Model-based analysis of microarray data: From Central Dogma to "Omes Law"

Harmen J. Bussemaker

Department of Biological Sciences Center for Comp. Biology and Bioinformatics Columbia University

The Cell as a Molecular Computer

Transcribed Region

Cis-regulatory Elements

Transcription Factor

Occupancy Level

Protein, not mRNA!

mRNA

"Regulome" = concentration of all TF proteins in nucleus

"Regulome" = concentration of all TF proteins in nucleus

"Regulome" = concentration of all TF proteins in nucleus

Linear Response Theory for Cells: "Omes Law"

HJ Bussemaker, H Li, & ED Siggia, Nature Genet. (2001)

Experimental validation of TF activity profile inferred using REDUCE

MG Koerkamp et al., Mol. Biol. Cell (2002)

Regression Analysis as a Paradigm for Microarray Data Analysis

The Myc/Mad/Max network in D. melanogaster

Nature Reviews | Cancer

A. A. Orian, B. van Steensel, J. Delrow, H.J. Bussemaker, L. Li, T. Sawado, E. Williams, L.M. Loo, S.M. Cowley, C. Yost, S. Pierce, B.A. Edgar, S.M. Parkhurst, and R.N. Eisenman. Genes & Development (2003)

DamID: B van Steensel, J Delrow, S Henikoff, Nature Genet. 2001

Motif	R^2	P-value	F	Matches	Loci	Consensus
dMnt						
cgcg	0.051	0.0E+00	0.01	66,217	4,366	cg-repeat
gcgc	0.048	0.0E+00	0.01	97,925	4,367	cg-repeat
cgcgc	0.047	0.0E+00	0.02	16,661	4,121	cg-repeat
gcgcg	0.042	0.0E+00	0.02	17,392	4,129	cg-repeat
tatcgata	0.026	0.0E+00	0.06	1,618	1,258	tatcgata
atcgata	0.024	0.0E+00	0.04	3,863	2,367	tatcgata
tcgata	0.015	1.0E-12	0.02	8,262	3,541	tatcgata
tatcgat	0.015	5.0E-12	0.03	3,765	2,369	tatcgata
ggtcacac	0.024	0.0E+00	0.09	788	706	gtcacac
gtcacact	0.017	0.0E+00	0.08	691	633	gtcacac
cacgtg	0.019	0.0E+00	0.03	4,214	2,558	cacgtg
gcacgtg	0.016	0.0E+00	0.05	1,370	1,139	cacgtg
gcacgtgt	0.012	9.8E-09	0.10	319	301	cacgtg

Motif	R^2	P-value	F	Matches	Loci	Consensus
dMax						
cgcgc	0.025	0.0E+00	0.02	16,401	4,058	cg-repeat
cgcg	0.022	0.0E+00	0.01	65,098	4,301	cg-repeat
gcgcg	0.020	0.0E+00	0.02	17,086	4,069	cg-repeat
gcgc	0.014	2.0E-12	0.00	96,364	4,302	cg-repeat
tatcgata	0.024	0.0E+00	0.07	1,600	1,247	tatcgata
atcgata	0.018	0.0E+00	0.04	3,797	2,330	tatcgata
tatcgat	0.016	2.0E-12	0.04	3,705	2,334	tatcgata
ggtcacac	0.013	2.0E-09	0.08	776	693	gtcacac
gtcacact	0.009	1.1E-05	0.07	681	624	gtcacac

Motif	R^2	P-value	F	Matches	Loci	Consensus
dMyc (lov	v dMax)					
aa	0.066	0.0E+00	0.00	2,763,243	4,332	at-rich
а	0.065	0.0E+00	0.00	8,493,006	4,332	at-rich
t	0.063	0.0E+00	0.00	8,153,995	4,332	at-rich
aat	0.063	0.0E+00	0.00	729,002	4,332	at-rich
tt	0.062	0.0E+00	0.00	2,601,186	4,332	at-rich

Motif	R^2	P-value	F	Matches	Loci	Consensus
dMyc (hig	h dMax)					
cacgtg	0.032	0.0E+00	0.03	4,203	2,555	cacgtg
acgtg	0.024	0.0E+00	0.01	18,323	4,228	cacgtg
cacgt	0.022	0.0E+00	0.01	17,082	4,221	cacgtg
gcacgtg	0.021	0.0E+00	0.05	1,365	1,134	cacgtg
atcgata	0.022	0.0E+00	0.03	3,853	2,362	tatcgata
tcgata	0.022	0.0E+00	0.02	8,255	3,535	tatcgata
tatcgata	0.020	0.0E+00	0.04	1,616	1,256	tatcgata
atcgat	0.014	2.2E-11	0.01	13,336	4,037	tatcgata
tatcgat	0.013	2.1E-10	0.02	3,751	2,362	tatcgata
cgcgc	0.027	0.0E+00	0.01	16,646	4,116	cg-repeat
cgcg	0.026	0.0E+00	0.00	66,118	4,361	cg-repeat
gcgc	0.024	0.0E+00	0.00	97,752	4,362	cg-repeat
gcgcg	0.019	0.0E+00	0.01	17,348	4,124	cg-repeat

Known: CACGTG (E-box) Unexpected: TATCGATA (DRE) Novel: GTCACAC (???) Both from DamID & mRNA data!

"MA-Networker": Integrating mRNA expression and ChIP data

- ChIP data for >100 TFs (Lee et al., Science (2002))
- mRNA expression data for ~800 conditions
- TF activity profiles from regression (A~O)
- Response of individual genes to TF activity profile
- Increase specificity of TF target prediction
- Overcome context dependence of TF deletion experiments related to combinatorial control

MA-Networker results

- Only 37 out of 113 transcription factors are statistically significant predictor of gene expression in one or more conditions
- On average only 58% of significantly bound genes are functional targets

MA-Networker validation

Among non-functional TF targets, there is:

- No enrichment for GO categories
- No transcriptional response to TF deletion
- Less DNA motif over-representation

Divergently transcribed gene pairs

Identification of TF interactions

$E_g = E_0 + F_1 O_{1g} + F_2 O_{2g} + F_{1:2} O_{1g} O_{2g}$

Proof of principle:

Yeast cell cycle: Mbp1, Swi4, Swi6

MBF = Mbp1::Swi6 SBF = Swi4::Swi6

Mpb1-Swi6 interaction inferred from ChIP & Mbp1 deletion data

Potential elements	t value	Pr (> t)
Mbp1	0.52	0.6010
Swi4	1.82	0.0694
Swi6	-0.48	0.6289
Mbp1+Swi4	-1.15	0.2490
Mbp1+Swi6	3.56	0.0004
Swi4+Swi6	-0.04	0.9665
Mbp1+Swi4+Swi6	0.54	0.5895

Detect Context-Dependent Interaction

A Gene Expression Map for the Euchromatic Genome of Drosophila melanogaster

Viktor Stolc^{,1,2}, Zareen Gauhar^{2,3}, Christopher Mason³, <u>Gabor Halasz^{4,5}, Marinus F. van Batenburg</u>^{4,9}, Scott A Rifkin^{3,6}, Sujun Hua³, Tine Herreman³, Waraporn Tongprasit⁷, Paolo Barbano^{3,8}, Harmen J. Bussemaker^{4,10}, and Kevin P White^{3,6}

Genome Research Facility, NASA Ames Research Center
Department of Molecular, Cellular, and Developmental Biology, Yale University
Department of Genetics, Yale University School of Medicine
Department of Biological Sciences, Columbia University
Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University
Department of Ecology and Evolutionary Biology, Yale University
Eloret Corporation, at NASA Ames Research Center
Department of Mathematics, Yale University
Department of Mathematics, Center
Department of Mathematics, Center, University of Amsterdam
Center for Computational Biology and Bioinformatics, Columbia University

Science, Oct 22, 2004

Splice Forms

Developmental Stages

Detecting Probes Expressed Above Background

- Model-based correction for probe sequence bias
- Convert probe intensities to P-values separately for each channel
- Combine P-values for all 24 channels into single P-value
- FDR procedure

In fruitfly, 41 % of the non-coding genome is being transcribed

	Total Probes	Significantly Expressed	% Expressed	Differentially Expressed	% Differentially Expressed
Exon	61371	47419	. 77	· 21176	31
Tiling	87814	35985	41	5508	15
Junction	30788	8732	28		

Over a quarter of splice junctions show expression, including 5,440 previously undetected splice variants.

15% of expressed noncoding transcripts ios developmentally regulated

Exon expressio: Comparison with EST databases from the Berkeley Drosophila Genome Project

Expressed non-coding regions are evolutionarily constrained

P=10-15 (t-test)

Based on alignment between D. melanogaster and D. pseudoobscura S. Richards et al., Genome Research (in press)

Acknowledgements

Bussemaker Lab:

Barrett Foat Gabor Halasz Ron Tepper Marcel van Batenburg Junbai Wang Xiang-Jun Lu

Feng Gao Crispin Roven

Collaborators:

Kevin White (Yale) Bas van Steensel (NKI) Robert Eisenman (FHCRC) Frank Holstege (Utrecht) Henk Tabak (A'dam/Utrecht) Antoine van Kampen (AMC) Rogier Versteeg (AMC)

Funding: NIH, HFSP, NWO

Looking for Postdoc (CS/Physics background) !