

Future of High Performance Computing

Thom H. Dunning, Jr.

National Center for Supercomputing Applications

Institute for Advanced Computing Applications and Technologies

Department of Chemistry

National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

Outline of Presentation

- Progress in High Performance Computing
- Directions in Computing Technology
 - Multi-core and many-core chips
 - Memory subsystem
 - Communications subsystem
- Era of Petascale Computing
 - Science @ Petascale
 - Petascale Computing Systems
 - Blue Waters Petascale Computing System
- Challenges of Petascale Computing

Progress in High Performance Computing

Relentless Increase in Performance

Relentless Increase in Number of Cores

Directions in Computing Technologies

Increasing Clock Frequency & Performance

the past, performance scaling in conventional singlehas processors been core accomplished largely through increases in clock frequency (accounting for roughly 80 percent of the performance gains to date)."

Platform 2015

S. Y. Borkar *et al.*, 2006 **Intel Corporation**

From Uni-core to Multi-core Processors

AMD Uni-, Dual-, Quad-core, **Processors**

Intel Multi-core **Performance**

Multi-core 2009: Intel's Nehalem

Nehalem

- Modular
- Up to 8 cores
- 3 levels of cache
- Integrated memory controller
- Multiple
 QuickPath
 Interconnects

Switch to Multicore Chips

"For the next several years the only way to obtain significant increases in performance will be through increasing use of parallelism:

- 8× in 2009
- $-16 \times \text{ in } 2011$
- $-32 \times in 2013$
- etc.

On to Many-core Chips

AMD Firestream (800 cores)

New Technologies for HPC

Courtesy of John Owens (UCSD) & Ian Buck (NVIDIA)

NVIDIA: Selected Benchmarks

Application	Description	Kernel X	App X
H.264	SPEC '06 version, change in guess vector	20.2	1.5
LBM	SPEC '06 version, change to single precision and print fewer reports	12.5	12.3
FEM	Finite element modeling, simulation of 3D graded materials	11.0	10.1
RPES	Rys polynomial equation solver, 2- electron repulsion integrals	210.0	79.4
PNS	Petri net simulation of a distributed system	24.0	23.7
LINPACK	Single-precision implementation of saxpy, used in Gaussian elimination routine	19.4	11.8
TRACF	Two Point Angular Correlation Function	60.2	21.6
FDTD	Finite-difference time domain analysis of 2D electromagnetic wave propagation	10.5	1.2
MRI-Q	Computing a matrix Q, a scanner's configuration in MRI reconstruction	457.0	431.0

^{*} For GeForce 8800 @ 346 GF (SP), W-m. Hwu et al., 2007

Benchmarks: Direct SCF Calculations*

	Time/Iter (s)		Energy		
Molecule	GPU	CPU**	GPU	CPU**	Speedup
Caffeine	0.16	4.1	-1605.91827	-1605.91825	25
Cholesterol	1.36	67.4	-3898.82189	-3898.82189	50
Buckyball	7.32	279.4	-10709.0757	-10709.0839	40
Taxol	4.91	269.2	-12560.6830	-12560.6828	55
Valinomycin	8.44	691.2	-20351.9813 •	-20351.9904	80

Differences due to use of 32-bit precision, will be eliminated in 64-bit version of INVIDIA chip

^{*} GeForce 8800 @ 346 GF (SP), I. Ufimtsev and T. Martinez, CiSE 10, 26-34 (2008).

^{**} Using GAMESS on AMD Opteron 175 CPU.

Directions in Computing Technologies

NVIDIA: Tesla S1070

- 4 Tesla T10s
- Frequency: 1.44 GHz
- 960 cores (240/T10)
- Performance
 - SP: 4.14 TF
 - DP: 0.34 TF
- 16 GB memory (4/T10)
- 408 GB/s memory bandwidth (104/T10)
- CUDA programming environment

Memory Subsystem

Memory Wall

- Limitation on computation speed cause by the growing disparity between processor speed and memory latency and bandwidth
- From 1986 to 2000, processor speed increased at an annual rate of 55%, while memory speed improved by only 10% per year

Memory Subsystem

- Caches
 - Two to three levels: L1–L3
 - On chip (faster) and off chip (slower)
- Main memory
 - DDR2: 3.2-8.5 GB/s
 - DDR3: 6.4–12.8 GB/s

Issue

 Memory latency and bandwidth limitations make it difficult to achieve major fraction of peak performance of chip

Directions in Computing Technologies

Communications Subsystem

Communications Fabric

- Infiniband
 - Standard for HPC systems
 - Used in TACC's Ranger (Sun) system
- SeaStar2+: Cray's proprietary interconnect
- IBM working on next generation (proprietary) interconnect

Issue

• Latency and bandwidth limitations make it difficult to scale science and engineering applications to large numbers of processors

Era of Petascale Computing

Science @ Petascale

Petascale computing will enable advances in a broad range of science and engineering disciplines:

Molecular Science

Astronomy Earth Science

Weather & Climate Forecasting

Health

LANL Roadrunner Computer System

Computing resources

- 12,960 IBM PowerXCell 8i accelerators (116,640 cores)
- 6,480 AMD dual-core Opterons (12,960 cores)
- 1.46 PF peak
- 1.1 Petaflop/s Linpack

Memory

- 52 TB (accelerators)
- 104 TB total

Electrical power

- 3.9 MW (maximum)
- ≥ 250 Megaflops/Watt

Floor space

296 racks, 6800 ft²

IBM Roadrunner Petascale System

ORNL Jaguar Computer System

- Computing resources
 - 37,544 AMD quad-core Opterons
 - 150,176 cores
 - 1.38 PF peak
 - 1.06 Petaflop/s Linpack
- Memory
 - 300 TB
- I/O Storage and Bandwidth
 - 10 PB
 - 240 GB/s
- Interconnect Bandwidth
 - 374 TB/s
- Floor space
 - 4400 ft²

Cray Jaguar (XT5) Petascale System

NSF's Strategy for High-end Computing

NSF's Track 2 Computing Systems

	TACC	UT-ORNL	PSC
System Attribute I	Ranger	Kraken	
Status Ope	erational	In progress	In progress
Vendor	Sun	Cray	SGI
Processor	AMD	AMD	Intel
Peak Performance (TF)	579	~1,000	
Number Cores/Chip	4	6	
Number Processor Cores	62,976	~100,000	~100,000
Amount Memory (TB)	123	~100	~100
Amount Disk Storage (PB)	1.73	3.3	
External Bandwidth (Gbps)	10	20	

Blue Waters Petascale Computing System

Goals for Blue Waters

Maximize Core Performance

... minimize number of cores needed for a given level of performance as well as lessen the impact of sections of code with limited scalability

Maximize Application Scalability

... low latency, high-bandwidth communications fabric

• Solve Memory-intensive Problems

- ... large amount of memory
- ... low latency, high-bandwidth memory subsystem

Solve Data-intensive Problems

- ... high-bandwidth I/O subsystem
- ... large quantity of on-line disk, large quantity of archival storage

Provide Reliable Operation

- ... maximize system integration
- ... mainframe reliability, availability, serviceability (RAS) technologies

Blue Waters Petascale Computing System

Blue Waters Computing System

System Attribute	Abe	Blue Waters*
Vendor Processor	Dell Intel Xeon 5300	IBM Power7
Peak Performance (PF) Sustained Performance (PF)	0.090 0.005	≥1
Number of Cores/Chip Number of Processor Cores	4 9,600	>200,000
Amount of Memory (PB)	0.0144	>0.8
Amount of Disk Storage (Pl Amount of Archival Storage	/	>10 >500
External Bandwidth (Gbps)	40	100-400

^{*} Reference petascale computing system (no accelerators).

Blue Waters Project

Great Lakes Consortium for Petascale Computation

Goal: Facilitate the widespread and effective use of petascale computing to address frontier research questions in science, technology and engineering at research, educational and industrial organizations across the region and nation.

Charter Members

Argonne National Laboratory

Fermi National Accelerator Laboratory

Illinois Math and Science Academy

Illinois Wesleyan University

Indiana University*

Iowa State University

Illinois Mathematics and Science Academy

Krell Institute, Inc.

Los Alamos National Laboratory

Louisiana State University

Michigan State University*

Northwestern University*

Parkland Community College

Pennsylvania State University*

Purdue University*

The Ohio State University*

Shiloh Community Unit School District #1

Shodor Education Foundation, Inc.

SURA – 60 plus universities

University of Chicago*

University of Illinois at Chicago*

University of Illinois at Urbana-Champaign*

University of Iowa*

University of Michigan*

University of Minnesota*

University of North Carolina-Chapel Hill

University of Wisconsin-Madison*

Wayne City High School

* CIC universities

Petascale Computing Facility

Partners

EYP MCF/ Gensler **IBM** Yahoo!

- Modern Data Center
 - 90,000+ ft² total
 - 20,000 ft² machine room
- Energy Efficiency
 - LEED certified (silver)
 - Efficient cooling system

www.ncsa.uiuc.edu/BlueWaters

Challenges in Petascale Computing

Accuracy of Computational Models

Perturbation expansion not converging!

Energy of HF(aug-cc-pVDZ): Olsen et al., J. Chem. Phys. 105, 5082 (1996)

Scalability of Algorithms

(F. Gygi et al., "Large-Scale Electronic Structure Calculations of High-Z Metals on Blue Gene/L Platform," Proceedings of Supercomputing, 2006)

More Challenges

Programming Models and Languages

... will MPI be adequate

- PGAS (partitioned global address space) programming model
- Universal parallel C (UPC), Co-array Fortran (CAF)

New Computing Technologies

... new/revised algorithms will be needed

- Multicore and many-core chips
- Heterogeneous multicore/many-core chips

Enhanced Reliability

... need to minimize impact of/ride through failure

- Systems level (e.g., virtualization)
- Applications level

