Scientific Discovery through Advanced Computing in Plasma Science

PICASso
(Program in Integrative Information, Computer and Application Sciences)

Successes of Computational Science Seminar

September 27, 2004

William M. Tang Princeton University

ADVANCED COMPUTING IS AN INCREASINGLY POWERFUL TOOL FOR SCIENTIFIC DISCOVERY

- Advanced computation in tandem with theory and experiment is powerful new tool for scientific understanding and innovation in research
- Plasma Science is effectively utilizing the exciting advances in Information Technology and Scientific Computing
 - Reference: Advanced Computations in Plasma Physics
 Physics of Plasmas 9 (May, 2002)
- Accelerates progress toward reliable predictions of complex properties of high temperature plasmas
 - Acquisition of scientific understanding needed for predictive models <u>superior to empirical scaling</u>

Advanced Scientific Codes --- a measure of the state of understanding of natural and engineered systems

Advanced Computing

is Critical to Discovery in Many Scientific Disciplines

Global

Systems

Fusion Energy

Health Effects, Bioremediation

PLASMAS - THE 4TH STATE OF MATTER

Copyright 1996 Contemporary Physics Education Project. Images courtesy of DOE Fusion Labs, NASA, and Steve Albers.

Spatial & Temporal Scales Present Major Challenge to Theory & Simulations

 Huge range of spatial and temporal scales

 Overlap in scales often means strong (simplified) ordering not possible

Plasma Physics Challenges

NRC Plasma Science Committee

Macroscopic Stability

Fusion: What limits the pressure in plasmas?

Space Physics: Geomagnetic substorms

Wave-particle Interactions

Fusion: How do hot particles and plasma waves

interact in the nonlinear regime?

Solar Physics: Solar coronal heating

Microturbulence & Transport

Fusion: What causes plasma transport?

Astrophysics: Accretion disks (black holes)

Plasma-material Interactions

Fusion: How can high-temperature plasma

and material surfaces co-exist?

Material Science: Materials processing

MHD Simulation of Internal Reconnection Event

Hot Inner Region Interchanges with Colder Outer Region via Magnetic Reconnection

M3D Simulation by: W. Park et. al

Visualization by: S. Klasky & W. Park

Fusion Codes Take Advantage of Latest Computational Advances

PROBLEM DESCRIPTION: Particle-in-cell Simulation of Plasma Turbulence

- Key Issue: confinement of high temperature plasmas by magnetic fields in 3D geometry
- Pressure gradients drives instabilities producing loss of confinement due to turbulent transport

- Plasma turbulence is *nonlinear*, *chaotic*, *5-D problem*
- Particle-in-cell simulation
- →distribution function integrate along characteristics
 - with particles advanced in parallel
- →interaction self-consistent EM fields

Particle Simulation of the Boltzmann-Maxwell System

• The Boltzmann equation (Nonlinear PDE in Lagrangian coordinates):

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \mathbf{v} \cdot \frac{\partial F}{\partial \mathbf{x}} + \left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right) \cdot \frac{\partial F}{\partial \mathbf{v}} = C(F).$$

• "Particle Pushing" (Linear ODE's)

$$\frac{d\mathbf{x}_{j}}{dt} = \mathbf{v}_{j}, \qquad \frac{d\mathbf{v}_{j}}{dt} = \frac{q}{m} \left(\mathbf{E} + \frac{1}{c} \mathbf{v}_{j} \times \mathbf{B} \right)_{\mathbf{x}_{j}}.$$

• Klimontovich-Dupree representation,

$$F = \sum_{j=1}^{N} \delta(\mathbf{x} - \mathbf{x}_{j}) \delta(\mathbf{v} - \mathbf{v}_{j}),$$

• Poisson's Equation: (Linear PDE in Eulerian coordinates (lab frame)

$$\nabla^2 \phi = -4\pi \sum_{\alpha} q_{\alpha} \sum_{j=1}^{N} \delta(\mathbf{x} - \mathbf{x}_{\alpha j})$$

• Ampere's Law and Faraday's Law [Linear PDE's in Eulerian coordinates (lab frame)]

3-D TURBULENCE SIMULATIONS ON POWERFUL NEW MPP COMPUTERS

- Reduction of turbulence needed to keep fusion plasmas well confined
- Advanced simulations utilize full power of modern MPP's
- SCIENCE Vol. 281, 1835 (1998) {Presidential Early Career Award to Z. Lin (Nov. 2000)}
- Highly-dimensional data requires advanced visualization: PU/PPPL Display Wall collaboration

Turbulence Decorrelation by Self-generated E x B Flow in Gyrokinetic Simulation

3D Particle Simulation of Plasma Turbulence: Massively Parallel Computation

Turbulent Transport Reduction by Zonal Flows

Princeton Plasma Physics Laboratory
Princeton University

Simulation of Turbulence in future Ignition-Scale Experiments Require State-of-the-Art Computers

- Recent Microturbulence Simulations for range including:
 - $a/\rho_i = 400$ (largest present lab experiment) through
 - $a/\rho_i = 1000$ (ignition experiment)
- Enabled by access to powerful supercomputers (e.g., 5TF IBM-SP @ NERSC)
- PIC simulations: 1 billion particles, 125M spatial grid points; 7000 time steps
- Large-scale simulations indicate transition to more favorable scaling of plasma confinement

3D Particle-in-Cell Simulations Scalable on Massively Parallel Computers

Y-axis: number of particles (in millions) which move one step in one second

Computational Challenges

- Fast and Efficient Elliptic (Poisson) Solvers:
 - Required for both Particle-in-Cell (PIC) kinetic codes and Magneto-hydrodynamics (MHD) fluid codes.
 - PIC applications involve extremely large sparse matrix system (10⁸ X 10⁸ grid points)
 - Deal with non-Cartesian irregular grid in toroidal geometry.
 - Need efficient pre-conditioner to speed-up the solve (e.g., prearranging matrix)
 - Portable parallel solver
- Optimization of Parallel Algorithms:
 - Improve scalability and efficient utilization of increasing numbers of processors
 - Properly distribute particles over simulation domain.
 - Improve load balancing

Computational Challenges

• "Gather-Scatter" operation in PIC codes

- The particles are randomly distributed in the simulation volume (grid).
- Particle charge deposition on the grid leads to indirect addressing in memory (see below).
 - need to arrange data to enable "direct-addressing" (at least for some time period)
 - also a problem in computer games
- Not cache friendly.
- Need to be tuned differently depending on the architecture.

Data Management and Visualization Challenges

Data Management & Visualization Challenges

- Data-management challenge in some scientific areas already exceeding compute-power challenge in needed resources
- Automated Workflow Environment:
 - Tera- to Peta-bytes of data to be moved automatically from simulations to analysis codes
 - Feature Detection/Tracking to harvest scientific information -impossible to understand without new data mining techniques
- Parallel I/O Development and Support define portable, efficient standard with interoperability between parallel and non-parallel I/O
 - Massively parallel I/O systems needed since storage capacity growing faster than bandwidth and access times
- Real-time visualization to enable "steering" of long-running simulations

"Capability & Capacity" Computing in Plasma Science

- <u>Pilot Topical Computing Facility for Fusion Energy</u>
 <u>Sciences</u> (involves PPPL/PU collaboration via PICSciE)
 - Explores optimal architecture for FES computational applications
 - dedicated clusters & grid computing for "capacity" applications (includes new SGI Altix)
 - "capability" applications on "leadership class" computers: <u>Earth Simulator Supercomputer</u> in Japan and the new <u>Cray X1 Supercomputer</u> at ORNL
- Positioning for participation in exciting new US interagency (DOE, NSF, DOD, ...) initiative for developing interdisciplinary computational research program
 - HECRTF's <u>Federal Plan for High End Computing</u> (May 10, '04) ("High End Computing Revitalization Task Force" Report to Congress)
 - Recognition of common hardware, software, data management
 a networking challenges

Relation to other scientific disciplines

• Space Physics

- Astrophysics (e.g., Magnetorotational Instabilities as driver for momentum transport in accretion disks)
- Solar physics (e.g., Sigmoids [from force-free magnetic fields] as precursors to solar eruptions)
- Magnetospheric Physics (e.g., Kinetic Ballooning Instabilities as driver for substorms)

Collective dynamics impacting advanced accelerator design
 (e.g., electron-proton two-stream instability as driver for excess electron population in proton storage ring experiments)

• Computational Physics -- many issues common to many areas

- advances in solving partial differential equations in complex geometry,
- adaptive mesh refinement in 3D
- multiple other examples

Driving Applications

Science/Engineering

Princeton University's

PICASso Program

Program in Integrative Computer and Application Sciences

The Computational Pipeline

Scalable Services

Integrative Research and Training in Entire Computational Pipeline

CONCLUSIONS

- Advanced Computations is a *natural bridge* for fruitful collaborations between Plasma Science and other scientific disciplines (*Computer Science, Applied Math, other Physics Applications areas*).
- Advanced Computations is accelerating progress toward gaining the physics knowledge needed to harness fusion energy by enabling efficient interpretation of present experiments and planning future devices.
- Plasma Science expects to participate in the exciting advances in Information Technology and Scientific Computing to address new scientific challenges.
- Computational Plasma Science is helping to attract, educate, & retain *young talent* essential for the future of this field.