
Stylized Video Cubes

Allison W. Klein1 Peter-Pike J. Sloan2 Adam Finkelstein1 Michael F. Cohen2

1Princeton University 2Microsoft Research

Abstract

We present a new set of non-photorealistic rendering (NPR) tools
for processing video. Our approach is to treat the video as a space-
time volume of image data. Previous tools to process video for
an impressionist effect have painted collections of two-dimensional
strokes on each successive frame of video. In contrast, we create a
set of “rendering solids.” Each rendering solid is a function defined
over an interval of time; when evaluated at a particular time within
that interval, it provides parameters necessary for rendering an NPR
primitive. Rendering solids can be rendered interactively, giving
immediate feedback to an artist along with the ability to modify
styles in real time.

Benefits of our approach include: a more unified treatment of
the video volume’s spatial and temporal dimensions; interactive,
aesthetic flexibility and control; and the extension of stylized ren-
dering techniques for video beyond the impressionist styles previ-
ously explored. We show example styles inspired by impressionist,
cubist, and abstract art of the past century.

1 Introduction

This paper presents a new framework for stylized rendering of
video. The cornerstone of our approach is the treatment of video
as a video cube, a space-time volume of image data. Rather than
successively defining a set of two-dimensional, non-photorealistic
rendering (NPR) primitives (such as paint strokes) on each video
frame, we create a set of parameterized rendering solids. A
rendering solid is a continuous, vector-valued function defined
over an interval of time. When evaluated for a specific frame,
this function provides the parameters necessary for rendering an
NPR primitive onto the output frame. Rendering solids may be
specified automatically from the underlying video, interactively
with authoring tools, or through a combination of both interactive
and automatic techniques. The evaluation, composition, and final
rendering of the solids occur in real time.

Our system for video stylization proceeds in two stages. First,
we provide various (offline and interactive) tools for the user to
define a collection of rendering solids based on the video volume,
for example, growing them along flow trajectories while sampling
color data. Second, in an interactive application, each rendering
solid is evaluated to provide the rendering parameters for a sprite
that is composited into the frame buffer for each output frame.

Figure 1: Example NPR video styles created with our system.

The user can view the resulting video while modifying the set of
rendering solids by smoothing their values over time or adjusting
their various color and geometric attributes.

Treating the video as a volume offers several advantages over
previous NPR video processing techniques. First, with our ap-
proach, one can make local choices based on global knowledge
from the full video sequence. For example, because rendering
solids exist over a stretch of time, they may be constructed to
achieve certain artistic goals, such as temporal coherence of strokes,
or stroke scale and density distributions based on a local measure
of “importance.” Rendering solids also enable anticipatory effects,
such as automatically stretching the rendered texture sprite in the
direction of motion, or localized temporal shifting of the strokes.

The second benefit of our approach is stylistic flexibility under
interactive control. The final rendering is done in real time. All
images in this paper were rendered in less than 1/30th of a
second. Rendering solids create a layer of abstraction between the
information in the original video sequence and the final rendered
appearances of a set of NPR textured sprites. This abstraction
enables interactive modification of the mapping between rendering
solid parameters and the rendered sprites. Thus, even within a
single aesthetic style such as painterly rendering, we are able to
provide artists with real-time feedback, enabling them to finely tune
the appearance of the output video.

Finally, much of the previous efforts in NPR video processing
have focused on filtering video for “impressionist” effects, and we
demonstrate that our representation is sufficiently general to capture
such effects. However, our main contribution is that rendering
solids extend NPR video processing to encompass a host of new
visual styles (Figure 1). In particular, rather than focusing on
simulating any specific traditional artistic medium (e.g., oil paint
or pen-and-ink), and translating it into the time domain, we offer
tools that allow artists to create entirely new forms of art based on
video. Our results are intended as examples of what the rendering



solid abstraction offers, as opposed to demonstrating specific styles.
The remainder of this paper is organized as follows. First,

we briefly examine related work. Next, we discuss some general
principles of processing the video as a space-time volume and give
a more detailed explanation for rendering solids. After briefly
looking at a user-interface for defining rendering solids, we then
demonstrate how our approach can be used to implement a variety
of styles. (Since the work presented here is fundamentally about
moving images, the results are best seen on the accompanying
video.) Finally, after presenting some performance details, we
conclude with proposed areas of future work.

2 Related Work

Researchers have developed a variety of tools to modify two-
dimensional images, giving the results a “painterly” or hand-
created look in such diverse styles as impressionism [8, 9], pen
and ink [17], watercolor [3], and engraving [15]. However, when
NPR methods designed for static images are applied to video
sequences on a frame-by-frame basis, the results generally contain
undesirable temporal aliasing artifacts. To overcome these artifacts,
Litwinowicz [14] used optical flow information to push painterly
strokes from one frame to the next in the direction of pixel
movement. Hertzmann et al. [10] created each successive frame of
the video by first warping the previous frame to account for optical
flow changes and then painting over areas of the new frame that
differ significantly from its predecessor. In our work, we construct
three-dimensional (space and time) rendering solids using optical
flow or other methods, before any rendering is done. The trajectory
in time of the rendering solid can then be smoothed or otherwise
modified before actually being rendered. In addition, our work
is not style-specific and gives the artist greater interactive control
than any method designed to simulate a specific artistic medium.
Nevertheless, painterly styles can be rendered in our system.

Our system is not the first to treat video as a volume or view
time-sequenced imagery from viewpoints other than on the time
axis. Fels and Mase [5] presented an interactive system for
passing arbitrary cutting planes through the video data volume.
One could, for example, view slices of the cube that are not
necessarily orthogonal to the time axis (Figure 2). By slicing the
video parallel to the time axis, motion (of either scene elements
or the camera) is revealed as changes across the scanlines; each
scanline contains the time-trace of a single pixel from the original
video. In computer vision, such images are sometimes referred to as
epipolar diagrams [1, 4]. Multiple-center-of-projection images [16]
and multiperspective panoramas [18] may also be considered two-
dimensional (though non-planar) slices of a video in which the
camera is moving. One of our contributions is to apply the
underlying ideas of a video volume and non-standard cutting planes
towards non-photorealistic rendering of video.

Finally, this work has been greatly inspired by the aesthetics of
the cubist and futurist art movements of the early 20th century.
Just as these artists mixed space and time within an image, we
leverage the ability to slice the input video in non-standard ways
to mix space and time. Nonetheless, it is not the goal of this paper
to produce an automated video filter for reproducing the style of
Picasso, Duchamp, or any other specific artist. Instead, we wish to
provide a framework for creating many different styles.

3 Processing Video as 3D Data

We begin this section by introducing video cubes, and explain
the relationship between video cubes and rendering solids. Next,
we give a high-level overview of the framework for defining,
modifying, and interactively rendering the rendering solids to create

Figure 2: Cutting a video cube. Left: a frame of a video sequence.
Right: an image generated by a non-axis-aligned cutting plane.

stylized video. We then look in more detail at the construction of the
rendering solids and conclude by providing a number of example
styles based on these rendering solids.

3.1 Video Cubes and Rendering Solids

A video is a sequence of images that has been discretized in 2D
space (pixels) and in time (frames). Because there is a large body
of work in computer graphics devoted to discretized 2D image
processing techniques, it seems only natural that most NPR video
processing work to date has consisted of running these techniques
on each individual frame. The major concession to the third
dimension, time, has been the use of optical flow [10, 14]. One
of our main goals is to treat time in a more unified way.

Our approach is to treat the video as a video cube, a three-
dimensional volume of pixel data (Figure 2). Rather than defining
two-dimensional strokes successively on each video frame, we
create a set of parameterized “rendering solids” that exist within
the space-time volume of the video cube. A rendering solid is a
continuous, vector-valued function defined over an interval of time.
When evaluated at a particular time t, a rendering solid provides the
parameters necessary to render an NPR primitive. Each rendering
solid may be thought of as defining a solid region within the video
cube. Depending on the rendering style, the set of rendering solids
may either intersect, fully tile the volume, and/or leave parts of the
cube empty.

More formally, a rendering solid S is a function
S : �[t1,t2] �→ �m that maps time t in the interval
[t1, t2] to an m-dimensional vector expressing properties such
as color, position, and other parameters for rendering a (possibly
textured) sprite that will be composited onto the output frame. The
use of rendering solids transforms the discrete representation of
the video volume into a collection of continuous functions of time.
These continuous functions are beneficial in that they may be sam-
pled as finely as desired for different playback speeds, or smoothed
for temporal coherence. We should note that playback time T , the
rendering direction, typically aligns with the conventional time
dimension in the original source video; however, for some artistic
effects, “time” might align differently.

3.2 Defining Rendering Solids

Defining a set of rendering solids proceeds through a combination
of automated and artist-initiated, interactive methods. The video
is first pre-processed to add additional information including
measures of color gradients and importance, a measure of local
variation in space and time. Pixel color plus these derived values are
then used as input to a variety of automated and interactive tools to
define the rendering solids. We next describe three of many possible
choices for types of rendering solids.



Figure 3: Our interface for defining rendering solids. Here we see a user interactively creating a set of cutting lines; each cutting line is
defined by two points (specified by mouse clicks). The cutting lines will be interpolated between key frames to describe swept surfaces over
time, dividing the volume into video shards, which are described in section 4.3.

Figure 4: Our interface for the interactive rendering session. The artist has a variety of interactive controls over the final look of the video, for
example: choosing the texture atlas; drawing more or fewer rendering solids to control how “busy” the image appears; and scaling, shifting,
smoothing, or adding noise to the parametric curves of the rendering solids



Shard-like Rendering Solids

The first type of rendering solid subdivides the video volume into
a number of shard-like solids. An artist interactively creates a set
of swept surfaces, each of which slices the video volume into two
pieces. Each swept surface is created by interpolating a series
of cutting lines placed on key frames. To create a cutting line,
the user specifies the line by placing two points (two left clicks)
in the current frame. The first control point is the line’s center
point and the second control point specifies the direction of the line
through the center point. (See Figure 3.) The user then scrolls
through the input video to a different key frame, selects the line,
and modifies either its center point or direction. Each frame in
which the cutting line is manipulated is considered to be a key
frame. Between key frames, the values for the two control points
are linearly interpolated. For frames before the first key frame or
after the last key frame, the control lines simply use the closest
key frame values. The outer boundaries of the video volume are
also considered to be cutting surfaces separating the video from the
space outside.

The union of the set of interactively constructed cutting surfaces
(and video boundaries) defines a set of shard-like rendering solids.
Each shard is assigned an ID made up of a bit code indicating
whether it lies on the left or right side of each cutting surface. Note
that a single shard might occupy two disjoint portions of the video
volume since it may vanish and then later reappear as the swept
surfaces cross and then uncross. The shard ID is then used to anchor
interactively modified rendering parameter values at runtime.

The cutting surfaces defining the shards also help define “flow”
within the video volume1. For any point P in a video frame i, we
determine the flow vector by:

1. Initialize the flow vector to (0, 0).

2. Find the cutting lines that form the polygonal cross-section of
the shard enclosing P .

3. For each line segment L of the shard polygon, with center
point C and direction D:

(a) Distance = P ’s perpendicular distance to L in frame i.

(b) Weight = (length of L in frame i) / (Distance + ε). The
ε is used to prevent division by zero. Note: Weight = 0
for boundary lines.

(c) Displacement velocity = (L’s center point in frame
i + 1) — (L’s center point in frame i).

(d) Rotation vector = (L’s direction in i) × (L’s direction
in i + 1)

(e) Angular velocity = Rotation vector × (the vector from
P to L’s center point in frame i).

(f) Current velocity = Displacement velocity + Angu-
lar velocity

(g) Flow vector += Current velocity · Weight

4. Normalize Flow vector by the sum of all weights

KD-Tree-Based Rendering Solids

An automated method for defining cutting line segments uses
importance values to construct a kd-tree defining a set of rendering
solids whose rectangular cross-sections tile any time slice. Kd-
trees are typically used to hierarchically decompose space into a

1Automatic optical flow methods could also be used, however, we found
that these methods were not very robust and did not provide the artist any
controls.

Figure 5: A simplified, didactic image of our time-varying kd-
tree within the video volume. The shaded plane shows the kd-tree
decomposition for the current time t. The curved lines through the
video volume show the edges of the swept surfaces created by the
smoothly moving kd-tree partitions over time.

small enough number of cells such that no cell contains too much
complexity. For similar purposes, we use kd-trees to subdivide the
video volume into sub-volumes, each containing approximately the
same amount of importance, while also attempting to maintain an
even aspect ratio. The kd-tree is constructed of alternating vertical
and horizontal swept surfaces. The first level of the kd-tree defines
a vertical surface that cuts the entire video volume in two. Each
subsequent level (alternating horizontal and vertical) slices each
subvolume. The position of the vertical and horizontal kd-tree
partitions change through time, thereby producing curved swept
surfaces. Figure 5 shows a simplified, didactic image of two levels
of such a kd-tree within the video volume. The shaded plane shows
the kd-tree decomposition for the current time t. The curved lines
through the video volume show the edges of the swept surfaces
created by the smoothly moving kd-tree partitions over time.

To construct these k-d trees, we first build a 3D summed-
area-table[2] of importance. The summed-area-table provides the
values needed to quickly evaluate the integral of importance over
any rectilinear subregion of the video. Kd-tree construction then
proceeds by first determining a vertical swept surface that, at each
point in time, has approximately equal total importance on each
side. More specifically, the horizontal position, x(t), is determined
such that

∫ t+.25

t−0.25

∫ yres

0

∫ x

0

I(x, y, t)dtdydx

=
∫ t+.25

t−0.25

∫ yres

0

∫ xres

x

I(x, y, t)dtdydx

In other words, to create a smoothly varying vertical surface, the
horizontal position of the surface is determined so that a slab
one half second thick in time, centered about each time value, is
(vertically) divided equally in terms of importance. In a similar
fashion, each half of the volume is divided by a horizontal swept
surface. Each of these quarters is then divided vertically, and so on,
until six levels of kd-tree are defined. Each of the rendering solids
defined by the kd-tree is annotated with its average color.



Worm-like Rendering Solids

A third type of rendering solid is defined by a point trajectory
through time, in other words a curved line that does not bend
back on itself in the time dimension. At each time t, the (x, y)
location of the trajectory will guide the placement of textured
sprites at runtime. The union of these sprites for a single trajectory
implicitly defines a worm-like solid structure. Parameters such as
color or orientation (based on color gradient information) over time
are recorded along these trajectories and added to their respective
rendering solids to be used at runtime.

Automatic and interactive tools are provided to generate a
set of position trajectories. The simplest trajectory is one that
has a constant value, in other words a single position that stays
still through time. More interesting trajectories can be created
interactively by interpolating points placed at key frames. Finally,
large sets of trajectories can be automatically generated that follow
the flow defined by the shards described earlier.

To create a set of evenly spaced rendering solid trajectories that
follow the flow, we have adapted the 2D streamline placement
algorithm of Jobard et al. [12]. The strategy is to divide the volume
into a regular grid, and then grow curves (streamlines) by stepping
through the grid following flow. Whenever a curve advances to
a new grid cell, it can efficiently determine if it is too close to
nearby curves simply by checking neighboring cells; if the current
streamline is closer than a pre-determined distance threshold, or if it
reaches the edge of the volume, the curve terminates. At this point
the algorithm walks along the curve checking for a place to seed a
new curve, again by testing nearby cells for vacancy. In adapting the
Jobard algorithm to 3D, we had to address the efficiency challenge
of maintaining the entire voxel grid in memory and then walking
that memory with little coherence. Fortunately, our source of data
(flow) provides a solution to this problem: the flow at every point
has a component in the time dimension. Thus, we modify the
algorithm to start from the first frame and proceed forward through
time, considering one small slice of the volume at any time. In that
slice, we keep track of many curves at once, and advance all of
them to the next slice in unison. As we advance, some curves are
terminated, and new curves are born in the interstices. The results
of this process are a set of discretized curves that are the (x,y,t)
trajectories of a set of rendering solids. Finally we fit continuous
cubic B-splines to these values. This reduces the amount of data,
provides a means to efficiently evaluate position at any point in
time, and also provides simple methods to smooth the trajectories
by reducing the number of control points.

Summary

After creating rendering solids using the techniques described
above, we can use these rendering solids at runtime to interactively
render NPR frames. Each rendering solid can be evaluated at
any point in time, returning a shape (a polygon for each shard,
a rectangle for each kd-tree node, or a point for each worm-like
solid), plus values for color, orientation, or other properties needed
at runtime. We do not consider these three types of rendering solids
to be a complete set. Far from it, we see these as just a few examples
of the kinds of representations that are possible. Depending on the
style chosen and the associated parameter settings, a wide variety of
visual representations can be created in real-time from the rendering
solids. We will explore a few of these next.

4 Stylized Rendering

In this section, we discuss a number of styles we used to explore the
concept of rendering solids. Since each style provides a number of
parameters that can be modified in real time, the artist is given wide

latitude to interactively explore different visual results. All styles
we describe below are rendered in less than a thirtieth of a second
per frame.

The specific examples we show were inspired by 19th and 20th

century paintings and styles – paintings by Monet (impressionism),
Picasso (cubism), Duchamp (futurism), Mondrian (abstract), and
Hockney (photo mosaics). However, the algorithms described here
are not intended to automate or replicate works by those artists.
Indeed, it is difficult to imagine an algorithmic representation of
the genius of these artists. Nor is it clear how any of these artists
would translate his work for time-changing imagery, even if it were
possible. Our goal is to provide tools for people to be able to
create new forms of video-based art, and the examples we present
were inspired by the works of those masters. The styles described
below are only a few point samples in a very wide space of
possibilities that open up by considering the video as a data volume.
Therefore, these styles and their particular implementation details
are presented more as examples of what one can do within this
space rather than as a comprehensive coverage of the possibilities.

In each style, output time, T , is a function of the input time,
t, allowing the artist to modify the speed or produce other effects.
Each rendering solid may also be interactively repositioned in time,
thus any single output frame may draw information from many
points in time in the original video. The inverse function t(T )
provides the value to sample the rendering solids for each output
frame. We will simply refer to this sampling time as t.

To render each frame, we evaluate each rendering solid at the
current time t to extract rendering parameters such as position,
scale, and orientation. These rendering parameters plus time can
also be interactively modified. For example, the rendering solid
can be shifted in space and time, rotated, and/or scaled. Color
values can be scaled for effects such as increased saturation. If
the rendering calls for extracting a texture from the underlying
video, the texture coordinates can also be shifted and/or scaled.
(See Figure 4.) The fact that rendering solids form an abstraction
separating the structure of the input video from its final, non-
photorealistic rendering enables this interactive exploration of
stylistic choices.

4.1 Paint Strokes

“Impressionist” imagery is, in general, constructed of short strokes
of color that, taken together, produce the final image. We use the
worm-like rendering solids to position a set of colored sprites that
create our “impressionist” imagery (e.g., Figure 6). Parameters
that are recorded along the trajectories, such as color or orientation
(based on color gradient information [8]), are also extracted from
the rendering solids.

A final input to the stroke-based style is a texture atlas. The
texture atlas contains one or more opacity masks for strokes.
Multiple masks can be indexed by parameters such as size,
orientation, time, or simply randomly to generate desired variability
across individual strokes. Alternatively, a single mask can be scaled
(possibly anisotropically) and rotated at runtime as it is rendered.
Finally, the mask is colored by the values in the rendering solid
and optionally modified by an additional texture to create darkened
edges or a stippled effect.

At runtime a plane is passed through the video cube. Each
resulting frame is constructed on the fly by compositing one sprite
for each rendering solid intersecting the plane. The artist has a
variety of interactive controls over the final look of the video,
for example: choosing the texture atlas; drawing more or fewer
rendering solids to control how “busy” the image appears; and
scaling, shifting, smoothing, or adding noise to the parametric
curves of the rendering solids.

Smoothing, in particular, is achieved as follows. Each parametric



Figure 6: Stroke-based images. Left: standard painterly brush strokes. Center and Right: hard-edged strokes used to render an exploding
fireball and a face in profile, respectively.

Figure 7: Voronoi rendering results. The center image has Voronoi seed movement extended both forwards and backwards in time. The
right-most image uses a second bubble-like texture (inset in upper-right corner) to modify each cell.

function over time is fit to a cubic B-spline with uniform knot
spacing. Since all rendering solids are fit to the same B-spline basis
set, a single matrix is inverted to fit the data. Thus, to evaluate these
curves at a particular frame, the system only has to compute four
B-spline coefficients per frame and reuse these for every parameter
of every rendering solid. To smooth one parameter we fit it to a
B-spline basis set with fewer knots and then reproject back to the
original (higher) number of control points. Optionally noise can be
added to any parameter using the same strategy.

Figure 6 shows a variety of results from this style. The left-most
image of a girl catching a ball is a standard painterly rendering.
The center image of an exploding fireball shows the “paint” strokes
rendered with a rounded texture sprite and hard edges. Notice
the small strokes clustered in areas of higher spatio-temporal
importance. Finally, the right-most image shows the interactive
user interface during a session manipulating textured strokes of a
man’s profile.

4.2 Voronoi Cells

One of the hallmarks of early cubist and futurist imagery was
the decomposition of a scene into geometric shapes. Taking
this as inspiration, we have investigated stylized video based on
a 3D Voronoi decomposition of the video cube. Many image
manipulation programs provide the ability to generate tiled images
from input images. The underlying algorithm is based on work by
Haeberli [8] in which tiles are actually 2D Voronoi tiles, and the
tile colors are sampled from the Voronoi seed point locations. If
one were to apply this algorithm to successive frames of video with
a fixed collection of seed points, the resulting imagery would look
as if the video were being viewed through a shower door. On the
other hand, if one were to apply the algorithm to successive frames
of video with a different set of seed points for every frame, the

resulting video would be “flickery” and have very little temporal
coherence.

To address these problems, we generalize the process to 3D. The
3D Voronoi cells are grown around the trajectories of the worm-
like rendering solids. These trajectories are the same ones used to
render the impressionist style. In addition to providing a means
for decomposing our volume into geometric shapes, a significant
benefit to this approach is that 3D Voronoi cells yield substantial
temporal coherence without suffering from the “shower door”
effect. As the plane passes through a given cell, its shape varies
smoothly because the trajectory that defines the cell is continuous
in time.

To render the Voronoi style interactively, we never explicitly con-
struct the 3D Voronoi cells. Computing the full 3D Voronoi dia-
gram of the curves would be computationally prohibitive. Rather,
for each rendering solid intersecting the current frame, we sample
its trajectory, extracting position and velocity values. This defines a
tangent line that represents a local approximation to the trajectory.
For each line, we draw a cone representing the distance function
between the image plane and the line. After drawing all cones, the
z-buffer then leaves intact just the region of the plane closest to each
rendering solid. Hoff et al. [11] describe the algorithm in detail.
While in theory, the cone drawn for each rendering solid covers the
entire image, in practice a much smaller cone will suffice, allowing
us to improve rendering performance. By manipulating a slider, the
user can increase or decrease the radius of the rendering cone.

Using the Voronoi diagram of a line rather than a point causes
each Voronoi cell to extend in the direction in which its respective
rendering solid is moving. Again, by means of a slider, we
allow the user to accentuate the direction of movement (forwards,
backwards, or both) through time. Alternately, the user can disable
this movement, generating a standard Voronoi diagram.

Figure 7 shows some results from rendering the 3D Voronoi



Figure 8: Shards rendering results. The left image uses two videos captured simultaneously. All three images show multiple points in time.

cells. In all three images, rendering solids were scattered based on
the importance function to emphasize local detail. The center image
has Voronoi seed movement extended both forwards and backwards
in time, while the right-most image uses a second bubble-like
texture (inset in upper-right corner) to modify each cell.

4.3 Video Shards and Mosaics

In another style inspired by early cubism, we use the shard-like
rendering solids. As in the case of the voronoi style, the 3D shards
are not explicitly evaluated. At runtime, the cross-section of the
individual shards are determined on the fly in the following manner:
for each frame, shard vertices are found at cutting line crossings,
which break the cutting lines into line segments. By always
turning left at intersections, the segments are then linked together
to form convex polygons. An efficient edge-based structure can be
computed very quickly [7]. The original video is used to texture
each shard.

At runtime, we provide the artist with a number of ways
to modify each shard, including: zooming each shard texture
coordinates; modifying its time association with the input video;
and modifying the video texture by multiplying it with a second
texture. (Zooming defines the ratio of the size of the source video
texture to the output region. A small source texture mapped to a
larger output region will have an effect like a magnifying glass.)

To interactively texture the output frame with shard areas from
multiple frames in the input video, we have implemented a ring
buffer. Given a maximum of N frames for the time perturbation,
holding the current frame plus the N frames before and after the
current frame in texture memory provides all the source textures for
any output frame. As each frame from the original video falls more
than N frames in the past, its texture in the ring buffer is replaced
with a new frame drawn from N frames in the future. In addition,
to maintain better memory locality, each frame in the ring buffer is
looped through and used to texture any rendering solids that touch
it, rather than looping through the rendering solids and finding the
appropriate frame to draw the texture from. Because these shard
areas do not overlap, compositing order is irrelevant.

Figure 8 shows some results of using swept surfaces to decom-
pose the image. Each shard has been scaled and shifted in time
as a function of the shard size. For the left-most image, we have
also used two videos, both of which were captured simultaneously.
Within this image, the left-hand shards show a woman in profile.
The right-hand shards show the same woman, but facing forward.

Using a grid-like placement of the cutting lines creates images
reminiscent of the photo mosaics of pop-artist David Hockney.
Again, we can spatially and temporally offset the individual image
“tiles,” as well as rotating and zooming them. The center and right
images in Figure 8 shows some results from this photo-mosaic
style. Note the multiple points in time, as well as rotations and
scales in the individual tiles. In the center image, we first processed

the underlying video to show multiple points of view at a single
time. The original video stream was captured by a camera moving
relative to the woman’s head.

4.4 Abstract Tiles

Motivated by Mondrian’s abstract paintings, we seek to turn video
into a mobile series of colorful, rectangular compositions. To
achieve this goal we use the kd-tree defined rendering solids.

As we traverse the video cube at runtime, each kd-tree cell
is colored with a constant color representing that cell’s average
color. At runtime, the artist can interactively specify a number
of parameters, including thickness of dividing lines, and color
remapping to increase saturation. The artist also specifies the depth
of the kd-tree traversal. A traversal closer to the leaves yields
smaller blocks, while a traversal closer to the root yields fewer,
larger blocks. Only nodes at the chosen level are rendered except
during transitions between levels. Dropping one level in the tree
subdivides each node into two new ones. As new cells are added to
(or removed from) the output, they are smoothly transitioned in (or
out) from their children (or parent) to avoid popping.

Figure 9 shows some results of applying this abstract geometric
style to videos of a talking woman and an exploding fireball. (Both
the center and left images also have increased color saturation.) The
center image is reminiscent of a Mondrian painting, while the more
detailed image on the left is less abstract and more recognizable
as a human face. The video shows the smooth variation from the
center image to the left one by sequentially selecting deeper tree
levels. We find the transformation from abstract images to more
representational ones to be visually intriguing.

5 Notes on performance

Each of the images in this paper and all the examples in the
accompanying video were rendered in real time on a 1.7GHz
Pentium 4 PC with 512MB of RAM and an Nvidia GeForce3
graphics card. Depending on the specific style and particular
settings chosen, the frames of the NPR video are rendered at
between 50 and 200 frames per second. However, the timings on
many of the styles can be seriously degraded by some of the choices
possible at runtime. Clearly, by including too many rendering solids
in any of the styles, the system can become polygon bound. More
commonly, the system slows down due to limitations in fill rate. For
example, by setting the radius too large for the cones associated
with each seed point of the Voronoi style creates a high depth
complexity and thus a fill rate too high for interactive speeds.

The operations carried out during rendering solid definition are
mostly interactive. Manually placing points or lines within the
volume, or randomly seeding the volume with points is real time.
However, filling the volume with many small, worm-like rendering



Figure 9: Our abstract geometric style applied to videos of a talking woman (left and center) and an exploding fireball.

solids that grow along flow lines can take about 2 minutes of
computation on a 640x480 video of 300 frames. Pre-computing
the image orientation and importance values takes on the order of
20 minutes for a 300 frame video. However this must only be done
once for a given video. Finally, computing the summed-area-table
to guide the kd-tree divisions in the abstract tiling style takes only
a few seconds.

6 Conclusion and Future Work

This paper presents a new framework for stylized rendering of
video. Our approach is to treat the video as a space-time volume
of image data when designing NPR rendering methods for video.
Rather than working with collections of two-dimensional strokes
on successive video frames, we create rendering solids which,
when evaluated at a specific frame time, provide the parameters
necessary for rendering an NPR primitive. There are three key
benefits to this approach. First, one can make local choices
based on global knowledge of both the input video and the
resulting rendering solids. Second, our approach provides flexible,
interactive control to the user. Rendering solids create a layer of
abstraction between the information in the original video sequence
and the final rendered appearance of a rendered NPR primitives.
This abstraction enables interactive modification of the mapping
between the rendering solid parameters and the rendered primitives.
Finally, our main contribution is that rendering solids extend NPR
video processing to encompass a host of new visual styles. Rather
than focusing on simulation of a specific artistic medium, we offer
tools that allow artist to create entirely new forms of art-based
video.

This work suggests a number of areas for future investigation:

• Better support for multiple simultaneous video cubes
Other than the single example shown in Figure 8, we have not
explored interaction with multiple simultaneous video cubes.
Such exploration could provide even greater expressiveness
and flexibility for artists.

• Applying rendering solids to data visualization The idea of
growing rendering solids through a volume could be applied
to other volumetric data sets. For example, given a volume
of density data, one could grow rendering solids through the
volume along fields of constant density. Other data values
within the same volumetric data set, such as temperature,
could be sampled and mapped to rendering parameters (such
as color or texture) during the run-time rendering stage.

• Applying rendering solids to higher-dimensional approxi-
mations of the plenoptic function Video can be though of
as a 3D slice of the plenoptic function. Lumigraphs/light
fields [6, 13] are 4D approximations to the plenoptic func-
tion. By applying rendering solids to lumigraphs/light fields ,

one could achieve artistic walk-throughs with frame-to-frame
coherence. This idea could also be applied to time-changing
approximations of the plenoptic function.

References
[1] R. C. Bolles, H. H. Baker, and D. H. Marimont. Epipolar-plane image analysis:

An approach to determining structure from motion. International Journal of
Computer Vision, 1(1):7–55, 1987.

[2] F. C. Crow. Summed-area tables for texture mapping. Computer Graphics
(Proceedings of SIGGRAPH 84), 18(3):207–212, 1984.

[3] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and D. H.
Salesin. Computer-generated watercolor. Computer Graphics (Proceedings of
SIGGRAPH 97), 31:421–430, 1997.

[4] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint.
MIT Press, Cambridge, Massachusetts, 1993.

[5] S. S. Fels and K. Mase. Techniques for interactive video cubism. In Proceedings
of ACM Multimedia, pages 368–370, Oct 2000.

[6] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph.
Computer Graphics (Proceedings of SIGGRAPH 96), 30:43–54, 1996.

[7] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and computation of voronoi diagrams. ACM Transactions on Graphics, 4(2):74–
123, April 1985.

[8] P. E. Haeberli. Paint by numbers: Abstract image representations. Computer
Graphics (Proceedings of SIGGRAPH 90), 24:207–214, 1990.

[9] A. Hertzmann. Painterly rendering with curved brush strokes of multiple sizes.
Computer Graphics (Proceedings of SIGGRAPH 98), 32:453–460, 1998.

[10] A. Hertzmann and K. Perlin. Painterly rendering for video and interaction.
Computer Graphics (Proceedings of NPAR 2000), pages 7–12.

[11] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast computation
of generalized Voronoi diagrams using graphics hardware. Computer Graphics
(Proceedings of SIGGRAPH 99), 33:277–286, 1999.

[12] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary density.
Proceedings of Eighth Eurographics Workshop on Visualization in Scientific
Computing, April 1997.

[13] M. Levoy and P. Hanrahan. Light field rendering. Computer Graphics
(Proceedings of SIGGRAPH 96), 30:31–42, 1996.

[14] P. Litwinowicz. Processing images and video for an impressionist effect.
Computer Graphics (Proceedings of SIGGRAPH 97), 31:407–414, 1997.

[15] V. Ostromoukhov. Digital facial engraving. Computer Graphics (Proceedings of
SIGGRAPH 99), 33:417–424, 1999.

[16] P. Rademacher and G. Bishop. Multiple-center-of-projection images. Computer
Graphics (Proceedings of SIGGRAPH 98), 32:199–206, 1998.

[17] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin. Orientable textures
for image-based pen-and-ink illustration. Computer Graphics (Proceedings of
SIGGRAPH 97), 31:401–406, 1997.

[18] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and D. H. Salesin.
Multiperspective panoramas for cel animation. Computer Graphics (Proceedings
of SIGGRAPH 97), 31:243–250, 1997.


