Inverse Shade Trees for Non-Parametric Material Representation and Editing

Jason Lawrence
Christopher DeCoro Szymon Rusinkiewicz
Princeton University Columbia University
Wojciech Matusik
Hanspeter Pfister
Ravi Ramamoorthi

Complex Appearance

Appearance Acquisition

Challenge

- Given: dense set of measurements of light transport function.
- Provide: intuitive representation that is compact and allows editing.

Original Measured
Appearance

Result of Editing
Material Properties

Spatially-Varying Reflectance

Spatially-Varying Bidirectional Reflectance Distribution Function

Observation \#I:
Represent high-dimensional measured function as tree-structured collection of lower-dimensional parts.

Observation \#2:
Decomposition at each level is matrix factorization.

Observation \#3: Intuitive decomposition achieved using constrained factorization.

Outline

- Introduction
- PriorWork
- Factorization
- Editing
- Conclusions and Future Work

Fitting Parametric Models

- Cluster fits of parametric BRDF:
[Lensch et al. 03], [Goldman et al. 05].
- Editable if nice clusters
- Single analytic BRDF limits accuracy

Lensch et al. 2003

Dimensionality Reduction

- Apply rank-reduction algorithms to data matrix: [Dana et al. 99], [Chen et al. 02], [Tsumura et al. 03]
- Compact and accurate
- Cannot be directly edited

HOSVD "Basis Images" from Wang et al. 2005

Outline

- Introduction
- PriorWork
- Factorization
- Editing
- Conclusions and Future Work

Tabulate Raw Data

Tabulate Raw Data

Factorization of SVBRDF

6D SVBRDF

2D Spatial
 Blending Weights

6D SVBRDF

4D Basis BRDFs

Research Challenge

Providing an intuitive factorization:

Key Idea

Incorporate domain-specific knowledge as constraints of factorization:

Plausible BRDFs

Factorization Constraints

- Non-negativity:

Reflectance functions are non-negative

- Sparsity:

Few BRDFs at each position

- Domain-specific:

Energy-conservation, monotonicity, etc.

Factorization Algorithms

Algorithm Groups	Properties			
	Linear	Positive	Sparse	Domain
PCA	\checkmark	X	X	X
Clustering	K	\checkmark	\checkmark	K
NMF	\checkmark	\checkmark	K	K
Our Method	\checkmark	\checkmark	\checkmark	\checkmark

Our Method

Alternating Constrained Least Squares (ACLS)

I. Initialize W and H
2. Update W
3. Update H
4. Iterate until convergence

Our Method

Alternating Constrained Least Squares (ACLS)

Convex QP Problem

I. Initialize W and H
2. Update W
3. Update H

$$
\begin{aligned}
& \min _{\vec{w}}\|\vec{v}-\vec{w} H\|^{2} \\
& \vec{l} \leq\left\{\begin{array}{c}
\vec{w}^{T} \\
A \vec{w}^{T}
\end{array}\right\} \leq \vec{u}
\end{aligned}
$$

4. Iterate until convergence

Appearance Constraints

- Non-negativity

Value constraint

- Energy conservation

Constraint on sum

$$
\vec{l} \leq\left\{\begin{array}{c}
\vec{w}^{T} \\
A \vec{w}^{T}
\end{array}\right\} \leq \vec{u}
$$

- Monotonicity

Constraint on derivative

Appearance Constraints

- Non-negativity
$\underset{\substack{\text { nergy conservation } \\ \text { Constraint on sum }}}{\text { Value constraint }} \vec{l} \leq\left\{\begin{array}{c}\vec{w}^{T} \\ A \vec{w}^{T}\end{array}\right\} \leq \vec{u}$
- Monotonicity

Constraint on derivative

Appearance Constraints

- Non-negativity

Value constraint

- Energy conservation

Constraint on sum

$$
\vec{l} \leq\left\{\begin{array}{c}
\vec{w}^{T} \\
A \vec{w}^{T}
\end{array}\right\} \leq \vec{u}
$$

- Monotonicity

Constraint on derivative

Appearance Constraints

- Non-negativity

Value constraint

- Energy conservation

Constraint on sum

$$
\vec{l} \leq\left\{\begin{array}{c}
\vec{w}^{T} \\
A \vec{w}^{T}
\end{array}\right\} \leq \vec{u}
$$

- Monotonicity

Constraint on derivative

Measure of Sparsity

Measure of Sparsity

Season's Greetings Dataset

Gold Foil Silver Foil White Paper Blue Paper

Season's Greetings Dataset

Factorization Computed with ACLS (4 Terms)

Silver Foil

Gold Foil

White Paper

Blue Paper

Wood+Tape Dataset

12 Camera Positions x 480 Light Positions = 6,000 Images

Oak Wood
(Anisotropic)

Semi-Transparent Tape

Retroreflective Bicycle Tape

Wood+Tape Dataset

Blending Weights from ACLS (5 Terms)

Scotch Tape

Dark Grain

Light Grain

Red Bicycle White Bicycle

2D Blending Weights

4D Basis BRDFs

Outline

- Introduction
- PriorWork
- Factorization
- Editing
- Conclusions and Future Work

Specular Highlight Edit

Material Replacement

Blending Weights Edit

Outline

- Introduction
- PriorWork
- Factorization
- Editing
- Conclusions and Future Work

Conclusion

Inverse Shade Trees enable applications with measured appearance data:

Compression for interactive rendering
Editing of texture and reflectance

Concurrent Work

Translucent
[Peers et al. 06]

Time-Varying
[Gu et al. 06]

Future Work

- Automatic selection of tree topology
- Additional composition nodes: (e.g. over operators, masks, etc.)
- Higher-dimensional light transport functions
- Other linear decomposition problems

Acknowledgements

- Funding:

NSF grants CCF-0347427, CCF-0305322 and CCF-0446916 Sloan Foundation

- Data:

Steve Marschner and the Cornell Graphics Laboratory
Tim Weyrich

- Discussions:

Marc Levoy
Steve Marschner
SIGGRAPH reviewers
TIGGRAPH reviewers

Thank You

http://ist.cs.princeton.edu

