
Multiperspective Panoramas for Cel Animation

Daniel N. Wood1 Adam Finkelstein1,2 John F. Hughes3 Craig E. Thayer4 David H. Salesin1

1University of Washington 2Princeton University 3GVSTC 4Walt Disney Feature Animation

Figure 1 A multiperspective panorama from Disney’s 1940 filmPinocchio. (Used with permission.)

Abstract

We describe a new approach for simulating apparent camera mo-
tion through a 3D environment. The approach is motivated by a
traditional technique used in 2D cel animation, in which a single
background image, which we call amultiperspective panorama, is
used to incorporate multiple views of a 3D environment as seen
from along a given camera path. When viewed through a small
moving window, the panorama produces the illusion of 3D motion.
In this paper, we explore how such panoramas can be designed
by computer, and we examine their application to cel animation
in particular. Multiperspective panoramas should also be useful for
any application in which predefined camera moves are applied to
3D scenes, including virtual reality fly-throughs, computer games,
and architectural walk-throughs.

CR Categories:I.3.3 [Computer Graphics]: Picture/Image Generation.

Additional Keywords: CGI production, compositing, illustration, image-
based rendering, mosaics, multiplaning, non-photorealistic rendering.

1 Introduction

Walt Disney’s 1940 feature animation,Pinocchio[14], opens with
a long, continuous shot, in which the camera appears to fly over the
rooftops of a small village and gradually descend into an alley fac-
ing Gepetto’s cottage. This simulated 3D fly-through was actually
accomplished via a stunning 2D effects shot. Instead of modeling a
3D scene, a single backdrop was painted that incorporated a kind of

3NSF STC for Computer Graphics and Scientific Visualization,
Brown University Site

“warped perspective” (Figure 1). The backdrop was then revealed
just a little at a time though a small moving window. The resulting
animation provides a surprisingly compelling 3D effect.

In this paper, we explore how such backdrops, which we call
multiperspective panoramas, can be created from 3D models and
camera paths. As a driving application, we examine in particular
how such computer-generated panoramas can be used to aid in
the creation of “Disney-style” 2D cel animation. To this end, we
envision using the following four-step process (Figure 2):

1. A 3D modeling program is used to create a crude 3D scene and
camera path. (Since only rough geometry is required, a modeler
like SKETCH [24] might provide an ideal interface.)

2. Our program takes the 3D scene and camera path as input,
and outputs one or more panoramas, each with a 2Dmoving
window for viewing the panorama during each frame of the
animation. When viewed as a whole, the panoramas may appear
strangely warped. However, when taken together, the panoramas
and moving windows should produce the illusion of 3D motion
along the camera path. In the rest of this paper, we will use the
term layout to refer to the panoramas taken together with their
moving windows.

3. An illustrator then uses each computer-generated panorama as a
guide to produce a high-quality artistic rendering of the distorted
scene, called anillustrated panorama. The illustrated panorama
may be created with any traditional media and scanned back
into the computer. Alternatively, the illustrated panorama may
be created with a digital paint system directly on the computer.

4. For each frame in the scene, images are extracted from the
panoramas according to the moving windows. These images
are composited (together with any additional foreground or
computer-animated elements) to produce the final frames of the
animation.



Figure 2 Pan. (a) Views from a 3D camera path. (b) Computer-generated layout. (c) Illustrated panorama. (d) Frames from the illustrated
panorama with a computer-animated bouncing ball.

This process leverages the strengths of both the computer and the
artist. The computer permits the use of much more complex camera
paths than can be created by hand; in addition, it allows easier
experimentation in designing them. The artist, on the other hand,
is free to create the panorama in any artistic style, and is not limited
by the availability of any particular computer rendering technique.
Moreover, because the computer-generated layouts are created
algorithmically from 3D models, they can be integrated with
live-action or with conventional 3D computer-generated effects—
something that it is extremely difficult to do with hand-drawn
layouts, which often do not accurately correspond to any physical
3D scene or camera path. In addition, an automated process for
creating such layouts should allow layout artists to work more
efficiently and employ layouts more widely.

In addition to cel animation, the multiperspective panoramas de-
scribed here should have applications to any situation in which
“canned” camera moves are applied to 3D scenes, including virtual-
reality fly-throughs, computer games likeMyst [16], and architec-
tural walk-throughs. In many internet-based applications, they may
also be significantly faster to download and interact with than true
3D models, such as VRML.

1.1 Related work

The work described in this paper is related to several different
threads of research in computer graphics.

First, our work is related to previous efforts on creating panoramas
from multiple views [8, 20]. Our problem is in one sense simpler
than that of these previous works, in that our source images
are computer-generated. We therefore avoid solving the point-
correspondence problem on images of real-world scenes. On the
other hand, we allow for large changes in camera position and ori-
entation across the panorama, and so we must accommodate a much
greater sort of perspective distortion. Our problem is also related
to Zorin and Barr’s work on correcting distortion in perspective
renderings [25, 26], although in our case we are concerned with
the problem of making the distortions appearlocally correct, rather
than globally correct. (Much of Escher’s art [6] also includes locally
correct but globally distorted perspective.)

Our work also fits into the general framework of image-based
rendering [3, 4, 5, 12, 15, 19], in which new views of a 3D scene
are created from one or more source images. Our process differs
from these previous image-based rendering approaches in that it
generates a warped view (or set of views) that is optimized for
the very simplest of extraction operations—that of selecting out
a single rectangle for each frame. An advantage of using such
multiperspective views is that the panorama created by the artist
appears in the final frames in exactly the same way as it was
painted—with no distortion in the shapes of the brush strokes, for
example. In trade for this, however, our panoramas only allow this
nice type of reconstruction along a single pre-specified path.

Another thread of research related to this paper is that of non-
photorealistic rendering [10, 13, 17, 22, 23], in which 3D geometry
is rendered in an artistically stylized form. The work in the paper
is motivated by this same desire to create artistically rendered
images of 3D geometry. However, the approach we take here
is to output a flat design that can be rendered in any style, by
hand, using traditional media. Alternatively, the panoramas that the
program constructs can be given as input to an image-based non-
photorealistic renderer, as described in Section 5.

This work is also related to previous results in automating the
process of cel animation and digital compositing [7, 21], although
we look at only a particular aspect of this process here—that of cre-
ating multiperspective panoramas—which has not been previously
investigated.

1.2 Overview

In the next section, we approach the problem of generating arbitrary
panoramas by first examining some simpler special cases. We
then formulate a general solution in Section 3. We discuss our
implementation in Section 4. Finally we conclude in Section 5 with
some discussion and directions for future work.

2 An introduction to layouts

In this section, we describe panoramas produced in the simple cases
of some basic camera moves: pan, tilt-pan, zoom, and truck [11].



Figure 3 Tilt-pan. Computer-generated layout and frames
(3D views on left, extracted frames on right).

Making layouts even for these relatively simple moves can be
nontrivial.

2.1 Pan

Suppose that we wish to make a movie of a scene, taken by a
camera rotating from left to right with its gaze always horizontal
(a pan). We can ensure that the vertical centerline of each image is
correct by unrolling a cylindrical projection for our panorama (as
in QuicktimeVR [3]). Then the center vertical lines of extracted
rectangles are perfect, but the vertical line segments on the left
and right of the image appear too short. If the scene contains
parallel horizontal lines, they become curved lines with vanishing
points both to the left and to the right. Figure 2b demonstrates
a pan panorama created by our application. With tight framing
(Figure 2d) the bowed lines are not too objectionable.

2.2 Tilt-pan

As a more complex example, imagine that we are looking down
and out across a city from the roof of a tall building, and wish to
rotate our view from left to right. Our tripod is level, but the camera
is tilted down as we pan. Thistilt-pan requires a more complex
layout.

If we simply use the cylindrical projection again, extracted rect-
angles from the lower portion of the cylinder will be deeply

Figure 4 Truck. Computer-generated layout (top two rows) and
frames (3D views on left, extracted frames on right). The four
panoramas at top are composited from front to back, starting with
the upper left panorama, and proceeding in clockwise order.

unsatisfactory: not only will horizontal lines become bowed so that
they all sag in the middle, but the extracted images will differ from
the original ones by a “keystoning” transformation. A far better
approximation is a conical projection [2].

Figure 3 shows a panorama created by our application for a tilt-
pan. Notice that the vertical direction is not mapped to a single
consistent direction in the panorama, and that the eventual sequence
of extracted rectangles rotates about the cone-point of the flattened
cone.

2.3 Zoom

Now suppose that instead of panning, we want tozoom(change
the focal length of a stationary camera). Our panorama is simply a
normal image from which we extract smaller and smaller windows.
In a painting the brush strokes will be enlarged as we zoom in, and
it may become necessary to cross-fade to a more detailed image.
For example, the opening sequence ofPinocchioends with a zoom
toward the window of Gepetto’s cottage followed by a crossfade to
a detailed closeup of the cottage. (Of course, if the final panorama
is generated digitally, tools like multiresolution paint [1] can help
address this problem.)

2.4 Truck

If the camera’s center of projection moves, occlusions may change.
Cel animation has taken two approaches to changing occlusion.
One approach is to ignore it—small errors in realism may well
go unnoticed. This approach works for relatively small occlusion



W(x)

(C ºW)(x)t

x

W

Pt

tE

Extracted

FramesPanorama3D Scene and Camera


Figure5 Thecoordinate systems and mappings between them.

changes (a hill in the far distance always occludes the same part of
the mountain in the very far distance, for example). Alternatively,
limited changes in occlusion can be suggested using multiplaning,
in which objects in thescenearegrouped roughly according to their
depths, and each group appears on a separate panorama with its
own moving window. The extracted frames are composited, back
to front, to produce the final animation. This effect has also been
widely used in computer games (e.g., the backdrops of driving
simulators).

In a scene with significant variation in depth, moving the camera
perpendicular to the gaze direction (called trucking), creates the
impression of objectsat different depthsmoving at different relative
speeds (called parallax). Figure 4 shows multiple panoramas cre-
ated for atrucking scene, aswell assomeframesafter compositing.
If several objects are at the same depth, then an orthographic
projectionof theplanecontaining themcanbeused asthepanorama
with no distortion. To theextent that thescenehasdepth, objects in
thesamepanorama wil l become distorted, as seen in thefigure.

3 General formulation

In this section we describe a general solution for arbitrary camera
paths, which specializes to the layouts we have already described
for simpler camera moves like pan, tilt-pan, zoom, or truck. As
previously stated, thegoal for our layout is for the framesextracted
from the panorama to match exactly the rendered images of the
original camera path, which wewil l call views for contrast.

Historically, cel animators were limited to extracting rectangular
sub-images from panoramas by their camera apparatus. We pre-
serve this constraint for four reasons: it is simple; it meshes well
mechanically with the existing animation process, and seamlessly
with existing animations; it forces the resulting panorama to look
(locally) like atraditional perspective view, making it easier for an
artist to draw; and it preserves the artistic texture and composition
of the panorama. Limiting extraction to rectangular windows with
a fixed aspect ratio also tells us something about the relationships
between neighboring frames in the resulting animation: any two
wil l be related by a similarity transform—a transform involving a
translation, rotation and uniform scale.

To create an image incorporating many perspectives, we begin
with views of the scene taken from different perspectives and try
to merge them. Regardless of how we merge them, each point
x 2 IR2 of the resulting panorama corresponds to a world-space
point W(x) 2 IR3 (Figure5). For each time t, let Ct denote the map
from world-spacepointsto view points, and Pt denotethemap from
view points at time t onto the panorama. Let Et be the map from a
subset of the panorama to an image that is the extracted frame for
time t. Finally, each point x of the panorama gets its color from a
view at some particular timeS(x). From these definitions it follows
that if t = S(x), then (Pt � Ct �W)(x) = x.

If the extraction process produces the same picture as the original
cameraview, then Et(x) = (Ct �W)(x) for all pointsx in thedomain
of Et. Hence (Pt � Et)(x) = (Pt � Ct � W)(x), which simplifies to
(Pt � Et)(x) = x when S(x) = t. For points y in the domain of Et for
which S(y) = s 6= t, we have that (Et � Ps � Cs � W)(y) = Et(y) =
(Ct �W)(y).

If (Ps � Cs � W)(y) differs much from (Pt � Ct � W)(y), then the
panorama wil l be distorted badly within the domain of Et, and so
the frame extracted at time t wil l look bad. In a perfect panorama
(one in which the extracted frames look like the original views),
(Pt �Ct �W)(y) = (Ps�Cs�W)(y) for all pointsy in thedomain of Et

such that S(y) = s. In thiscase(Et�Pt�Ct�W)(y) = (Ct�W)(y) for all
y in thedomain of Et implying that in any perfect layout the(linear)
extraction map Et is the inverse of the linear placement map Pt. In
our panorama, we therefore always choose Et to be the inverse of
Pt, sinceit isanecessary condition for apanoramatobeperfect. For
camera paths and scenes where no perfect panorama is possible, if
the distortion is small the same sort of argument implies that Et

is approximately the inverse of Pt. Thus, if we can find a suitable
rule for placing viewsinto thepanorama, then wewil l know how to
extract frames from thepanorama.

We now take our characterization of ideal panoramas and convert
it from a descriptive one to a prescriptive one—one that tells us
what the placement map Pt should be. We continue to be guided
by the necessary condition for a perfect layout: for world points w
visible at time t, (Pt � Ct)(w) = (Ps � Cs)(w) for values of s near t.
If we write s = t + � and then expand both P and C in a first-order
Taylor series about t, we get (Pt � Ct)(w) ' ((Pt + �Pt

0) � (Ct +
�Ct

0))(w), which can be simplified to (Pt � Ct
0)(w) + (Pt

0

� (Ct +
�Ct

0))(w) ' 0, using the linearity of Pt and Ct. Taking the limit
as� ! 0 gives (Pt � Ct

0)(w) = (�Pt
0

� Ct)(w). In words, the rate
at which w is moving across the film plane of the camera at the
instant t is the negative of the rate at which the film-plane point
Ct(w) isbeing translated acrossthepanorama. Wewant thistruefor
every w, but because Pt must be alinear map, we compromise by
requiring it only on average: we compute the similarity transform
that is the least-squares approximation of the optical flow, the flow
of world-spacepointsacrosstheimageplaneof thecamera, and use
its negative as the rate of change of the camera-placement map Pt.
Choosing P0 arbitrarily, we now find Pt by numerical integration.
Since Et is the inverse of Pt, all that is left for us to define is S(x).
In Section 4.2, we wil l describe a simple rule for S(x) that works
reasonably well in practice.

For sufficiently simple scenes, this formulation specializes to the
layouts described in Section 2. In fact, the layouts for Figures 2
through 4 were created using the general formulation described in
thissection.

4 Implementation

In this section we describe our implementation of the general
principles just described. We discretize the 3D camera path and
render framesat finely spaced intervals. Thenwefind theplacement
transform for each of these views; finally, we select from among
them in regions where they overlap.

4.1 Placement

The first view is arbitrarily placed at the origin of the panorama’s
coordinatesystem. Wefind atransform that placeseach subsequent
view relative to its predecessor. The relative transform from any
view i + 1 to i would ideally be the inverse of the optical flow
between them. These transforms are composed to place each view
on thepanorama.



Figure 6 Helicopter scene. Top left: Computer-generated layout above Voronoi diagram. Top Right: Illustrated panorama by Ed Ghertner at
Walt Disney Feature Animation. Bottom: Frames (3D views to the left of extracted frames.)



Figure 7 Frames from the Stonehenge movie (3D views on left,
extracted frames on right).

The optical flow function can be approximated by discrete sam-
pling. We take an evenly spaced grid of nine points (source points)
on viewi+1 and find corresponding points (target points) on viewi.
We reject any source points that see no objects in the scene; if
fewer than four points remain, we subdivide the source grid until
we have at least four points. The rejection of some source points
leads to variations in our approximation of optical flow, which is
why Figure 2 and Figure 3 are not exact cylindrical and conical
projections.

To find the target pointx0 corresponding to source pointx, we
simply fire a ray from camerai+1 through pointx into the 3D scene.
As mentioned above, if the ray hits nothing it is rejected. If the ray
intersects an object atW(x), then we letx0 be the projection ofW(x)
into the image plane of camerai. This correspondence assumes no
change in occlusion; that is, we assume that if camerai + 1 can
see pointW(x) then camerai can see it as well. Frame-to-frame

Figure 8 Two frames extracted from the Helicopter layout, showing
overlaid 3D axes and computer-animated rain.

coherence ensures that this assumption is reasonable.

Finally, we find the least-squares-best similarity transform that
matches the source points to their corresponding target points.
Horn [9] describes a closed-form solution to this least-squares
problem. We sometimes clamp the scale-change of the resulting
transform in order to restrict the amount by which portions of the
panorama are magnified.

4.2 Selection

Having placed all the views in a single coordinate system, we must
choose, for each point, which of the many overlapping views at
that point should be included in the final panorama. We project the
center of each view into the panorama (using the transformations of
the previous section). This collection of points, shown in yellow in
our panoramas, we call thespineof the camera path. Then, at every
point, we simply select the view corresponding to the closest spine
point. The selected portions of each view constitute the Voronoi
diagram of the spine.

Figure 6 shows a layout in which a helicopter flies across town, de-
scends while spinning around, and then approaches a helicopter pad
to land. (Note that the building with the helicopter pad, in yellow,
appears twice in the panorama from two different perspectives.)
The spine for the camera path and Voronoi diagram appear are also
shown. Observe that the first and last camera position contribute
large areas of the panorama. Along the spine, the separations
between the Voronoi regions are roughly perpendicular to the
motion of the camera center. Each camera position contributes a
narrow wedge to the overall panorama. (For illustrative purposes,
the figure shows the Voronoi diagram for a spine sampled very
coarsely; the actual spine was sampled much more finely.)

4.3 Multiplaning

As mentioned in Section 2.4, multiplaning uses several layers
of panoramas in concert to create an impression of parallax. In
our process, the 3D scene is partitioned into separate planes by
hand, although a useful area for future work would be automatic
partitioning of the scene. Our application generates panoramas for
each plane using the same camera path. The panorama for each
plane contains an alpha channel, and the final animation is produced
by simply compositing the extracted frames from back to front.

The Stonehenge example shown in Figure 7 illustrates an important
use of multiplaning. The two windows move in opposite directions
giving the impression of a camera circling around the ring of stones,
looking inward. This effect is difficult to achieve with a single
panorama. (We ignored the ground when firing rays during the
placement stage, on the assumption that its lack of features would
make a poor fit unimportant.)

4.4 Integrating computer-animated elements

Figure 8 shows the Helicopter movie, overlaid with 3D axes and
a computer-animated rain element whose motion is appropriate for



Figure 9 Pen-and-ink illustration of a panorama with two frames
from from the resulting animation using warping.

the 3D model and camera. This alignment would have been difficult
to achieve if the illustrated panorama had been designed by hand
without a corresponding 3D model.

We have implemented two different techniques for integrating
computer-animated foreground elements into our extracted frames.
In both cases, the frames of the computer-animated elements are
composited onto the layout movie. To generate the rain in the
helicopter scene we simply make a standard 3D animation of rain
using the 3D camera path. However, an element that interacts more
closely with the background, like the bouncing ball (Figure 2d),
requires a tighter match with the extracted frames. To generate the
frame at timet, we take the world-space positionw of the ball and
find the corresponding locationx on the panorama. To findx we
look at the positionsPs(w) on the panorama wherew could have
been placed at any times. We solveS(Ps(w)) = s for s, and let
x = Ps(w), which makesw = W(x). We then render the ball using
cameraCs. To create the final frame, we transform the rendered
image of the ball withEt � Ps = Et � E�1

s .

Incorporating a computer-animated element that interacts with the
background and spans a significant number of views (e.g., a flood
of molasses) would require that the element share all of the multiple
perspectives of the panorama.

5 Discussion and future work

Directly generating final panoramas.As our focus is on cel
animation, the panoramas our program creates are drafts with rough
transitions at the boundaries between views. Some applications, in-
cluding integrating computer-animated elements for cel animation,

Figure 10 Library with curtains and fireplace. Excessive distortion
in computer-generated panorama and unwarped frame (on left) is
corrected in warped frame (on right).

require high-quality computer generated panoramas. Our staircase
panorama, Figure 9, generated using a computer pen-and-ink illus-
tration system [18] demonstrates one way to automatically create a
final panorama, but a program that renders ready-to-use panoramas
would be useful.

Panorama-creation problems.There are situations where success-
ful panorama-creation is impossible. When occlusions on a single
object change drastically without the object leaving the camera
frame (e.g., if a camera makes a 360-degree pass around a dinner
table, always showing the centerpiece and the surrounding place-
settings), each extracted frame will show not only the part of the
object that ought to be visible, but “adjacent” parts that ought
to be hidden in the current view. Even for objects with smooth
boundaries, this problem can occur if the visible silhouette of the
object changes radically with different views. This problem is also
closely related to another difficult situation: radical perspective
changes. An example is a bug’s-eye view of the floor as the bug
flies upwards from the floor to a table. In each case, the difficulty
is that the aggregate optical flow is not well-approximated by a
similarity transform. This can be addressed, in part, by warping,
which is discussed below.

There are also situations whereour algorithm does not pro-
duce successful layouts, even though such layouts can be hand-
generated. Figure 10 shows an example: because of the strong
linear elements of the scene, it is essential that certain large-
scale geometric features—the horizontal shelves and the vertical
dividers—be preserved. Our algorithm, whose selection scheme is
purely local, cannot handle this type of constraint. Once again,



warping can help address the problem, but an ab initio solution
would bepreferable.

Finally, there are two global issues not addressed by our method:
first, the panorama can overlap itself as images from frames at
widely separated timesareplaced (thisalmost happens in Figure6);
second, if the cumulative “scale” component of successive inter-
frametransformsbecomestoo largeor small, theartist may becom-
pelled to render similar parts of the panorama at widely-differing
scales, making a coherent artistic texture difficult. All owing the
extraction and placement maps to be adjusted by an arbitrary
projective transformation might alleviate this; choosing the best
correction would require global knowledge however.

Warping. If we store the world-space locations of points in the
panorama, we can warp the panorama to produce a distortion-free
animation. At time t, point x iswarped to (Ct�W)(x). Thistechnique
can be used with panoramas that would not produce a reasonable
movieusing thetraditional technique, asdemonstrated in thelower-
right frame of Figure 10. (Warping is also used in the pen-and-ink
exampleof Figure9.) Unfortunately, using warping also hasserious
shortcomings. In particular, in some cases a warped view of the
panorama may reveal world-space points that were not captured in
thescene, leaving undesirable holes.

Fully exploring the potential of warping wil l surely expose a
number of problems. Without the rectangular extraction constraint
our general formulation wil l lead to a different algorithm for
constructing the panorama. A good solution to the problems of
occlusion and hole-filling for multiperspective panoramas should
borrow from and extend related work in image-based rendering.

Acknowledgements

We would like to thank Scott Johnston for exposing us to the
traditional useof panoramas in cel animation, and Ronen Barzel for
suggesting the idea of generating such panoramas algorithmically.
We also thank Tom Baker, Ed Ghertner, Dan Hansen, Kiran Joshi,
Dan St. Pierre, Ann Tucker, and M.J. Turner from Disney for
educating us further about cel animation and layouts. Particular
thanks to Ed Ghertner for the illustrated panorama. Thanks to
Brad deGraf and Protozoa for their VRML Stonehenge. Thanks to
Michael Wong and Cassidy Curtis for helping to create the pen-
and-ink staircase, and to Eric Stollnitz for creating thediagram and
helping with thepaper.

This work was supported by an Alfred P. Sloan Research Fellow-
ship (BR-3495), an NSF Presidential Faculty Fellow award (CCR-
9553199), an ONR Young Investigator award (N00014-95-1-0728)
and Augmentation award (N00014-90-J-P00002), an NSF graduate
fellowship, and an industrial gift from Microsoft.

References

[1] Deborah F. Berman, Jason T. Bartell, and David H. Salesin. Multires-
olution painting and compositing. In Proceedings of SIGGRAPH ’94,
pages 85–90, New York, 1994. ACM.

[2] Nathaniel Bowditch. Bowditch for Yachtsmen: Piloting; Selected from
The American Practical Navigator. David McKay Company, Inc.,
New York, 1976.

[3] Shenchang Eric Chen. Quicktime VR: An image-based approach to
virtual environment navigation. In Proceedings of SIGGRAPH ’95,
pages 29–38, New York, 1995. ACM.

[4] Shenchang Eric Chen and Lance Williams. View interpolation for
image synthesis. In Proceedings of SIGGRAPH ’93, pages 279–288,
New York, 1993. ACM.

[5] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling
and rendering architecture from photographs: A hybrid geometry- and

image-based approach. In SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pages 11–20. ACM SIGGRAPH, Addison
Wesley, August 1996.

[6] MauritsC. Escher et. al. M.C. Escher : HisLifeand CompleteGraphic
Work. Harry N. Abrams, New York, 1992.

[7] Jean-Daniel Fekete, Érick Bizouarn,Éric Cournarie, Thierry Galas,
and Frédéric Taillefer. TicTacToon: A paperless system for profes-
sional 2-D animation. In SIGGRAPH 95 Conference Proceedings,
Annual Conference Series, pages 79–90. ACM SIGGRAPH, Addison
Wesley, August 1995.

[8] Paul Haeberli. Graficaobscuraweb site. http://www.sgi.com/grafica/,
1997.

[9] Berthold K. P. Horn. Closed-form solution of absolute orientation
using unit quaternions. Journal of the Optical Society of America,
4(4), April 1987.

[10] John Lansdown and Simon Schofield. Expressive rendering: A
review of nonphotorealistic techniques. IEEEComputer Graphicsand
Applications, 15(3):29–37, May 1995.

[11] Lenny Lipton. Independent Filmmaking. Straight Arrow Books, San
Francisco, 1972.

[12] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-
based rendering system. In Proceedings of SIGGRAPH ’95, pages
39–46, New York, 1995. ACM.

[13] BarbaraJ. Meier. Painterly rendering for animation. In SIGGRAPH 96
Conference Proceedings, Annual Conference Series, pages 477–484.
ACM SIGGRAPH, Addison Wesley, August 1996.

[14] Walt Disney Productions. Pinocchio. Movie, 1940.

[15] Matthew Regan and Ronald Post. Priority rendering with a virtual
reality address recalculation pipeline. In Proceedings of SIGGRAPH
’94, Computer Graphics Proceedings, Annual Conference Series,
pages 155–162. ACM SIGGRAPH, ACM Press, July 1994.

[16] Robyn and Rand Miller. Myst. Computer game, Cyan, Inc., 1993.

[17] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering
of 3-D shapes. In Computer Graphics (SIGGRAPH ’90 Proceedings),
volume24, pages 197–206, August 1990.

[18] Michael P. Salisbury, Michael T. Wong, John F. Hughes, and David H.
Salesin. Orientable textures for image-based pen-and-ink illustration.
In SIGGRAPH 97 Conference Proceedings. ACM SIGGRAPH, Addi-
son Wesley, August 1997.

[19] Steven M. Seitz and Charles R. Dyer. View morphing: Synthesizing
3D metamorphoses using image transforms. In SIGGRAPH 96
Conference Proceedings, Annual Conference Series, pages 21–30.
ACM SIGGRAPH, Addison Wesley, August 1996.

[20] Richard Szeliski. Video mosaics for virtual environments. In IEEE
Computer Graphics and Applications, pages 22–30, March 1996.

[21] Bruce A. Wallace. Merging and transformation of raster images
for cartoon animation. In Computer Graphics (SIGGRAPH ’81
Proceedings), volume 15, pages 253–262, August 1981.

[22] GeorgesWinkenbach and David H. Salesin. Computer-generated pen-
and-ink illustration. In Proceedingsof SIGGRAPH ’94, pages91–100,
July 1994.

[23] Georges Winkenbach and David H. Salesin. Rendering free-form
surfaces in pen and ink. In SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pages 469–476. ACM SIGGRAPH, Addi-
son Wesley, August 1996.

[24] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes.
SKETCH: An interface for sketching 3D scenes. In SIGGRAPH 96
Conference Proceedings, Annual Conference Series, pages 163–170.
ACM SIGGRAPH, Addison Wesley, August 1996.

[25] Denis Zorin. Correction of Geometric Perceptual Distortions in
Pictures. California Institute of Technology, Pasadena, CA, 1995.

[26] Denis Zorin and Alan H. Barr. Correction of geometric perceptual
distortion in pictures. In SIGGRAPH 95 ConferenceProceedings, An-
nual Conference Series, pages 257–264. ACM SIGGRAPH, Addison
Wesley, August 1995.


	Abstract
	Introduction
	Related work
	Overview

	An introduction to layouts
	Pan
	Tilt-pan
	Zoom
	Truck

	General formulation
	Implementation
	Placement
	Selection
	Multiplaning
	Integrating computer-animated elements

	Discussion and future work
	Acknowledgements
	Figures
	Figure 1 A panorama from Pinocchio
	Figure 2 Panorama creation process
	Figure 3 Tilt-pan
	Figure 4 Truck
	Figure 5 Coordinate systems and mappings between them
	Figure 6 Helicopter scene
	Figure 7 Frames from the Stonehenge movie
	Figure 8 Computer-animated rain and axes
	Figure 9 Pen-and-ink illustrated panorama
	Figure 10 Library with and without warping


