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The Immune System

• Protects the body from damaging pathogens
– viruses, bacteria, parasites

• Provides basis for vaccines (e.g., flu)
• Implicated in disease:

– Autoimmune (Lupus, MS, Rheumatoid Arthritis)
– Sepsis, Cancer

Relatively new science, began with Jenner in 1796

Understanding will lead to better diagnostics and therapiesUnderstanding will lead to better diagnostics and therapies



Why Model the Immune System?

• Immune response involves the collective and 
coordinated response of ≈1012 cells and molecules

• Distributed throughout body
– blood, lymph nodes, spleen, thymus, bone marrow, etc. 

• Interactions involve feedback loops and non-linear 
dynamics

• Experiments often require artificial constructs
• High variability observed in experimental results

Somatic Hypermutation: important component of responseSomatic Hypermutation: important component of response

Experiments provide only a static window onto the real dynamics of immunity 



B cells Antibody Receptors “Recognize” Antigens
1. B cell’s must recognize universe of pathogens (antigens)
2. Response to any specific antigen must be efficient

Hypermutation & Selection ≈ Darwinian Evolution, but in 3 weeks!Hypermutation & Selection ≈ Darwinian Evolution, but in 3 weeks!

Hypermutation and selection lead 
to affinity increase over time…

Rearrangement creates 
initial diversity…

B Cell

Antibody Receptor



What might go wrong?

Commonly Accepted:
Somatic Hypermutation Restricted to Germinal Centers

Commonly Accepted:
Somatic Hypermutation Restricted to Germinal Centers

Somatic Hypermutation

Antibody Receptors Against Self-antigens

Autoimmune Disease

Autoimmunity is a response against body’s own proteins, DNA, etc.
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Germinal Centers Form in the Spleen

Commonly Accepted:
Germinal Centers are the Site of Somatic Hypermutation

and Selection of Higher-Affinity B Cells

Commonly Accepted:
Germinal Centers are the Site of Somatic Hypermutation

and Selection of Higher-Affinity B Cells



Motivating Experiment

B cells    T cells

Estimate mutation rate to show (hyper?)mutationEstimate mutation rate to show (hyper?)mutation

In auto-immune mouse model, observed mutating B cells in
extra-follicular areas of spleen (not germinal centers)

Auto-immune Mouse
MRL/lpr AM14 heavy chain transgenic
(William, Euler, Christensen, and Shlomchik. Science. 2002 )

Extra-Follicular Areas

Dividing B cells    FDC

Control
Primary anti-hapten response to NP

(Jacob et al., 1991; Jacob and Kelsoe, 1992; Jacob et al., 1993; Radmacher et al., 1998)

Germinal Centers

Microdissection
(10 cells)



What’s hard about estimating the mutation rate?
The number of divisions in vivo is unknown

Most recognized in vivo estimates took educated guesses
(McKean et al, 1984 and Sablitzky et al, 1985)

Most recognized in vivo estimates took educated guesses
(McKean et al, 1984 and Sablitzky et al, 1985)
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Clonal Trees Provide Needed Information
Analyze pattern of shared and unique mutations among sequences 

from each microdissection
Germline GGGATTCTC
1 -C-----G-
2 -------G-
3 A------GA
4 A---C--GA

Clonal tree ‘shapes’ reflect underlying dynamicsClonal tree ‘shapes’ reflect underlying dynamics

1(G→A)
9(C→A)
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Relating Tree Shapes to Underlying Dynamics
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Initial Sequence
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Investigate with computer simulation of B cell clonal expansion 

Parameters: mutation rate (µ), lethal 
frequency (λ), # divisions (d), pick size (p)

Compare: Rate of 0.2 division-1 for 14 divisions
Rate of 0.4 division-1 for   7 divisions
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Relevant shape measures can differentiate similar clonesRelevant shape measures can differentiate similar clones

(Simulation Data – 5 sequences / tree)



Intermediate Vertices is Useful Measure 
Compare: Rate of 0.2 division-1 for 14 divisions

Rate of 0.4 division-1 for   7 divisions
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Shape measures can supplement information from mutation countingShape measures can supplement information from mutation counting

(Simulation Data)



Method for Estimating Mutation Rate (µ)
Find mutation rate that produces distribution of tree 

‘shapes’ most equivalent to observed set of trees
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Assumes equivalent mutation rate in all 
trees, although number divisions may differ

Also developed analytical method based on same underlying idea
(The Journal of Immunology (2003) Vol. 171 No. 9, 4639-4649.)

Also developed analytical method based on same underlying idea
(The Journal of Immunology (2003) Vol. 171 No. 9, 4639-4649.)
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Details of the Simulation Method

0000Tree T

0000…

0000Tree 2

0000Tree 1

D…21
# divisions (d)

Equivalent Matrix, E(t,d)
# simulated trees ‘equivalent’ to 
observed tree after d divisions

For each value of the mutation rate (µ), calculate likelihood by…

t

Use Golden Section Search to optimize mutation rate (µ)Use Golden Section Search to optimize mutation rate (µ)
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2. Likelihood of experimentally observed tree t:

3. Likelihood of experimental dataset:

1. Run simulation many times to fill in  
equivalent matrix

Sample space is 
subset of all 

simulation runs



Finding the Optimal Mutation Rate
Golden Section Search works by successive bracketing of minimum/maximum

http://lib-www.lanl.gov/numerical/bookcpdf/c10-1.pdf

Direct Search Method (No Derivative)
Simple Implementation, Linear Convergence

0.38197
(golden mean)

Method is effective with 128,000 simulations per LikelihoodMethod is effective with 128,000 simulations per Likelihood

Not tolerant of noise,
Make sure evaluation is precise
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Details of the Analytical Method
Formulas to approximate tree shapes…

Minimize error X(µ) over all experimentally observed trees (t)
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For each observed tree, choose number of divisions to minimize error

Observed shape Calculated shape

The average number of mutations per sequence (M) 1(1 )M dλ µ= −
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Estimating the Lethal Frequency (λ)
Simulation Model Parameters:
mutation rate (µ), # divisions (d), # sequences (s), lethal frequency (λ)

Choose λ so expected R/(R+S) equals observed value over all mutationsChoose λ so expected R/(R+S) equals observed value over all mutations

Only replacement mutations can be lethal, so…

Fraction of all 
mutations that are 

replacements

Experimental
Data

Observed
R / (R + S)

Lethal Frequency (λ)

Expected
R / (R + S)

Germline
DNA Sequence
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Validating the Simulation Method
Use simulation to construct synthetic data sets with limited number 
of trees/sequences reflecting currently available experimental data

y = 1.2073x
R2 = 0.9149
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Method works even with limited number of clonal trees and sequencesMethod works even with limited number of clonal trees and sequences

Method Precision
(SD = 0.035 division-1)



Validating the Analytical Method

y = 1.075x
R2 = 0.9435
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Use simulation to construct artificial data sets with limited number 
of trees/sequences reflecting currently available experimental data

Method works even with limited number of clonal trees and sequencesMethod works even with limited number of clonal trees and sequences

Results for analytical method (assumes correct λ)



Testing Method Assumption…
All cells in single microdissection divided same number of times

(i.e., division is synchronous)

Assumption does not significantly impact rate estimateAssumption does not significantly impact rate estimate
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Simulation Estimate

Analytical Estimate

Mutation Rate in Autoimmune Response

Estimated mutation rate is 1.0 ± 0.1 x 10-3 base-pair-1 division-1Estimated mutation rate is 1.0 ± 0.1 x 10-3 base-pair-1 division-1

Experimental data set: 31 trees from 7 mice, ≈6 sequences / tree
from extra-follicular areas

(Williams et al, Science, 2002)

Estimated λλλλ ≈≈≈≈ 0.55
based on R/(R+S)



0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of FWR Replacement Mutations Lethal (λ)

E
st

im
at

ed
 M

ut
at

io
n 

R
at

e

Simulation Estimate

Analytical Estimate

Mutation Rate in Primary NP Response

Estimated mutation rate is 1.1 ± 0.1 x 10-3 base-pair-1 division-1Estimated mutation rate is 1.1 ± 0.1 x 10-3 base-pair-1 division-1

Experimental data set: 23 trees, ≈7 sequences / tree
from germinal centers

(Jacob et al., 1991; Jacob and Kelsoe, 1992; Jacob et al., 1993; Radmacher et al., 1998)

Testing impact on estimate:

• Data based on larger picks

• Positive selection may be factor



Summary

� Developed simulation and analytical methods to estimate in 
vivo mutation rates (and lethal frequencies)
� First rigorous method for in vivo estimates

� Synthetic datasets used to show that…
� Methods are precise (± 0.1 x 10-3 base-pair-1 division-1)
� Assumption of synchronous division does not impact results

� Extra-follicular B cells in autoimmune mouse hypermutate
� Mutation rate (0.9 ± 0.1 x 10-3) similar to NP response (1.1 ± 0.1 x 10-3)

� Future improvements in precision with additional data

Rigorous method to compare mutation rates under varying 
experimental conditions

Rigorous method to compare mutation rates under varying 
experimental conditions
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