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Abstract
Background: Functional genomics studies are yielding information about regulatory processes in
the cell at an unprecedented scale. In the yeast S. cerevisiae, DNA microarrays have not only been
used to measure the mRNA abundance for all genes under a variety of conditions but also to
determine the occupancy of all promoter regions by a large number of transcription factors. The
challenge is to extract useful information about the global regulatory network from these data.

Results: We present MA-Networker, an algorithm that combines microarray data for mRNA
expression and transcription factor occupancy to define the regulatory network of the cell.
Multivariate regression analysis is used to infer the activity of each transcription factor, and the
correlation across different conditions between this activity and the mRNA expression of a gene
is interpreted as regulatory coupling strength. Applying our method to S. cerevisiae, we find that, on
average, 58% of the genes whose promoter region is bound by a transcription factor are true
regulatory targets. These results are validated by an analysis of enrichment for functional
annotation, response for transcription factor deletion, and over-representation of cis-regulatory
motifs. We are able to assign directionality to transcription factors that control divergently
transcribed genes sharing the same promoter region. Finally, we identify an intrinsic limitation of
transcription factor deletion experiments related to the combinatorial nature of transcriptional
control, to which our approach provides an alternative.

Conclusion: Our reliable classification of ChIP positives into functional and non-functional TF
targets based on their expression pattern across a wide range of conditions provides a starting
point for identifying the unknown sequence features in non-coding DNA that directly or indirectly
determine the context dependence of transcription factor action. Complete analysis results are
available for browsing or download at http://bussemaker.bio.columbia.edu/papers/MA-Networker/
.

Background
For various organisms, DNA microarrays have been used
to measure the mRNA abundance for essentially all pro-
tein-coding genes in the genome under a large number of
conditions [1,2]. Microarray technology can also be com-

bined with chromatin-immunoprecipitation (ChIP) or
chromatin profiling (DamID) to quantify the occupancy
of upstream non-coding regions by transcription factors
or other chromatin-associated proteins [3-9]. In the bud-
ding yeast Saccharomyces cerevisiae, ChIP has been used to
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globally map the binding sites of over a hundred tran-
scription factors [4]. Moreover, mRNA expression data for
over a thousand conditions has been published. The chal-
lenge is to find new ways to extract knowledge about the
regulatory mechanisms that govern the cell by combining
these different types of data [10-14].

Initiation of transcription in eukaryotes is a complicated
process that depends on the binding of transcription fac-
tors (TFs) and chromatin-modifying enzymes to the pro-
moter region as well as the recruitment of the RNA
Polymerase II complex to the transcription start site. Tran-
scriptional control is combinatorial, and cooperative
binding of multiple factors on the same promoter region
and/or cooperative recruitment of the Pol II complex is
often required for transcriptional activation [15]. Occu-
pancy of the promoter region of a gene by a transcription
factor is thus a necessary but not a sufficient condition for
the gene to be controlled by it. As a consequence, genome-
wide transcription factor binding patterns measured using
ChIP or DamID microarray experiments alone can only
indicate the potential for a gene to be regulated by a given
TF. Independent information will be required to establish
that the gene is indeed a functional target of the factor.

Deletion or over-expression of a transcription factor, com-
bined with genomewide microarray profiling of the differ-
ence in expression between mutant and wild type, is also
widely used to infer regulatory interactions. However,
drastic perturbation of the genetic network outside the
physiologically relevant range may lead to false target pre-
diction, or the mutant strain may simply not be viable.
Moreover, direct and indirect targets of the factor cannot
be distinguished using this approach.

When mRNA abundances for all genes are compared
between two experimental conditions in a microarray
experiment, the observed differential expression pattern is
usually a superposition of responses of various pathways,
mediated by signaling cascades that end at the level of
transcription factors. It has previously been shown that
these changes in TF activity can be quantitatively inferred
by performing multivariate regression analysis on the
expression log-ratios from a single microarray experiment
[16-19]. Transcription factors are implicitly represented
by a consensus motif for their DNA binding sites, and the
regression coefficients estimate the changes in TF activity.

In the present study we will instead use ChIP occupancy
log-ratios as predictors for expression. No sequence infor-
mation will be used, and it is therefore not necessary that
a DNA consensus motif be known for the TFs. Again, mul-
tivariate regression analysis of a single genomewide set of
mRNA log-ratios on the genomewide binding profiles of
a large number of TFs for which ChIP data is available can

be used to quantify to what extent each transcription fac-
tor is responsible for the observed changes in mRNA
expression.

When the regression procedure is performed in parallel on
a large library of expression data, the inferred changes in
TF activity for each comparison can be combined into a
transcription factor activity profile (TFAP) for each tran-
scription factor ("Step 1" in Fig. 1a). Each TFAP represents
a highly specific regulatory signature, as is shown for three
transcription factors in Fig. 1b: The activity of the G2
phase related factor Ndd1p oscillates during the cell cycle
(blue), but shows little or no response to nutrient deple-
tion and other stress conditions (red), or changes in alpha
pheromone concentration (green). Complementary
behavior is seen for the TCA cycle regulator Hap4p and
the mating-related factor Ste12p.

One expects the mRNA expression profile of a gene regu-
lated by a specific transcription factor to be similar to the
TFAP of that factor. We therefore investigated whether the
linear correlation across the experiment library between a
TFAP and the mRNA expression profile of a gene whose
promoter is bound by the factor could be interpreted as a
regulatory coupling strength and used to improve the spe-
cificity of target prediction. To this end, we constructed a
matrix of regulatory coupling strengths between all tran-
scription factors and all genes ("Step 2" in Fig. 1a). When
this information is combined with the original ChIP data
for a given TF, the ChIP log-ratio and coupling strength for
each gene can be shown simultaneously in a 2D scatter
plot (Fig. 1c). The fact that each gene has two parameters
associated with it allows a more sophisticated classifica-
tion than is possible based on ChIP alone. We first
defined a set "B+" of genes that are significantly bound by
a TF (we required the P-value reported by Lee et al. to be
smaller than 10-3) [4]. Next, we then partitioned the "B+"
gene set into two subsets "B+/C+" and "B+/C-" based on
whether or not their mRNA expression profile was signif-
icantly correlated with the TFAP (Pearson correlation, 5%
false discovery rate). Our hypothesis is that the B+/C+
genes (shown in red in Fig. 1c) are the functional direct
targets of the factor, while the binding to the promoter
region of the B+/C- genes (shown in green) is non-func-
tional.

Results and discussion
Only a subset of genes bound by each TF is controlled by it
We have focused on the yeast Saccharomyces cerevisiae, for
which a wealth of functional genomics data is available.
We compiled a library of ~750 expression patterns from
various sources, and combined it with the genome-wide
promoter occupancies in mid-log phase and rich medium
for 113 TFs as measured by Lee et al. [4]. It was determined
that 37 transcription factor occupancy patterns out of the
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(a) Overview of our method for determining regulatory coupling strengths between transcription factors and their putative target genesFigure 1
(a) Overview of our method for determining regulatory coupling strengths between transcription factors and their putative 
target genes. Inputs are (i) a library of microarray expression data for a large number of conditions and (ii) genomewide (ChIP) 
occupancy data for one or more transcription factors. In the first step of our algorithm, a matrix of transcription factor activi-
ties is inferred by using regression analysis to explain the mRNA expression pattern under each condition in terms of the ChIP 
data for each transcription factor. In the second step, a matrix of regulatory coupling strengths is determined by computing the 
correlation between each transcription factor activity profile (TFAP) and the mRNA expression profile of each gene. (b) 
Examples of transcription factor activity profiles. The activity profiles of three transcription factors (Hap4, Ndd1, Ste12) are 
shown across stress response, pheromone response, and cell cycle [28-30]. Significant changes in activity of the TCA cycle reg-
ulator Hap4p occur mostly in metabolic stress conditions, while changes in the activity of the cell cycle regulator Ndd1p and 
the pheromone-dependent regulator Ste12p are associated with the cell cycle and signal transduction experiments, respec-
tively. (c) Examples of scatter plots of ChIP binding log-ratio versus coupling factor. In the scatter plots, black dots denote 
unbound (B-) genes, red dots denote bound and coupled genes (B+/C+), while green dots denote genes that are bound but not 
coupled (B+/C-). A threshold of P = 10-3 was used to determine significant binding as described in Lee et al. [4]. A threshold for 
coupling was determined by requiring a false discovery rate of 5%, as described in Methods.
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full set of 113 are significant predictors of mRNA expres-
sion for one or more experiments in our library (see Meth-
ods). Note that the library of expression data we used
obviously does not cover all possible experimental condi-
tions and our method is therefore likely to underestimate
the number of transcription factors that are present in the
nucleus under the conditions used by Lee et al. [4]. For
each of the 37 factors selected for further analysis, a tran-
scription factor activity profile (TFAP) was computed
("Step 1" in Fig. 1a) and the TF-target coupling strength
was determined ("Step 2" in Fig. 1a). The number of genes
in each group (B-, B+/C+, and B+/C-) is listed in Table 1
for the 37 transcription factors analyzed. On average 58%

of significantly bound genes are classified as significantly
coupling genes. Activity profiles and B+/C+ target predic-
tions for all 37 factors are available on the website sup-
porting this paper.

Enrichment for specific functional categories
Several analyses were performed to validate our results.
First, we established that B+/C+ genes are significantly
enriched for specific Gene Ontology (GO) categories
(hypergeometric distribution; 5% false discovery rate)
[20]. This result is not surprising, as we would already
expect the set B+ of ChIP positives per se to be enriched for
roughly the same functional categories. By contrast, for

Table 1: Classification of genes according to ChIP data and inferred regulatory coupling.

TF B- B+/C+ B+/C- Unclassified*

Abf1 5638 138 136 470
Ace2 5843 33 33 473
Arg81 5985 11 10 376
Bas1 5975 28 13 366
Cad1 5854 26 13 489
Dal81 5823 24 16 519
Dig1 5872 20 11 479
Fhl1 5754 146 37 445
Fkh2 5261 61 45 1015
Gal4 5149 20 20 1193
Gat3 5891 40 29 422
Gcn4 5919 58 21 384
Hal9 5948 4 13 417
Hap4 5939 47 21 375
Hir1 5963 19 10 390
Hir2 5932 8 13 429
Hsf1 5929 35 17 401
Leu3 5988 8 13 373
Mbp1 5641 65 40 636
Mcm1 5709 42 46 585
Met31 5983 15 13 371
Msn4 5952 23 7 400
Mss11 4735 11 9 1627
Ndd1 5799 50 42 491
Nrg1 5912 61 20 389
Rlm1 5900 13 24 445
Sig1 5683 0 0 699
Sko1 5155 2 0 1225
Sok2 4881 10 6 1485
Stb1 5791 13 10 568
Ste12 5725 19 31 607
Sum1 5919 35 26 402
Swi4 5528 75 48 731
Swi5 5358 47 45 932
Thi2 5940 5 1 436
Yap1 5959 28 16 379
Yap6 5924 33 54 371

*Genes whose expression level in microarray data or binding P-value in Lee et al. is not available. The number of genes in each of the categories (B-
, unbound genes; B+/C+, bound and coupling genes; B+/C-, genes that are bound but do not couple) is shown for each of the 37 transcription 
factors analyzed. On average, 58% of the significantly bound genes were classified in the B+/C+ group.
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almost all TFs analyzed we found no significant enrich-
ment for any GO category in the set of non-coupling (B+/
C-) genes (Fig. 2, see supplementary website for details).
This result is very significant because it suggests that our
criterion for distinguishing functional from non-func-
tional TF targets based on regulatory coupling is accurate:
There seems to have been no evolutionary pressure on the
set of B+/C- genes.

Transcriptional response to transcription factor deletion
Next, we analyzed the expression response to transcrip-
tion factor deletion for the B+/C+ and B+/C- genes. The
mean and the standard deviation of the gene expression
log-ratio between mutant and wild type as obtained in
Hughes et al. were calculated for all genes in the genome,
as well as for the B+/C+ and B+/C- groups [21]. A sample
t-test was performed to determine the significance of the
change in expression. The B+/C+ genes show a significant
change in mRNA expression for the 7 transcription factors
for which deletion and ChIP data are both available. By

Enrichment for functional annotationFigure 2
Enrichment for functional annotation. The number of significantly over-represented Gene Ontology (GO) categories in the 
group B+/C+ of genes that couple to transcription factor activity (red) and the group B+/C- of genes that do not couple 
(green) for each of the 37 transcription factors analyzed. No significant enrichment for any GO category was found in most B+/
C- gene groups, supporting the hypothesis that only the coupling B+/C+ genes are functional targets.

Table 2: Analysis of transcriptional response to transcription factor deletion.

Transcription 
Factor

Genomewide B+/C+ B+/C-

Mean SD Mean SD -log10(p) Mean SD -log10(p)

Dig1 0.759 0.198 0.567 0.360 3.76 0.846 0.080 0.04
Gcn4 0.785 0.177 0.294 0.329 28.23 0.793 0.170 0.24
Hir2 0.724 0.218 0.180 0.295 4.00 0.760 0.194 0.14
Mbp1 0.830 0.121 0.541 0.324 27.86 0.770 0.172 2.79
Swi4 0.524 0.338 0.348 0.352 4.89 0.533 0.333 0.24
Swi5 0.744 0.204 0.583 0.373 5.98 0.759 0.186 0.17
Yap1 0.756 0.201 0.471 0.376 7.66 0.587 0.337 2.67

The mean and the standard deviation of gene expression log-ratio between mutant and wild type as obtained in Hughes et al. were calculated for all 
genes in the genome as well as for the B+/C+ and B+/C- groups [21]. A sample t-test was performed to determine the significance of the change in 
expression. The B+/C+ genes show a significant change in mRNA expression for the 7 transcription factors for which deletion and ChIP data is 
available. By contrast, the response of the B+/C- genes is insignificant for most transcription factors.
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contrast, the response of the B+/C- genes is insignificant
for most transcription factors (Table 2).

Enrichment of promoter regions for consensus binding 
motifs
In a third analysis to validate our results, we tested for
over-representation of 4 different cell cycle related DNA
consensus motifs (MCB, SCB, Swi5p and SFF) in the
upstream regions of 7 cell cycle related TFs (Ace2, Fkh2,
Mbp1, Mcm1, Ndd1, Swi4 and Swi5). The binomial dis-
tribution was used to score motif enrichment in the B+/C+
and B+/C- gene sets for each of the transcription factors.
We found certain DNA motifs to be significantly over-rep-
resented in B+/C+ genes for one or more TFs, but dramat-
ically less so in B+/C- genes (Table 3). Finally, we defined
B+/C+ groups using duplicate ChIP experiments for 7 cell
cycle regulators performed by Simon et al. and found the
overlap with the B+/C+ genes for the data of Lee et al. to
be 85% on average [4,22].

Assigning directionality to divergently transcribed 
promoters
Taken together, the results mentioned above convincingly
demonstrate that the use of a coupling factor threshold as
a novel additional criterion leads to significantly
improved specificity in the prediction of functional TF tar-
gets. The biological implications of our analysis are high-
lighted in the case of divergently transcribed genes that
share a common promoter region, represented as a single
microarray probe. There are 1592 such probes out of the
total 4532 probes in the ChIP experiments of Lee et al. [4].
When the ChIP data indicate that a TF binds to the inter-
genic region, nothing can be said about whether it regu-
lates one of the genes or both based on that information
alone. By contrast, our regulatory coupling analysis natu-
rally allows us to distinguish between these different sce-
narios and make precise statements about which genes are
controlled by each of the factors that occupy the promoter
region (see Fig. 3). Both uni- and bi-directional control by
TFs is observed. Indeed, we found the functional annota-

tion of the protein encoded by the coupled targets to be
consistent with what was known about the function of the
bound TF in most cases analyzed [20].

Revealing intrinsic limitations of TF deletion experiments
Since TF occupancy data from ChIP experiments can be
used to separate direct from indirect targets among the
genes that respond to TF deletion, combining ChIP data
with deletion data can potentially achieve the same goal
as our more sophisticated analysis. Keeping Occam's
Razor in mind, it is therefore important to investigate to
what extent mRNA expression log-ratios from a TF dele-
tion mutant vs. wild type experiment can replace our reg-
ulatory coupling strength on the vertical axis in Fig. 1b.
We defined sets B+/D+ and B+/D- for each of the seven
TFs for which data are available in Hughes et al., the D+
genes being those that show a response to the TF deletion
at P < 10-2, using the P-value provided by those authors
[21]. In the regulatory coupling analysis described above,
we found no significant enrichment for specific GO cate-
gories in the group B+/C- of genes that are bound but not
coupled. In the present case however, similar levels of
enrichment for GO categories are found for B+/D+ and
B+/D- genes (Table 4). This result indicates that a substan-
tial fraction of the functional direct targets of a typical
transcription factor is being missed even if one combines
transcription factor deletion data with ChIP data. A plau-
sible explanation for this lack of sensitivity is that each TF
deletion experiment, by definition, is performed under a
single condition in which not all possible co-factors of the
deleted TF may be present. By using a large and heteroge-
neous library of experimental conditions as input, our
method samples most or all co-factor combinations that
occur as the context for control by each TF, naturally tak-
ing into account the combinatorial nature of transcrip-
tional control.

Conclusions
Our results underscore the unique added value of ChIP
data such as that of Lee et al. when it is used in combina-

Table 3: Over-representation of four cell cycle related motifs.

Motif Ace2 Fkh2 Mbp1 Mcm1 Ndd1 Swi4 Swi5

B+/C+ B+/C- B+/C+ B+/C- B+/C+ B+/C- B+/C+ B+/C- B+/C+ B+/C- B+/C+ B+/C- B+/C+ B+/C-

ACGCGT (MCB) 38.4 8.3 8.2 0.0
CGCGAAA (SCB) 7.0 1.3 19.1 2.8
AACCAGC (Swi5p) 5.1 0.6 2.6 0.8
GTAAACA (SFF) 12.9 1.8 3.1 1.4 8.3 0.6 3.5 0.1

The binomial distribution was used to score motif enrichment in the B+/C+ and B+/C- gene sets for seven cell cycle related transcription factors. 
The value of -log10(P) is shown only for those combinations of motifs and factors where the motif was significantly overrepresented among the 
genes bound by the factor. In most cases, the motif is not over-represented in the B+/C- gene group, and in all cases, the over-representation 
among B+/C- genes is far less significant than among B+/C+ genes.
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tion with a library of mRNA expression data [4]. We found
that roughly half of the transcription factor targets
predicted by ChIP are nonfunctional. Although some of
these will be false positives of the ChIP technology, espe-
cially for TFs that are not present in active form in the
nucleus under the conditions used by Lee et al., we believe
that our results instead point to interesting biology: TF
binding can fail to confer transcription of a nearby gene
for a variety of reasons, including competition with
nearby activators or repressors, local or global chromatin
conformation, or lack of partners for cooperative recruit-
ment of the Pol II complex.

Several works have relied on representing a TF by its
mRNA expression profile in order to discover connections
between transcription factors and their targets [23-25]. By
contrast, our method infers changes in TF activity by ana-
lyzing the mRNA levels of putative TF targets. This allows
us to analyze regulatory relationships even if the TF is
modulated in a purely post-translational manner, e.g. by
phosphorylation. The reliable classification of ChIP posi-
tives into functional and non-functional TF targets, as it
has been presented here, provides a starting point for
future research aimed at identifying the unknown
sequence features in non-coding DNA that directly or
indirectly determine the context dependence of TF action.

Assigning directionality to divergently transcribed promotersFigure 3
Assigning directionality to divergently transcribed promoters. For pairs of divergently transcribed genes sharing a single pro-
moter region occupied by one or more transcription factors, our method can be used to determine which gene is regulated by 
which factor. In the diagrams, genes are represented as squares with arrows showing the transcription direction; transcription 
factors are shown as ovals. The numbers shown are significance scores for the coupling between the transcription factor and 
the gene, equal to the negative 10-based logarithm of the P-value. Significant regulatory relationships are shown as arrows to 
colored boxes. In (A), the cell cycle transcription factor Mbp1p regulates the recombinase RAD51 but not the endopeptidase 
PUP3, while in (B), the putative rRNA processing regulator Fhl1p regulates the ribosomal subunit RPL40B but not the protein 
kinase MLP1. In the scenario illustrated in (C), both Nrg1p and Hap6p bind to the intergenic upstream region of FSP2 and 
HXT9. The coupling analysis shows that Nrg1p in this case works bi-directionally and regulates both genes, while Hap6p regu-
lates neither gene.
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Methods
Microarray expression and binding data
A library of 751 genomewide mRNA expression patterns
(transcriptomes) was compiled from a variety of sources
(see supplementary data for complete references). ChIP
data for 113 transcription factors was downloaded from
the website accompanying Lee et al. [4]. We used the P-
values provided by these authors to determine which
genes were significantly bound by each given factor at a
confidence level of P < 10-3. All microarray data used in
our analysis was represented as log-ratio base two.

Transcription factor activity profiles
For each separate transcriptome t, we used the following
multivariate regression model to infer transcription factor
activities for each microarray experiment:

Here Egt represents the mRNA expression log-ratio of gene
g in experiment t, while Bfg represents the ChIP log-ratio
for transcription factor f and the promoter region of gene
g. The intercept F0t represents a baseline expression level,
while the regression coefficients Fft can be interpreted as
inferred transcription factor activities. Starting with the
full set of 113 transcription factors, we used backward
selection to eliminate uninformative transcription factors
from our model: First, for each microarray experiment a P-
value corresponding to each regression coefficient was
determined, based on an F-test [26]. The transcription fac-
tors were then sorted based on the smallest P-value
among all 751 experiments. In an iterative procedure, the
transcription factor with the most insignificant P-value
was removed until all factors were significant at a P-value
of 0.005/751. Since this analysis in itself is novel and

useful, we have made an online ChIP regression tool
available at http://bussemaker.bio.columbia.edu/tools/.

Gene-TF coupling factor
For each pair-wise combination of a gene g (represented
by its mRNA expression profile Egt) and a transcription
factor f (represented by the inferred activity profile Fft), a
regulatory coupling factor was calculated, equal to the
Pearson correlation between Egt and Fft:

For each value of r, an associated P-value was computed
by performing a t-test on t = r[(G-2)/(1-r2)]1/2. To account
for the parallel testing of many TF-target pairs, but at the
same time avoid the overly conservative Bonferroni cor-
rection, we set a threshold for t by requiring a false discov-
ery rate of 5% [27]. The end result of this procedure is a
list of genes that are significantly coupled to a transcrip-
tion factor. Strictly speaking, to avoid circularity, the cou-
pling of each gene should be evaluated based on a TFAP
derived from expression data for all but that gene. How-
ever, as the TFAP is derived from the expression profile of
all genes bound by the TF, the effect of leaving out one
gene is relatively insignificant in practice. Moreover,
repeating this procedure for every gene in the genome
would be computationally unfeasible.

Enrichment for gene ontology categories
Based on the regulatory coupling analysis described
above, the genes bound a given transcription factor (B+)

Table 4: Replacing regulatory coupling strength by response to transcription factor deletion.

Transcription 
Factor

Number of genes in each group GO category

B- B+/D+ B+/D- Not available B+/D+ B+/D-

Dig1 5881 1 30 115 32 16
Gcn4 5928 16 63 60 19 17
Hir2 5941 2 19 105 24 5
Mbp1 5647 2 103 315 22 12
Swi4 5535 19 106 407 9 6
Swi5 5368 10 82 607 2 0
Yap1 5968 7 37 55 0 0

We analyzed the performance of a scheme in which our TF-gene coupling factor was replaced by the change in mRNA abundance in response to 
transcription factor deletion as a predictor of true targets. Significant binding (B+) was defined as before, while a significant response to deletion 
(D+) required P < 10-2. The number of significantly over-represented GO categories is listed for both the B+/D+ and the B+/D- gene groups. The 
results indicate that TF deletion data is less useful than our coupling factor for distinguishing functional target genes from non-functional ones.
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were sorted in two classes, B+/C+ (bound and coupled)
and B+/C- (bound but not coupled). These two sets were
used as input for further analysis. The cumulative hyper-
geometric distribution was used to determine whether a
set of genes is enriched for one or more Gene Ontology
categories [20]. The Bonferroni correction was applied to
all P-values to deal with the parallel testing of GO catego-
ries. The organism-independent ontology and the gene-
association table (version May 2003) for S. cerevisiae were
downloaded from http://www.geneontology.org.

Response to transcription factor deletion
Expression data for mutant vs. wild-type comparison for
the transcription factors Dig1, Gcn4, Hir2, Mbp1, Swi4,
Swi5, and Yap1 were obtained from Hughes et al. [21]. To
test whether a given subset of genes responded to TF dele-
tion, a sample t-test was performed, comparing the aver-
age expression log-ratio in the subset with the genome-
wide distribution of expression changes. To guarantee that
this analysis was fair, the respective TF deletion experi-
ments were excluded from the library used to calculate the
coupling factors that define the C+ and C- groups.

Enrichment for cell cycle DNA motifs
Four different DNA motifs found as top-scoring motifs by
REDUCE and also reported in Spellman et al. were tested
for over-representation in the set of B+/C+ and B+/C-
genes, respectively, for the 7 cell-cycle related transcrip-
tion factors within the set of 37 factors analyzed by us
[16,28]. These motifs are: ACGCGT (MCB), CGCGAAA
(SCB), AACCAGC (Swi5p) and GTAAACA (SFF). Motifs
were counted in non-coding regions up to 600 bp
upstream from the ORF start position, and expected
counts were based on upstream regions of all genes. No
overlapping matches were counted. The cumulative
binomial distribution was used to assign a P-value to the
enrichment for these motifs.

List of abbreviations
TF: transcription factor

ChIP: chromatin immunoprecipitation

DamID: DNA adenine methyltransferase identification

TFAP: transcription factor activity profile

GO: gene ontology.

Authors' contributions
FG and HJB both contributed to the development of the
algorithm and the analysis and presentation of the results.
BCF compiled the library of expression data used and con-
tributed tools for functional annotation enrichment anal-
ysis. All authors read and approved the final manuscript.

Acknowledgements
We would like to thank Marcel van Batenburg and Crispin Roven for their 
assistance and helpful suggestions. We are also grateful to Frank Holstege, 
Bas van Steensel, and Kevin White for valuable comments and a critical 
reading of the manuscript. F.G. was partially funded by the Netherlands 
Organization for Scientific Research (NWO) and the Human Frontier Sci-
ence Programme (HFSP). B.C.F. and H.J.B. were partially funded by the 
National Institutes of Health.

References
1. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS,

Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL: Expres-
sion monitoring by hybridization to high-density oligonucle-
otide arrays. Nat Biotechnol 1996, 14:1675-1680.

2. Brown PO, Botstein D: Exploring the new world of the genome
with DNA microarrays. Nat Genet 1999, 21:33-37.

3. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO:
Genomic binding sites of the yeast cell-cycle transcription
factors SBF and MBF. Nature 2001, 409:533-538.

4. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK,
Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jen-
nings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert
TL, Fraenkel E, Gifford DK, Young RA: Transcriptional regulatory
networks in Saccharomyces cerevisiae. Science 2002,
298:799-804.

5. van Steensel B, Delrow J, Henikoff S: Chromatin profiling using
targeted DNA adenine methyltransferase. Nat Genet 2001,
27:304-308.

6. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM,
Staudt LM, Hudson J., Jr., Boguski MS, Lashkari D, Shalon D, Botstein
D, Brown PO: The transcriptional program in the response of
human fibroblasts to serum. Science 1999, 283:83-87.

7. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlin-
ger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP,
Young RA: Genome-wide location and function of DNA bind-
ing proteins. Science 2000, 290:2306-2309.

8. van Steensel B, Delrow J, Bussemaker HJ: Genomewide analysis of
Drosophila GAGA factor target genes reveals context-
dependent DNA binding. Proc Natl Acad Sci U S A 2003,
100:2580-2585.

9. Sun LV, Chen L, Greil F, Negre N, Li TR, Cavalli G, Zhao H, Van
Steensel B, White KP: Protein-DNA interaction mapping using
genomic tiling path microarrays in Drosophila. Proc Natl Acad
Sci U S A 2003, 100:9428-9433.

10. Wyrick JJ, Holstege FC, Jennings EG, Causton HC, Shore D,
Grunstein M, Lander ES, Young RA: Chromosomal landscape of
nucleosome-dependent gene expression and silencing in
yeast. Nature 1999, 402:418-421.

11. Futcher B: Transcriptional regulatory networks and the yeast
cell cycle. Curr Opin Cell Biol 2002, 14:676-683.

12. Banerjee N, Zhang MQ: Functional genomics as applied to map-
ping transcription regulatory networks. Curr Opin Microbiol
2002, 5:313-317.

13. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N:
Revealing modular organization in the yeast transcriptional
network. Nat Genet 2002, 31:370-377.

14. Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gor-
don DB, Fraenkel E, Jaakkola TS, Young RA, Gifford DK: Computa-
tional discovery of gene modules and regulatory networks.
Nat Biotechnol 2003, 21:1337-1342.

15. Pilpel Y, Sudarsanam P, Church GM: Identifying regulatory net-
works by combinatorial analysis of promoter elements. Nat
Genet 2001, 29:153-159.

16. Bussemaker HJ, Li H, Siggia ED: Regulatory element detection
using correlation with expression. Nat Genet 2001, 27:167-171.

17. Wang W, Cherry JM, Botstein D, Li H: A systematic approach to
reconstructing transcription networks in
Saccharomycescerevisiae. Proc Natl Acad Sci U S A 2002,
99:16893-16898.

18. Keles S, van der Laan M, Eisen MB: Identification of regulatory
elements using a feature selection method. Bioinformatics 2002,
18:1167-1175.
Page 9 of 10
(page number not for citation purposes)

http://www.geneontology.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9634850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9634850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9634850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/4462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/4462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9915498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35054095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35054095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35054095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11206552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.1075090
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.1075090
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/85871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/85871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11242113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.283.5398.83
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.283.5398.83
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9872747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.290.5500.2306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.290.5500.2306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.0438000100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.0438000100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.0438000100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12601174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.1533393100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.1533393100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12876199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/46567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/46567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/46567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10586882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0955-0674(02)00391-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0955-0674(02)00391-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12473339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S1369-5274(02)00322-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S1369-5274(02)00322-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12057687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12134151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12134151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12134151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/nbt890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/nbt890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14555958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ng724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ng724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11547334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/84792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/84792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.252638199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.252638199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.252638199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12482955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/18.9.1167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/18.9.1167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217908


BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/31
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

19. Conlon EM, Liu XS, Lieb JD, Liu JS: Integrating regulatory motif
discovery and genome-wide expression analysis. Proc Natl Acad
Sci U S A 2003, 100:3339-3344.

20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nature Genetics.
2000, 25:25-29.

21. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour
CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer
MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D,
Chakraburtty K, Simon J, Bard M, Friend SH: Functional discovery
via a compendium of expression profiles. Cell 2000,
102:109-126.

22. Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL,
Wyrick JJ, Zeitlinger J, Gifford DK, Jaakkola TS, Young RA: Serial
regulation of transcriptional regulators in the yeast cell
cycle. Cell 2001, 106:697-708.

23. Li TR, White KP: Tissue-specific gene expression and ecdys-
one-regulated genomic networks in Drosophila. Dev Cell 2003,
5:59-72.

24. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman
N: Module networks: identifying regulatory modules and
their condition-specific regulators from gene expression
data. Nat Genet 2003, 34:166-176.

25. Zhu Z, Pilpel Y, Church GM: Computational identification of
transcription factor binding sites via a transcription-factor-
centric clustering (TFCC) algorithm. J Mol Biol 2002, 318:71-81.

26. Jobson JD: Applied multivariate data analysis. Springer texts in
statistics New York, Springer-Verlag; 1991:2 v.. 

27. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate:
a practical and powerful approach to multiple testing. Journal
of the Royal Statistical Society, Series B 1995, 57:289-300.

28. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB,
Brown PO, Botstein D, Futcher B: Comprehensive identification
of cell cycle-regulated genes of the yeast Saccharomyces cer-
evisiae by microarray hybridization. Mol Biol Cell 1998,
9:3273-3297.

29. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz
G, Botstein D, Brown PO: Genomic expression programs in the
response of yeast cells to environmental changes. Mol Biol Cell
2000, 11:4241-4257.

30. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett
HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C,
Friend SH: Signaling and circuitry of multiple MAPK pathways
revealed by a matrix of global gene expression profiles. Sci-
ence 2000, 287:873-880.
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.0630591100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.0630591100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12626739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/75556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/75556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0092-8674(00)00015-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0092-8674(00)00015-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0092-8674(01)00494-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0092-8674(01)00494-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0092-8674(01)00494-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11572776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S1534-5807(03)00192-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S1534-5807(03)00192-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12852852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ng1165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ng1165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ng1165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12740579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0022-2836(02)00026-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0022-2836(02)00026-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0022-2836(02)00026-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12054769
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11102521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11102521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.287.5454.873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.287.5454.873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657304
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Table 1

	Results and discussion
	Only a subset of genes bound by each TF is controlled by it
	Enrichment for specific functional categories
	Table 2

	Transcriptional response to transcription factor deletion
	Table 3

	Enrichment of promoter regions for consensus binding motifs
	Assigning directionality to divergently transcribed promoters
	Revealing intrinsic limitations of TF deletion experiments

	Conclusions
	Table 4

	Methods
	Microarray expression and binding data
	Transcription factor activity profiles
	Gene-TF coupling factor
	Enrichment for gene ontology categories
	Response to transcription factor deletion
	Enrichment for cell cycle DNA motifs

	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

