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Abstract
High-quality Monte Carlo image synthesis requires the ability to
importance sample realistic BRDF models. However, analytic sam-
pling algorithms exist only for the Phong model and its derivatives
such as Lafortune and Blinn-Phong. This paper demonstrates an
importance sampling technique for a wide range of BRDFs, includ-
ing complex analytic models such as Cook-Torrance and measured
materials, which are being increasingly used for realistic image syn-
thesis. Our approach is based on a compact factored representation
of the BRDF that is optimized for sampling. We show that our algo-
rithm consistently offers better efficiency than alternatives that in-
volve fitting and sampling a Lafortune or Blinn-Phong lobe, and is
more compact than sampling strategies based on tabulating the full
BRDF. We are able to efficiently create images involving multiple
measured and analytic BRDFs, under both complex direct lighting
and global illumination.

Keywords: BRDF, Importance Sampling, Monte Carlo Integra-
tion, Global Illumination, Rendering, Ray Tracing

1 Introduction
The modeling of complex appearance is a key component in using
photo-realistic rendering techniques to produce convincing images.
The subtleties of how light interacts with different surfaces provide
important clues about material and finish—impressions that cannot
be conveyed by geometry alone. In this paper, we focus on one
component of appearance models, the Bidirectional Reflectance
Distribution Function (BRDF) [Nicodemus et al. 1977]. A major
challenge in incorporating complex BRDF models into a Monte
Carlo-based global illumination system is efficiency in sampling:
when tracing a path through the scene, it is desirable to generate
reflected rays distributed according to the BRDF. When simulat-
ing light reflecting from a mirror-like surface, for example, most of
the energy will be in rays close to the direction of ideal specular
reflection. In this situation, it is wasteful to generate reflected rays
in random directions: many fewer total paths will be necessary if
the rays are generated mostly in the specular direction. This tech-
nique, known as importance sampling, reduces image variance and
is critical for efficient rendering.

Effective importance sampling strategies are known only for the
simplest Lambertian and Phong models, and generalizations such
as Lafortune’s cosine lobes [1997]. More complex BRDFs, includ-
ing both measured data and physically-based analytic models (such
as Cook-Torrance [1982], which has been used for over 20 years)
have no corresponding importance sampling strategies. This diffi-
culty has impeded the widespread adoption of realistic BRDFs in
image synthesis.
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(a) Lafortune sampling (b) Our method

Figure 1: Monte Carlo renderings of a vase with a shiny Cook-Torrance
BRDF under complex illumination. These images were generated with a
path tracer that selected 16 reflected rays per pixel according to (a) a best-
fit Lafortune model with 3 lobes, and (b) our factored BRDF representation.
Notice the reduced noise in the image on the right that was made with our
approach: the other algorithm would need roughly 6 times more samples to
achieve the same quality.

This paper develops a general, efficient importance sampling al-
gorithm for arbitrary BRDFs. Our algorithm is based on reparam-
eterizing the BRDF, followed by a compact and accurate decom-
position into factors. We express the four-dimensional BRDF as
a sum of (a small number of) terms, each of which is the product
of a two-dimensional function that depends only on view direction,
and two one-dimensional functions. This representation allows im-
portance sampling by numerical inversion of the Cumulative Dis-
tribution Functions of the 1D factors. In contrast with other BRDF
factorization techniques [Kautz and McCool 1999; McCool et al.
2001], which are geared towards real-time rendering, our represen-
tation is developed especially for sampling. To this end, we present
the first factored BRDF representation that can be directly sampled.
We demonstrate the benefits of our method with examples in which
the variance of a Monte Carlo estimator is reduced by a factor of
2-10 over the best alternative sampling strategies for both analytic
models, such as Cook-Torrance (see Figure 1), and measured mate-
rials, including the BRDFs acquired by Matusik et al. [2003].

2 Related Work
The goal of global illumination algorithms is numerical integration
of the rendering equation, first formulated by Kajiya [1986]:

Lo(x,ωo) = Le(x,ωo)+
∫

Ω2π
Li(x,ωi)ρ(x,ωi,ωo)(ωi ·n)dωi.

The approach of Monte Carlo algorithms is to evaluate the incom-
ing radiance Li by recursively casting rays through the scene to sim-
ulate light transport paths.

In order to reduce variance, it is desirable to importance sam-
ple reflected rays by preferentially considering paths carrying high
energy. One possibility is to importance sample according to the
lighting Li, as in sampling light sources for direct illumination. In
the special case when Li is described by an environment map, ef-
fective illumination sampling methods have recently been demon-
strated [Agarwal et al. 2003; Kollig and Keller 2003]. These meth-
ods are intended for diffuse or rough semi-glossy materials, and
typically require a few hundred samples for good results. At low to
medium sample counts, they may miss important details, especially
for glossy materials and slowly-varying environments.



In the general case of global illumination (Figure 10), it is not
practical to pre-compute the incoming radiance at all points in the
scene. Therefore, we seek to sample according to the product of the
BRDF ρ and the incident cosine term ωi ·n. The remainder of this
section describes related work on obtaining the complex analytic
and measured BRDFs we would like to sample, deriving factored
representations, and performing importance sampling in the context
of global illumination.

BRDF models: There exist many analytical models for the BRDF
that approximate the way specific materials reflect light. Some
of these are phenomenological, such as the popular Phong shad-
ing model [Phong 1975]. More sophisticated, physically-based
analytical models can capture effects including Fresnel reflection
and rough microgeometry [Torrance and Sparrow 1967; Cook and
Torrance 1982; He et al. 1991]. Anisotropic reflection models
characterizing the reflective properties of oriented surfaces such as
brushed metal have also been developed [Kajiya 1985; Ward 1992;
Poulin and Fournier 1990; Ashikhmin and Shirley 2000]. Other an-
alytical BRDF models, such as those meant to describe dusty sur-
faces, exhibit backscattering phenomena [Hapke 1963; Oren and
Nayar 1994]. Despite the large amount of research on these BRDFs,
most of these models have so far been difficult to sample efficiently.
This typically arises because the analytic formula is difficult or im-
possible to integrate and invert.

The potential benefit of using measurements of a BRDF has also
gained recent attention [Ward 1992; Greenberg et al. 1997; Dana
et al. 1999; Marschner et al. 1999]. The measurements of Matusik
et al. [2003] provide a dense (90× 90× 180) sampling of many
isotropic BRDFs. The main drawback of these models is their size,
since they typically represent the full 3D isotropic BRDF in tabular
form. In his thesis, Matusik [2003] also describes one approach for
sampling these measured BRDFs, but this representation requires
as much storage as the original BRDF, making it difficult to use for
scenes containing many materials.

Factored BRDF representations: In an effort to reduce the size
of measured BRDF models while maintaining an accurate rep-
resentation of their effects, several researchers have investigated
techniques for factoring these large datasets into a more compact,
manageable form [Kautz and McCool 1999; McCool et al. 2001;
Suykens et al. 2003]. In all cases, the 4D BRDF is factored into
products of 2-dimensional functions that can be represented as tex-
ture maps and used to shade a model in real-time. However, in most
cases these factorizations allow only a single term approximation.
More important, there are no techniques for importance sampling
these representations.

Importance sampling: The benefit of stratified importance sam-
pling within the context of physically-based rendering has cer-
tainly been justified by the work of Cook [1986]. Since Shirley
demonstrated how to efficiently sample the traditional Phong
BRDF [Shirley 1990] and Lafortune introduced a generalization
of this cosine-lobe model [Lafortune et al. 1997], a reasonable
approach to importance sampling an arbitrary BRDF has been to
sample a best-fit approximation of one of these simpler models.
Although this technique marks a clear improvement over random
sampling, it has several drawbacks. First, it is not always trivial
to approximate the many complex BRDFs that exist in nature with
one of these models. Often, a nonlinear optimizer has difficulty fit-
ting more than 2 lobes of a Lafortune model without careful user
intervention. Second, since the sampling is only as efficient as the
approximation is accurate, it is not always the case that this strat-
egy will optimally reduce the variance for an arbitrarily complex
BRDF. Our approach, on the other hand, robustly detects the en-
ergy in a BRDF during the factorization step and provides a more
efficient sampling strategy.

3 A BRDF Representation for Sampling
In this section, we consider the requirements and design choices in
choosing our BRDF representation for sampling. We discuss why
our requirements are different from those of previous factored rep-
resentations, and present a new factorization approach optimized
for the needs of importance sampling. Sections 4 and 5 go on to
discuss implementation details of our representation and sampling
algorithms.

We begin with the observation that, in the context of a standard
backward ray- or path-tracer, we will generally know the outgoing
direction (θo,φo) and will need to sample lighting and visibility
over the incident hemisphere. A straightforward approach would be
to tabulate (θi,φi) slices of the BRDF for a dense set of directions
covering (θo,φo), and use the appropriate one. This is essentially
the approach taken by Matusik [2003] and, as far as we know, is
the only previous approach for importance sampling of arbitrary
measured materials. However, as already noted, this representation
requires a large amount of storage space for both analytical and
measured materials—as large as or larger than the tabulated BRDF
itself.

Instead, we observe that for nearly all common materials there
is coherence in the BRDF for different outgoing directions—for in-
stance, the shape of the specular lobe in a glossy BRDF will often
remain similar. Our goal is to exploit this coherence to develop
a compact representation. First, we reparameterize the BRDF,
e.g. by using the half-angle [Rusinkiewicz 1998]. As a number of
authors have observed, reparameterization by the half-angle prop-
erly aligns BRDF features such as specular reflection, making them
simpler to represent. Next, we use factored forms, writing the 4D
BRDF as a sum of a small number of products of 2D factors, to ex-
ploit the coherence in the BRDF and develop a compact representa-
tion. Similar approaches have been developed for real-time render-
ing, and have shown that reparameterization and factorization can
be a compact and accurate way to represent most BRDFs [Kautz
and McCool 1999; McCool et al. 2001].

The specific factored decomposition we use is the following:

ρ(ωi,ωo)(ωi ·n)≈
J

∑
j=1

Fj(ωo)G j(ωp), (1)

where we have decomposed the original 4D BRDF function (mul-
tiplied by the cosine of the incident angle) into a sum of products
of 2D functions. One of the functions always depends on the view
direction ωo, and the other function is dependent on some direction
ωp arising from the reparameterization. In the case of a half-angle
parameterization, ωp is taken to be

ωh =
ωi +ωo

| ωi +ωo |
. (2)

Unlike previous factorization approaches, this representation sat-
isfies a number of key properties for sampling:

• One factor dependent on outgoing direction: When sam-
pling according to our representation, we know the outgoing
direction ωo but not the incident direction (since we are sam-
pling over it). Therefore, we can directly evaluate F and it is
critical that it depend only on the outgoing direction.

• Sum of products of two factors: Each term above is the
product of two factors F and G, where F depends only on the
outgoing direction. Thus, it is easy to sample according to the
second factor G only. On the other hand, approaches such as
homomorphic factorization [McCool et al. 2001] or chained
matrix factorization [Suykens et al. 2003] can include multi-
ple factors in a term, making importance sampling difficult.
We can also enable multiple terms (with different j) for more
accurate sampling—another feature that is difficult to incor-
porate in homomorphic factorization.



(a) Slices of BRDF (b) Reparameterized slices (c) Data matrix Y (d) Incident factor G1 (e) View factor F1

Figure 2: Steps in factoring a BRDF into our representation, shown for a Phong-like anisotropic BRDF [Ashikhmin and Shirley 2000]. (a) We first compute
regularly-sampled 2D slices of the BRDF at a fixed set of outgoing directions. Notice that in this case the flattened highlight moves according to the position
of perfect specular reflection for each view. (b) We would like to maximize the symmetry in these slices of the BRDF to make the factorization more accurate.
We accomplish this by reparameterizing these values of the BRDF with respect to the half-angle vector, as the energy in this BRDF is symmetric about this
direction. (c) We organize these samples into a 2D matrix by unfolding each 2D slice of the BRDF into a separate column in the matrix according to its
half-angle parameterization. Notice that our choice of parameterization produces a data matrix that has a rank very close to 1. (d & e) We use non-negative
matrix factorization to factor this data matrix into the outer product of two vectors. Because the rank of the original matrix was close to 1, we need only one
term in the factorization. (d) In the end, we are left with a column vector dependent only on the incoming direction (G1 reparameterized with respect to the
half-angle vector in this case) and (e) a row vector F1 dependent only on the outgoing view direction.

• Non-negative factors: As opposed to using a matrix decom-
position algorithm such as SVD [Kautz and McCool 1999],
we use non-negative matrix factorization to ensure that all val-
ues are positive. This is necessary for interpreting the result-
ing factors as probability distributions, according to which we
can then sample.

We now observe that most BRDFs can be compactly represented
by further factoring each of the G j into 1D functions u jk(θp) and
v jk(φp). By doing this, we can separately treat u and v as 1D dis-
tributions, for which importance sampling is straightforward. Our
final factored BRDF representation is therefore

ρ(ωi,ωo)(ωi ·n)≈
J

∑
j=1

Fj(ωo)
K

∑
k=1

u jk(θp)v jk(φp). (3)

There are a total of JK terms in the final factorization, each a prod-
uct of a two-dimensional function (Fj) and two one-dimensional
functions (u jk and v jk).

It should be noted that this factorization fits the form of many
isotropic and anisotropic BRDFs well. For instance, a Blinn-Phong
BRDF [Blinn 1977] can be fit exactly by a single term (J = K = 1),
with variation appearing only in the u(θh) function. Similarly,
only 2 terms (J = 1,K = 2) are needed for an anisotropic Phong
BRDF [Ashikhmin and Shirley 2000]. The same holds approxi-
mately for many other materials, so the above representation typi-
cally gives accurate results with a small number of terms.

Note that, unlike other uses of factored BRDF models, we typi-
cally use the representation above only for choosing samples. For
actually computing the BRDF value, we use an analytic formula
where available. In this case, the representation above is a com-
pact means of sampling these commonly used analytic models,
which have hitherto been difficult to sample. Similarly, for com-
pact basis function representations, such as the Zernike polyno-
mial expansions [Koenderink and van Doorn 1998] used in the
CURET database [Dana et al. 1999] or spherical harmonic approx-
imations [Westin et al. 1992; Sillion et al. 1991], we can use the
BRDF value represented by the basis functions, using our repre-
sentation only for importance sampling. In other cases, such as
the dense measured BRDF representations of Matusik et al. [2003],
we take advantage of the compactness of our multi-term factoriza-
tion and use it as the primary representation for both reconstruction
and sampling. This provides a 200-fold savings in storage in many
cases, while remaining faithful to the original data.

4 Factorization

We now describe the details of our method to factor a tabular
BRDF—Figure 2 provides an overview of the process. Unlike some
previous methods, we use multiple non-negative terms in equa-
tions (1) and (3). This disallows common techniques such as ho-
momorphic factorization or singular value decomposition. Instead,
inspired by Chen et al. [2002], we use non-negative matrix factor-
ization (NMF) [Lee and Seung 2000] to decompose the reparam-
eterized BRDF. NMF is an iterative algorithm that allows multi-
term factorizations, guaranteeing that all the entries in the factors
are non-negative. We have found it to be robust for both single-
and multi-term decompositions, and capable of producing accurate
approximations for a wide range of both analytical and measured
BRDFs.

Data matrix: We first organize the set of values of the original
reparameterized BRDF into a matrix. We consider taking Nθo reg-
ular samples along the outgoing elevation angle and Nφo samples
along the outgoing azimuthal angle. For each of these Nωo view
directions, we record Nωp samples of the BRDF intensity (multi-
plied by cosθi), spaced equally in azimuthal and elevation angles
for the chosen BRDF reparameterization. We organize the initial
data samples into an Nωp ×Nωo matrix Y .

First factorization: Using the appropriate NMF update rules,
which are summarized in the appendix, we factor Y into the product
of two matrices of lower dimension:



 Y



 =



 G





[

F
]

(4)

As shown in Figure 2, G is an Nωp × J matrix, with each column
corresponding to a factor G j in equation (1), while F is a J×Nωo

matrix, with each row corresponding to a factor Fj in equation (3).
It can be helpful to interpret the G j factors as basis images over the
incoming hemisphere and Fj as encoding the appropriate mixing
weights to approximate the original BRDF. In practice, we rarely
need more than 3 or 4 terms to achieve an accurate approximation,
and we always reduce the size of the original BRDF by at least an
order of magnitude since our factored representation involves 2D
functions rather than a 3D or 4D BRDF.



(a) Incident factor G1 (b) u jk terms (c) v jk terms
(reshuffled from Fig. 2d)

Figure 3: In order to optimize our representation for importance sampling,
we perform another factorization step on the 2D functions dependent on
the incoming direction (a) We first re-organize each column in G into a
matrix such that the rows and columns vary with respect to the elevation
and azimuthal angles respectively. We again apply NMF to decompose this
matrix into an outer product of terms. In this example, we choose to factor
this matrix into two terms. In the end, we are left with (b) two column vectors
that each depend only on the elevation angle and (c) two row vectors that
depend only on the azimuthal angle of the incoming direction. These are the
u and v terms, respectively, in our final representation.

If we were interested only in reducing the size of the BRDF, or
in using our representation for real-time rendering, it might be rea-
sonable to use these 2D functions directly. Notice, however, that we
have approximated the intensity of the BRDF, ρint(ωi,ωo) times the
cosine term, which is appropriate for importance sampling. There-
fore, we would need to update this representation to account for
the wavelength dependence in the original BRDF. We accomplish
this by using NMF to compute a single-term approximation of the
BRDF at a particular wavelength (e.g. red, green or blue) divided by
the intensity. For the red color channel, we would factor a data ma-
trix composed of samples of the function: ρred(ωi,ωo)/ρint(ωi,ωo)
and reconstruct the red value of the BRDF by scaling our approxi-
mation of the intensity by the approximation of this function.

There also remains a challenge in sampling according to the 2D
distribution G j. It is possible to use explicit tabular approaches,
by storing a Cumulative Distribution Function on θp for each φp,
but such representations are not compact. Furthermore, effectively
generating stratified samples given these 2D tabulated CDFs proves
to be a difficult problem1. Therefore, we perform a second factor-
ization of G j into 1D functions dependent on θp and φp, which not
only matches the form of most common BRDFs, but also makes the
representation easy to sample and further reduces storage require-
ments.

Second factorization: As shown in Figure 3, we separately factor
each column of the matrix G, corresponding to a 2D function that
depends on the reparameterized incoming direction (θp,φp):



 G j



 =



 u j





[

v j
]

, (5)

where u j(θp) is an Nθp ×K matrix, with each column correspond-
ing to a factor u jk in equation (3), and v j(φp) is a K×Nφp matrix,
with each row corresponding to a factor v jk .

Normalization: For the purposes of sampling, it is desirable to
treat u jk and v jk as normalized 1D probability distribution func-
tions. To do this, we first define

u jk =
∫ π

0
u jk(θp) sinθp dθp, v jk =

∫ 2π

0
v jk(φp)dφp. (6)

1Effective 2D stratification in the context of environment map sampling
has been proposed by Agarwal et al. [2003] using Hochbaum-Shmoys clus-
tering, but this approach requires fixing the number of samples a priori,
while in our case the number of samples for each G j depends on the view.

Then we normalize each term Tjk as

Tjk = Fj(ωo)u jk(θp)v jk(φp)

=
(

u jk v jk Fj(ωo)
)

(

u jk(θp)

u jk

)(

v jk(φp)

v jk

)

= F ′jk(ωo)u′jk(θp)v′jk(φp). (7)

Finally, dropping the primes and using a single index l, we obtain
the final form of our factored representation, where ul and vl are
proper 1D probability distribution functions,

ρ(ωi,ωo)(ωi ·n)≈
L

∑
l=1

Fl(ωo)ul(θp)vl(φp), L = JK. (8)

Discussion: Our representation is designed with a view to devel-
oping a sampling algorithm, and lacks two properties that are some-
times theoretically desirable. First, the terms in equation (1), whose
form is essential for sampling, do not explicitly enforce reciprocity.
(Of course, since we factor the product of the BRDF and the cosine
term, the input function is not reciprocal to begin with.) Second,
the representation is not guaranteed to be continuous—there can
be a discontinuity at the pole θp = 0 in the second factorization in
equation (3). In either case, we have not observed any drawbacks
in practice because of these properties and it can be seen from our
results that our multiple-term fits are accurate.

5 Sampling
We now describe how to use our representation in equation (8) for
importance sampling. Intuitively, each term in the approximation
corresponds to a specific “lobe” of the original BRDF, and the fac-
torization algorithm works to find the best set of lobes to approx-
imate its overall structure. We first randomly select one of these
lobes according to the energy it contributes to the overall BRDF
for the current view. Next, we sample the hemisphere according to
the shape of this lobe by sequentially generating an elevation and
azimuthal angle according to the 1D factors ul and vl .

To further demonstrate this idea, consider the pair of factors that
we computed to approximate the anisotropic BRDF in Figures 2
and 3. The first term creates a pair of lobes that extend along the
y-axis, centered about the specular direction (Figure 4a), and the
second term creates a pair of flattened lobes that extend along the
x-axis (Figure 4b). We could imagine sampling the hemisphere
according to just one of these terms (Figure 4c,d): using each term
alone generates samples in a different region of the BRDF. If we
generate samples according to both terms with equal probability,
however, the aggregate effect is that we distribute samples along
the anisotropic highlight (Figure 4e).

5.1 Importance Sampling
We now describe the mathematics of sampling more formally. We
will be interested in evaluating the integral of the incident illumina-
tion for a fixed outgoing direction ωo at a given pixel with location
x and surface normal n,

∫

Ω2π
Li(x,ωi)ρ(x,ωi,ωo)(ωi ·n)dωi

≈
1
n

n

∑
s=1

Li(x,ωs)

[

ρ(x,ωs,ωo)(ωs ·n)

γi(ωs | ωo)

]

. (9)

The first line is simply the reflection equation—the incident
lighting Li may be evaluated iteratively or recursively for global
illumination. The second line is a Monte Carlo estimator that de-
scribes the standard approach to importance sampling. It represents
a weighted average of each of the samples, each divided by the
probability γi of generating sample direction ωs assuming that ωo is
fixed. The subscript in γi denotes that the probability distribution is
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Figure 4: The main benefit of our factored representation is that it can be
used to efficiently sample a BRDF. (a & b) In the top row, we graph the val-
ues of the 1D terms in our factorization of the BRDF considered in Figures 2
and 3. The green lines show the values of u1(θh) and u2(θh), whereas the
blue lines represent v1(φh) and v2(φh). Using the strategy detailed in Sec-
tion 5, we select either the first or second term to generate an incoming
direction. (c) Using only the first term to generate samples, we notice that
the directions accumulate around a pair of lobes along the y axis, centered
within the highlight. (d) Using only the second term to generate samples,
the directions accumulate around two lobes centered at φh = 0 and φh = π.
(e) When we select between these two terms with equal probability, we pro-
duce a sampling pattern that matches the energy in the original BRDF.

over incident directions. γi should be non-negative and normalized,
i.e.

∫

Ω γi(ωi | ωo)dωi = 1. Our representation is used to generate
samples ωs, according to the probabilities γi. For analytic models,
the actual BRDF can be used to evaluate ρ . The more accurate our
representation is, the lower the variance, but equation (9) is always
accurate and unbiased.

If our factored representation exactly represents the BRDF mul-
tiplied by the cosine term, the numerator in the bracketed term in
equation (9) will be exactly proportional to the denominator, and
that term will simply be a constant. The estimator will then repre-
sent the ideal importance sampling method based on the BRDF, and
will have low variance. In fact, in the limiting case of a constant en-
vironment (Li is constant), there will be zero variance. In practice
our representation is not exact, but it is a good approximation and
importance sampling with it significantly reduces variance.

5.2 Sampling Algorithm

We now describe how to choose directions ωs and evaluate γi in
equation (9). Our method chooses the lobe l, azimuthal angle φp,
and elevation angle θp in turn, with each step involving computing
one random number and inverting a 1D Cumulative Distribution
Function.

Choosing a term l: The probability of choosing a term l, for a
given outgoing direction ωo is given by

γ(l|ωo) =
Fl(ωo)

∑L
j=1 Fj(ωo)

. (10)

From these probabilities, we calculate a 1D CDF over l. To se-
lect a term, we generate a uniform random variable in [0,1] and
perform a binary search on the CDF to transform the random vari-
able into a value of l. Notice that the probabilities depend on the
view direction, so we must recompute this CDF each time the out-
going direction changes. However, L is typically very small, and
the same CDF can be used for all samples through a given pixel
(since ωo is fixed), so the computation is inexpensive.

Choosing azimuthal and elevation angles φp and θp: Having
chosen the term l to sample, we must now choose φp based on
the probability distribution vl(φp). As before, we generate a uni-
formly distributed random variable in [0,1], and numerically in-
vert the CDF at that value to determine φp. Choosing θp follows
the same methodology, but because of the sinθp area measure, we
find it simpler to define z = cosθp, and use ul(z) as the probability
distribution. Inverting the CDF then yields z, from which we find
θp = cos−1 z. Note that we can precompute these CDFs because
the probabilities do not depend on ωo—a significant benefit of our
factorization.

Computing probability: Given θp and φp, it is straightforward to
generate a direction ωs. Due to reparameterization, it is occasion-
ally possible for the sample directions ωs to take values below the
horizon, but we can simply set the estimator to 0 for those directions
without introducing inaccuracy or bias. Otherwise, we calculate the
probability for equation (9) as the sum of the marginal probabilities
for each term:

γp(z,φp|ωo) =
L

∑
l=1

Fl(ωo)ul(z)vl(φp)

∑L
j=1 Fj(ωo)

. (11)

One issue we must address is reparameterization, since equation
(9) is in terms of the incident direction ωi while our factors are
reparameterized using the half-angle or, in general, some alternative
parameterization ωp. Since it is easy to convert between them, there
is no difficulty in evaluating equation (9). However, our probability
distributions γp are in terms of the new parameterization, and must
be modified to conform to equation (9). In particular,

γi(ωi | ωo) = γp(ωp | ωo)

∣

∣

∣

∣

∂ωp

∂ωi

∣

∣

∣

∣

, (12)

where the last term is equivalent to the Jacobian for changing vari-
ables in multidimensional integration, and converts differential ar-
eas in ωp to those in ωi. For the half-angle, this function has been
computed in many derivations, such as for calculating the Torrance-
Sparrow BRDF [1967], and is given by

∣

∣

∣

∣

∂ωh

∂ωi

∣

∣

∣

∣

=
1

4(ωi ·ωh)
. (13)

Stratification: The preceding algorithm generates single samples
independently, but it is straightforward to extend it to generate strat-
ified samples: we simply stratify each of the individual stages. Be-
cause these stages depend only on 1D probability distribution func-
tions, this is accomplished by stratifying the domain of the uniform
random variables used in those stages. We have found this to be
an effective method of further reducing variance in the generated
images.

6 Results
We now present the results of factoring both analytical and mea-
sured BRDFs, describing the accuracy and compactness of our rep-
resentation. In 6.2, we analyze the efficiency of sampling according
to this representation.

6.1 Factorization
We factored four analytic BRDF models of varied behavior: the
Cook-Torrance [1982] rough-surface model, an anisotropic Ward
model [1992], Poulin-Fournier [1990] anisotropic reflection from
cylinders, and the Hapke-Lommel BRDF [1963] with strong back-
scattering effects. We also tested three measured BRDFs acquired
by Matusik et al. [2003]: nickel, plastic and metallic blue. Table 1
lists the resolution and parameterization of each factorization along
with the normalized mean absolute error (MAE) in the approxima-
tion. These errors were computed over a dense set of samples of



Original Resolution Terms Param. Compression Normalized MAE
BRDF (θo×φo×θp×φp) (J×K = L) Ratio Factored Lafortune

Cook-Torrance 16×16×32×16 4×1 = 4 ωh n/a 0.192 0.632
Ward 16×16×100×100 2×4 = 8 ωh n/a 0.094 1.092

Poulin-Fournier 16×16×32×16 3×1 = 3 ωi n/a 0.142 0.348
Hapke-Lommel 16×16×32×16 3×1 = 3 ωi n/a 0.186 0.464

Measured Nickel 16×16×128×16 2×1 = 2 ωh 230:1 0.201 0.643
Measured Plastic 16×16×128×16 3×1 = 3 ωh 200:1 0.266 0.874

Measured Metallic-Blue 16×16×128×16 4×1 = 4 ωh 180:1 0.118 0.464

Table 1: Accuracy of the factored BRDF representation. We factored 4 analytical BRDFs: Cook-Torrance (d = 0.1,Rd = [0.12,0.22,0.48],s = 0.9,F0 = Rd ,m =
0.2), Ward (ρd = 0.1,ρs = 1.2,αx = 0.2,αy = 0.02), Poulin-Fournier (d = 2.0,h = 0.0,n = 20.0,Rs = 0.8,Rd = 0.2), and Hapke-Lommel (g = 0.6, f = 0.1,r = 1.0),
along with 3 measured BRDFs from Matusik et. al. [2003]: nickel, plastic, and metallic-blue. For each BRDF we list the resolution of the original data matrix
Y , the number of “outer” and “inner” terms (J and K, respectively) of the factorization, and the parameterization of the incoming hemisphere. For the
measured BRDFs, we also list the compression ratio. We report the mean absolute error of the final factorization, normalized by the mean BRDF value. This
is compared to the error resulting from fitting a multi-lobe Lafortune model to the original BRDF using a standard non-linear optimizer.

the 4D domain, independent of the resolution of the factorization.
We compare this with a best-fit 2-lobe Lafortune model, except for
the Cook-Torrance BRDF, to which we fit a 3-lobe model. For
most models, we reparameterized by the half-angle ωp = ωh, while
for the more diffuse models (Poulin-Fournier and Hapke-Lommel),
we used the standard parameterization by incident angle ωp = ωi.
Compression ratios are reported for measured BRDFs, and repre-
sent the reduction in size with respect to the original data matrix.

We see that in all cases factorization produces an accurate result,
in many cases significantly more accurate than fitting an analytic
model such as Lafortune. This accuracy in the representation ex-
plains the high quality of our sampling algorithm. We further note
that fitting a 3-lobe Lafortune model can be unstable, often taking
minutes to hours to converge in a nonlinear minimizer, and can re-
quire manual tuning to find a good fit. By contrast, our method is
automatic, robust, and fast (taking only a few minutes to factor the
BRDFs considered in these experiments).

We observe, as previous authors have, that MAE or RMS er-
rors are imperfect measures of the accuracy and visual quality of
a BRDF approximation: in practice, the numerical error is domi-
nated by regions such as the specular highlight and grazing angles.
To this end, Figure 5 shows the appearance of some factored mod-
els, as compared to the originals, under point illumination. We see
that throughout most of the BRDF the representation accuracy is, in
fact, better than the numbers in Table 1 would suggest, and the er-
ror of our approximation decreases rapidly as more terms are added
(Figure 6). For the case of measured nickel, note that our repre-
sentation regularizes some of the measurement noise around the
highlight, relative to the original data. We conclude that, for mea-
sured data, our representation appears to produce results compara-
ble with measurement error (Matusik et al. observe errors, such as
deviation from reciprocity, of 10− 15% at normal angles, ranging
to 60−70% at grazing angles [personal communication]).

Selecting the appropriate resolution for the factorization, and the
parameterization of the incoming hemisphere is a manual process.
In most cases, the analytical formula (for parametric BRDFs) or
general appearance (for measured BRDFs) provides enough infor-
mation for an accurate estimate of how many samples are sufficient
and what parameterization is optimal. Theoretically, the number of
terms should be proportional to the ranks of the matrices Y and G j
(or, at least, the number of significant eigenvalues of these matri-
ces). In practice, however, we simply increase the number of terms
(J and K) until the error in the approximation plateaus. Figure 6
shows this convergence process for factorizations of the anisotropic
Ward BRDF listed in Table 1.

Since our goal is to develop a representation suitable for effi-
cient sampling, rather than a factorization method more accurate
than previous approaches, we did not directly compare with previ-

(a) Cook-Torrance (b) Factored Cook-Torrance

(c) Anisotropic Ward (d) Factored Anisotropic Ward

(e) Measured Nickel (f) Factored Measured Nickel

Figure 5: Accuracy of the BRDF factorization. The left column shows
a vase rendered with (a) a Cook-Torrance BRDF, (c) a Ward anisotropic
BRDF and (e) a measured nickel BRDF under direct illumination. (b, d
& f) The right column shows the same vase rendered with a factored ap-
proximation of the original BRDF. (b) Notice the slight banding effects that
appear in the factored highlight of the Cook-Torrance BRDF, which result
from the finite sampling resolution along θh. (f) The factorization actually
regularizes some of the measurement noise that appears in the highlight of
the measured nickel BRDF.
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Figure 6: Comparison of the RMS approximation error of an anisotropic
Ward BRDF, as a function of the number of terms in the factorization. Each
line shows a different number of “outer” terms (J) while the number of
“inner” terms (K) increases along the x axis. Note the drop in error at
K = 2: this shows that at least two inner terms are necessary to capture the
anisotropic shape of this BRDF.

ous factorization approaches that cannot be easily sampled. How-
ever, we did factor a Poulin-Fournier model with qualitatively com-
parable parameters to the one listed in [McCool et al. 2001], and
produced a factorization with RMS error comparable with that ap-
proach (although not given in Table 1, the RMS error for that fac-
torization is 0.094). While this is not the focus of our paper, these
results indicate that the benefits of a multi-term nonnegative factor-
ization may be applicable in other areas such as real-time rendering.

6.2 Sampling
We next consider the efficiency of importance sampling using our
factored representation. For a controlled quantitative comparison,
we conducted tests involving images of a sphere (so visibility is not
considered), lit by a constant environment map (so complex illu-
mination is not considered). The comparison methods are uniform
sampling of a cosine-weighted hemisphere, analytic sampling of
either a best-fit multi-lobe Lafortune model [Lafortune et al. 1997]
or a generalized Blinn-Phong model developed by Ashikhmin and
Shirley [2000], and an approach based on explicit tabulation of the
BRDF [Matusik 2003]. All methods were stratified.

We compared variance (averaged over 50 trials) as a function of
the number of samples used (ground truth was taken as the limit
with a very large number of samples) for the BRDFs considered in
Table 1. We verified for all sampling techniques that they were un-
biased, and that the image variance decayed approximately as the
inverse of the number of samples (Figure 7). Table 2 reports the
ratio of the variance of the comparison methods to our approach
with 100 samples—the relative performance with a different sam-
ple count would be essentially the same. This is an appropriate met-
ric, since it directly corresponds to how much longer the alternative
approaches would need to run (i.e., how many more samples they
would require) to produce the same quality results as our method.
The image RMS error corresponds roughly to the standard devia-
tion, which is the square root of the variance.

We see that compared to uniform random sampling, BRDF im-
portance sampling always does at least 5 to 10 times better, and sig-
nificantly better for shiny materials such as measured nickel. Rela-
tive to analytic models, the degree of improvement depends on how
closely the analytic model is able to match the BRDF. Lafortune’s
model, for instance, is a good fit of the Poulin-Fournier and Hapke-
Lommel BRDFs (as seen in Table 1). Note that these materials are
more diffuse and random sampling also does fairly well on them.
However, we always do at least twice as well as sampling based
on a Lafortune fit, and for measured materials, and even for the
widely known Cook-Torrance model, we do an order of magnitude
better. On the other hand, the Ashikhmin-Shirley model represents
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Figure 7: Image variance as a function of the number of samples. These
plots show the relationship between the average image variance and the
number of samples/pixel for all 5 sampling strategies considered in this pa-
per. Top: the variance in the image of a sphere with the Cook-Torrance
BRDF from Table 1 under constant illumination. Bottom: variance in the
image of a sphere with a measured metallic-blue BRDF under constant il-
lumination. As expected, the variance converges to 0 as the sample counts
increase, confirming that each strategy produces an unbiased estimate. At
100 paths/pixel we see the values for which the factor of improvement is
listed in Table 2.

lobes depending on the half-angle well, and therefore does better
than Lafortune at sampling metals and plastics such as the Cook-
Torrance, nickel and plastic BRDFs. However, our method is still
at least a factor of 2 better, and for many of the materials, we see an
improvement by a factor of 5-10.

We also measured the effectiveness of importance sampling the
BRDF using the factored representation under complex illumina-
tion (Table 3). The experimental setup is identical to that for Ta-
ble 2, except that the sphere was placed in the beach environment
[http://www.debevec.org/Probes/]. Because the shape of the inte-
grand of the rendering equation is affected by varying illumination,
sampling the BRDF alone will not be as efficient as for constant il-
lumination. As expected, for more diffuse BRDFs (Hapke-Lommel
and Poulin-Fournier) we notice that the illumination becomes the
dominant factor in the integrand and uniform random sampling is
a reasonable strategy. For the more specular BRDFs, however, we
still see the benefits of importance sampling the BRDF, and our
method decreases the variance by a factor of 2-20 over best-fits of
either parametric formula. One example of this is the measured
metallic-blue BRDF. The specular peak of this BRDF deviates sub-
stantially from the ideal specular direction, and is also not well ap-
proximated by a function of θh, particularly as the view approaches
the horizon. As a result, the best-fit Lafortune and Ashikhmin-
Shirley parametric models fail to match the BRDF well in these
regions. Although our factored representation uses a half-angle pa-
rameterization of the incoming hemisphere as well, it can handle
small deviations from this direction through the inherent flexibil-
ity a numerical approximation provides. As a result, our technique
samples this BRDF more efficiently than either parametric fit (Fig-



Efficiency of BRDF Sampling in Constant Environment
Original Improvement relative to:
BRDF Unif. Laf. A&S Mat.

Cook-Torrance 16.38 13.27 3.53 0.75
Poulin-Fournier 5.86 1.85 6.11 n/a
Hapke-Lommel 3.32 2.14 11.61 1.99

Nickel 306.17 11.52 2.17 1.66
Plastic 157.12 14.40 1.34 18.53

Met. Blue 8.88 6.73 6.75 0.44

Table 2: Efficiency of importance sampling the BRDF. This table lists the
factor of improvement in variance resulting from sampling the BRDF ac-
cording to our factored representation, compared to four alternative ap-
proaches: uniformly sampling a cosine-weighted hemisphere, sampling a
best-fit multi-lobe Lafortune model, sampling a best-fit generalized Blinn-
Phong model described by Ashikhmin and Shirley, and sampling from a
dense set of tabulated CDFs, as described by Matusik. Because variance
is linearly proportional to running time, these values can be interpreted as
the factor of time, or number of paths, that would be required for the other
sampling approaches to reach the same noise level as our representation.

Efficiency of BRDF Sampling in Beach Environment
Original Improvement relative to:
BRDF Unif. Laf. A&S Mat.

Cook-Torrance 25.79 10.28 2.23 0.75
Poulin-Fournier 1.40 1.09 1.53 n/a
Hapke-Lommel 0.89 1.61 1.87 1.00

Nickel 572.76 3.45 2.17 4.80
Plastic 381.94 21.60 1.67 55.64

Met. Blue 9.17 5.96 5.71 0.55

Table 3: Importance sampling the BRDF under complex illumination. This
table presents the factor of improvement of our sampling strategy compared
to alternative approaches when rendering a particular BRDF in the beach
environment. Because the illumination contributes to the shape of the in-
tegrand in the rendering equation, sampling according to the BRDF alone
will be less efficient than when the illumination is constant. Although our
factored representation still outperforms the alternative sampling strategies
by a factor of 2-20, these results suggest the potential desirability of com-
bining environment and BRDF sampling.

ure 8). Together, these results indicate the generality and efficacy of
our approach for importance sampling compared to fitting a specific
analytic model.

The only method competitive with ours is that of Matusik [2003].
For a set of fixed view directions, this method computes a 2D CDF
over incident directions according to the spherical parameteriza-
tion of the hemisphere. For accurate results, this approach requires
dense sampling along all variables, and does not provide the com-
pactness of our factored representation. In fact, Matusik reports
using resolutions of 90× 90× 180 for isotropic materials, and ac-
knowledges the infeasibility of this approach for anisotropic ma-
terials. Even with these resolutions, however, there are still situ-
ations when the closest CDF (i.e. the closest view for which the
CDF is tabulated) differs significantly from the actual shape of the
BRDF. This is apparent with measured nickel and measured plas-
tic, for which the BRDF has a sharp specular peak. For views
near normal incidence, sampling according to the spherical coor-
dinates of the incident direction is sufficient to accurately capture
the shape of the BRDF. Near grazing angles, however, the 2D CDF
for the nearest view often varies significantly from the actual shape
of the BRDF, degrading the sampling efficiency in these regions
(Figure 9). Our factored representation, on the other hand, avoids
this situation through a better parameterization of the hemisphere
and a more continuous approximation of the BRDF over all views.
Moreover, our representation supports anisotropic reflection and is
more compact. For the BRDFs presented in this paper, the complete

(a) Lafortune (b) A&S (c) Factored

Figure 8: Importance sampling a BRDF according to best-fit parametric
models and our factored representation (cf. last row of Table 3). These
images show a metallic-blue sphere in the beach environment, rendered with
100 samples generated according to (a) a best-fit 2-lobe Lafortune model,
(b) a best-fit Ashikhmin-Shirley model, and (c) our factored representation.
We show both a variance plot on a logarithmic scale and a closeup at a
region where the view approaches the horizon. In this part of its domain,
the BRDF has a shape that is difficult to fit with either of the parametric
models, and our factored representation allows more efficient sampling.

Matusik Sampling Factored Sampling

Figure 9: Sampling measured nickel with a dense set of 2D CDFs, as de-
scribed by Matusik et. al. and using our factored representation (cf. fourth
row of Table 3). For such shiny BRDFs, computing a fixed set of 2D CDFs
can still cause problems for regions of the domain for which the nearest pre-
computed CDF of a particular view poorly matches the actual BRDF. Our
factored representation, on the other hand, gains better continuity through
an appropriate parameterization and approximation, resulting in more effi-
cient importance sampling throughout the domain.

factored representation requires roughly 200KB as compared to the
60MB required to store the samples of the 3D BRDF along with the
pre-computed 2D CDFs required for the approach of Matusik.

In generating a sample using our approach, the dominant cost is
that of inverting three 1D CDFs using a binary search. This makes
our approach reasonably fast, comparable with analytically draw-
ing a sample according to the Lafortune and Phong sampling algo-
rithms. It is somewhat slower than the simpler random sampling,
and almost identical to the approach of Matusik, which also inverts
a pair of 1D CDFs. In practice, all of these times are small com-
pared to the cost of propagating a sample or tracing a ray for global
illumination, and hence the number of samples (and the results in
Table 2) corresponds closely to actual running time.



6.3 Global Illumination

We also rendered a complex scene with global illumination using a
path tracer (Figure 10). In this case, the incident illumination and
visibility are unknown and, consequently, importance sampling the
BRDF is the only reasonable strategy (i.e., environment sampling
is not possible). We used our factored representation to sample
all five BRDFs in the scene and to represent the three measured
BRDFs. We compare our results with those of a system using best-
fit Lafortune models to sample the different BRDFs. We present
rendered images at equal time (300 paths/pixel for both sampling
strategies) and equal quality (1200 paths/pixel for Lafortune sam-
pling) along with false-color visualizations of the variance in the
scene on a logarithmic scale and several magnified views show-
ing different BRDFs in the scene. Clearly, different regions of the
scene converge at different rates, but our method is roughly 4-5
times more efficient overall and an order of magnitude more effi-
cient on difficult BRDFs such as the plastic handle. This example
highlights the usefulness of a general approach to both representing
and importance sampling BRDFs.

7 Conclusions and Future Work
This work addresses a long-standing graphics problem of efficiently
importance sampling complex analytic and measured BRDFs. We
introduce a new factored representation of the BRDF that reduces
sampling to inverting three 1D cumulative distribution functions.
This provides a compact practical representation and a simple al-
gorithm for sampling, which in many cases reduces variance and
sampling times relative to previous methods. We use our repre-
sentation and importance sampling method to render scenes with
multiple isotropic and anisotropic materials with global illumina-
tion and shadows.

In future work, we would like to extend our technique to allow
for mixed parameterizations of the factored BRDF, such that each
term may have a different parameterization. This would allow us
to better approximate BRDFs that exhibit several different types
of scattering (e.g. side, backward and forward) at the same time.
A second area of future research is investigating how to combine
strategies for sampling the BRDF and the incident illumination. In
general, illumination sampling and BRDF sampling are comple-
mentary techniques, and it would be interesting to investigate mul-
tiple importance sampling methods [Veach and Guibas 1995] for
combining our algorithm with environment map sampling.

Our factorization method might also have applications in sam-
pling bi-directional texture functions (BTFs) and light fields—two
examples of high-dimensional functions that, like BRDFs, typically
have significant redundancy. More generally, we see our work as a
first step towards efficient techniques to sample high-dimensional
measured functions. With the increasing importance of measured
and image-based data in computer graphics, this problem promises
to have growing significance.
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Appendix: Non-negative Matrix Factorization
We use non-negative matrix factorization (NMF) [Lee and Seung 2000] to
decompose a matrix of BRDF values, Y , into two lower-dimensional factors
Y ≈ GF. NMF is an iterative algorithm and initially both G and F are
seeded with non-negative random values. At each iteration, the entries in the
current factors are updated according to the deviation between their current
approximation of the target matrix, (GF), and the actual target matrix Y
using the following update rules:

Fi j ← Fi j ∑
k

Gki
Yk j

(GF)k j
, (14)

Gi j ← Gi j ∑
k

Yik

(GF)ik
Fjk, (15)

Gi j ←
Gi j

∑k Gk j
. (16)

This algorithm is guaranteed to converge to a local minimum of the fol-
lowing error metric:

D(Y ||GF) = ∑
i j

(

Yi j log
Yi j

(GF)i j
−Yi j +(GF)i j

)

. (17)

Because for a BRDF relative difference is more perceptible than absolute
difference, we found that minimizing this “divergence” error was desirable.


