesis R

pathway surface remnants

Caveat: if we can find “old” biology, then presumably we
could find “new” biology
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Discovering “New” Biology

* Finding new cooperative or emergent phenomena:
pathways and “distinguishable” sub-systems

cycles and “clocks”

oscillatory systems

regulatory systems

“states” or “modes” of the system

®* & & o o

* The resulting biology acts as plausible checks on the model

* Some ideas:

¢ Persistent - pathway behavior is or is not independent of initial conditions

¢+ Conditional - pathway is active only for certain initial conditions - the nub of
course is how to identify this

¢ Model = graph = matrix = permutation matrix reordering

—> structure = biology?

¢+ Pattern recognition approaches. Model comparison? Different
organisms/species?

¢+ Some type of flux or domain decomposition?
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How do you know they’re right?
Assertions checking

* Provide a means to formally represent biology that went into
the model

¢

aspects of computer language parsing, Al-knowledge representation, inference

* Purposes

¢
¢
¢
¢

as a formal computer language for incorporation into software

for automation of the biology knowledge comparisons against data

allow checking model accuracy

used as criteria for optimisation - e.g. parameter determination of rate laws

* Consequences of the assertions

¢
¢
¢
¢

ask
-"' ClaxwoSmithEkng

require certain behaviours to be present in the model

expect, but not require some behaviours

search for speculative behaviours

provide diagnostic tools for examining the quality of the data

-00 Scientific Computing and Mathematical Modeling + 00
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Assertions - Bacterial Aerobicity Example

Different genes are expressed under different environments conditions - temperature, media
composition, pH, and oxygen. Regulatory systems control expression, but assertions can be
used to ensure the basic regulatory processes of the model are accurate.

# Find the time when the system changes from anaerobic to aerobic behaviour and then
# make sure that the key regulations appear to be happening

Regulation_time = time > change.time('ANAEROBIC', 'AEROBIC')
AND 'ArcA-P'>>"'ArcA' #positive regulation (activation) of ArcA by ArcA-P
OR 'FNR-ox' >> '"FNR-red’ #FNR repressed aerobically

#Then, if regulation appears to be happening, for each protein behaving aerobically:

ForEach aerobic_protein=aerobic(*) #look at each aerobic protein, one at a time
{
b = flux.value(aerobic_protein); #get the flux of each aerobic protein concentration
¢ = gene.name(aerobic_protein); #time course of expression of the parent gene
if (regulation_time AND (b > 0))
{
Success Action: #if the assertion for this protein is true
Message ('''AerobicityState' confirmed by the expression profile of gene %s",c)
Failure Action: #if the assertion for this protein is false
Message (""Gene %s does not have the expected 'AerobicityState' expression pattern',c)
Status = WARNING #indicate a non-fatal problem
3
}
GlasaSm ithKine =00 Scientific Computing and Mathematical Modeling + 00
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The Pathway Modeling Factory Concept

STATIC DYNAMIC
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What Else Is There?
Much, Much More !

Only limited by our imaginations

0 EI;J_-

“Come on, people. We need a

creative epiphany right now.
Who has one?”
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