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ABSTRACT 

In a virtual world viewed with a head-mounted display, the user 
may wish to perform certain actions under the control of a 
manual input device. The most important of these actions are 
flying through the world, scaling the world, and grabbing 
objects. This paper shows how these actions can be precisely 
specified with Frame-to-frame invariants, and how the code to 
implement the actions can bc dcrivcd from the invariants by 
algebraic manipulation. 

INTRODUCTION 

Wearing a Head-Mounted Display (HMD) gives a human user 
the scnsalion of being inside a three-dimensional. computer- 
simulated world. Because the HMD rcplaccs the sights and 
sounds of the real world with a computer-gencratcd virtual 
world, this synthesizccl world is called virtual reality. 

The virtual world surrounding the user is dcfincd by a graphics 
database called a model, which gives the colors and coordinates 
for each of the polygons making up the virtual world. The 
polygons making up the virtual world arc normally grouped 
into cntitics called obj,jccfs, each of which has its own location 
and orientation. The human being wearing the HMD is called 
the user, and also has a location and orientation within the 
virtual world. 

To turn the data in the model into the illusion of a surrounding 
virtual world, the HMD system requires certain hardware 
components. The tracker measures the position and 
orientation of the user’s head and hand. The graphics engine 
gcncratcs the images seen by the user, which arc then displayed 
on the HMD. The manual input device allows the user to use 
gcslurcs of the hand to cause things to happen in the virtual 
world. 

BASIC ACTIONS 

An aclinn changes ~hc state of the virtual world or the user’s 
viewpoint wiLhin it under control of a gcsturc of the hand, as 
mcasurcd by the manual input d&cc. The hand gesture 
initiates and tcrminatcs the action, and the changing position 
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and orientation of the hand during the gesture is also used to 
control what happens as the action progresses. 

The manual input device may be a hand-held manipulandum 
with pushbuttons on it, or it may be an instrumented glove. In 
either case, the position and orientation of the input device 
must be measured by the tracker to enable manual control of 
actions. The input device must also allow the user to signal to 
the system to start and stop actions, and to select among 
alternative actions. 

Certain fundamental manually-controlled actions may be 
implemented for any virtual world. These actions involve 
changing the location, orientation or scale of either an object 
or a user, as shown in Table 1. 

Tradate 
Rotate 

Scale expand or shrink scale object 
the world 

Table 1. Basic actions 

Flying is defined here as an operation of translating in the 
direction pointed by the hand-held input device, with steering 
done by changing the hand orientation. This is different from 
the type of flying available in a flight simulator, where the user 
can not only translate but can also cause the virtual world to 
rotate around him by banking. However, translation-only 
flying is appropriate for a HMD because the user has the ability 
to turn and look in any direction, and to point the input device 
in any direction. We believe that keeping the orientation of 
the virtual world locked to that of the real world helps the user 
to navigate while flying through the virtual world. 

Tilting the world is the ability to rc-orient the virtual world 
rclativc to the user’s orientation; that is, to turn the 
surrounding virtual world sideways. This is implemented by 
rotating the user with respect to the virtual world, which is 
subjectively perceived by the USCT as the entire virtual world 
rotating around him. 

Scaling the world is the capability to shrink OT expand the 
world relative to the user, as occurs to Alice in Wonderland 
when she drinks from the little bottle or cats the little cake. By 
setting up the action code properly, the user can shrink and 
expand the world while manually steering the center of 
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expansion. This cnablcs a powerful method of travel in very 
large virtual worlds: the user shrinks the world down until the 
dcs~ination is within arm’s reach and then expands the world. 
continuously steering the ccntcr of expansion so as to arrive at 
the correctly-scaled destination. 

Grabbing an objecr is picking up and moving a simulated 
object that appears in the virtual world. By analogy with real- 
world grabbing of objects. this includes the ability to rotate 
the held object before releasing it. 

Scaling an object is just shrinking or expanding an individual 
object alone. 

This paper seeks to answer the following question: How can the 
basic actions of flying, grabbing, scaling and tilting in a HMD 
system bc spccificd and implemcntcd? 

PRIOR WORK 

The first HMD was built in 1968 by Ivan Sutherland [8], but 
since it had no manual input dcvicc other than a keyboard, it did 
not allow actions controlled by manual gcsturcs. At the 
University of Utah, a tracked manual input dcvicc called a 
“wand” was ad&d to the system [9]. The tip of the wand was 
tracked in position but not orientation. The wand was used to 
deform the surfaces of virtual objects composed of curved 
patches [2]. 

In 1985 at NASA Ames Research Center, McGrcevy and 
Humphrics built a HMD which was later improved by Fisher. 
Robinctt and others [3]. Under contract to NASA, VPL 
Rcscarch provided an instrumcntcd glove, later named the 
“DataGlovc.” which scrvcd as a manual input device. The 
position of the hand and head were tracked with a Polhemus 
3Spacc magnetic tracker. In 1986 using the glove input 
dcvicc, Robinctt implemcntcd on this system the actions of 
flying through lhc world, scaling the world, rotating the world, 
and grabbing objects. 

Some of these actions, particularly flying and grabbing 
objects, have since been implemented on HMD systems at 
several sites. VPL Research began in 1989 selling 
commercially a HMD system that used a glove to control the 
actions of flying and grabbing [l]. At the University of North 
Carolina [7][5], the actions of flying, scaling and grabbing 
wcrc controlled with a hand-hclcl manual input device with 
pushbuttons on it which was made from a billiard ball. 

COORDINATE SYSTEMS DIAGRAM FOR A HMD 

Various coordinate systems co-exist within a HMD system. All 
of thcsc coordinate systems exist simultaneously, and although 
over time they may bc moving with respect to one another, at 
any given moment each pair of them has a relative position and 
orientation. The instantaneous relationship bctwccn two 
coordinate systems can bc dcscribcd with a transform that 
converts the coordinates of a point described in one coordinate 
system to the coordinates that represent that same point in the 
second coordinate system. 

Although transforms exist bctwccn any pair of coordinate 
systems in the HMD system, certain pairs of coordinate 
systems have rclativc positions that are cithcr constant, 
mcasurcd by the tracker, or arc known for some other reason. 
Thcsc arc the independent transforms, which arc shown in 
relation to one another in Figure 1. In [his diagram, each node 
stands for a coordinate system, and each edge linking two 

nodes stands for a transform between those two coordinate 
systems. 

modified when user flies, modified when 
tilts, or scales world 

i 

objects are moved 

world 

fixed offset 

- measured by tracker 

fixed offset 

perspective projection 
- through eyepoint 

virtual image of virtual image of 
left screen right screen 

Figure 1. Coordinate systems diagram for a single-user 
HMD system 

NOMENCLATURE FOR TRANSFORMS 

We abbreviate the coordinate systems with the first letters of 
their names. The World-Object transform may be written as 
Two. Transform Two converts a point PO in coordinate system 
0 to a point PW in coordinate system W. 

Pw = TwosPo 

This notation is similar to that used in [4]. Notice that the 
subscripts cancel nicely, as in [6]. Likewise, the composition 
of the transform Two going from 0 to W with the transform 
TRW going from W to R gives a transform TRO from 0 to R, 
with the cancellation rule working here, too: 

The inverse of transform TWO is written Tow. 

SPECIFYING ACTIONS WITH INVARIANTS 

An action in a virtual world is performed by activating the 
input device, such as by pushing a button, and then moving the 
input device to control the action as it progresses. As an 
example. grabbing a simulated object requires, for each frame 
while the grab action is in progress, that a new position for the 
object be computed based on the changing position of the 
USCT'S hand. 

It is possible to precisely define grabbing and other actions 
with an invariant, which is an equation that describes the 
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dcsircd relationship among certain transforms involved in the 
action. The invariant is typically stated as a relation bctwcen 
certain transforms in the current display frame and certain 
transforms in the previous frame. In the case of grabbing, the 
invariant to bc maintained is that the Object-Hand transform bc 
equal to its value in the previous frame while the grab action is 
in progress; in other words, that the object remain fixed with 
rcspcct to the hand while it is being grabbed. 

Starting from the invariant and a diagram of the coordinate 
systems involved, a mathematical derivation can be pcrformcd 
which products a formula for updating the proper transform to 
cause the dcsircd action to occur. For grabbing, this would be 
updating the Object-World transform to change the object’s 
position and orientation in the virtual world. 

Kigorously deriving the update formula from a simple invariant 
is much easier and more reliable than attempting to write down 
the update formula using the coordinate systems diagram and 
informal reasoning. Also, the matching of adjacent subscripts 
in the notation helps to cheek that the transforms arc in correct 
order. 

GRABBING AN OBJECT 

To dcrivc the update formula for grabbing, WC first look at the 
rclcvant part of the coordinate system diagram, shown in 
Figure 2. 

h&l fixed modified by 
during grab grab action 

constant 

object 

tracker 7 
hand 

mcasurcd by 
tracker 

for the grab action, the invariant 
is to keep this single transform 
unchanged from frame to frame 

Figure 2. Coordinate systems diagram for grabbing an 
object 

A way of describing the action of grabbing is that the Object- 
Hand transform To,, remain unchanged from frame to frame, 
which is cxprcsscd by the invariant 

Ton = TOII 

whcrc the apostrophe in Tot,’ indicates a transform in the 
current frame which is being updated, and no apostrophe means 
the value of the transform from the previous frame. 

To move an individual object, the Object-World transform Tow 
must be updated each frame in a way that preserves the 
invariant. To derive the update formula for grabbing, we start 
with the invariant and decompose the transforms on both sides 
based on the relationships among the coordinate systems as 
shown in the coordinate system diagram. 

T,,‘.T,‘.T,,‘.Tm’ = Tow.TM.TRT.TTH 

We then use algebraic manipulations to isolate the desired 
transform on the left side of the equation, remembering that 
these transforms are not commutative. 

Tow’ . T,’ - TRT’ = Tow+TWR.TRT.TTH.Tm’ 
Tow’ . TwR’ = Tow.T,,.TRT.T~.T~‘.TTR’ 

Tow’ = Tow . TwR . TRT. TTII . TKT’ . TTR’ a TRW’ 

This is the update formula for grabbing, which updates the 
Object-World transform based on its previous value, the current 
and previous values of the Hand-Tracker transform (which 
changes as the hand moves), and the values of the intervening 
transforms between Tracker and World. The effect of executing 
this assignment each frame is to keep the object in a fixed 
position and orientation relative to the hand, even though the 
hand is moving around within the virtual world. 

Another action which can be implemented in a similar manner 
is “grabbing the fabric of space.” In this case, the user can 
grab and tilt the entire virtual world, rather than just a single 
object, by holding the World-Hand transform invariant while 
the hand rotates. 

FLYING 

The action of flying is translating the user through the virtual 
world in the direction pointed by the manual input device. The 
user steers by rotating the manual input device as the flight 
proceeds. A metaphor for this type of flying is that the user 
holds a rocket pistol in his hand, which drags him through the 
virtual world when hc squcczcs the trigger. 

The manual input device is considered to point in a particular 
direction that is relative to its local coordinate system. This 
may be thought of as a 3D vector in Hand coordinates, where 
the vector’s length specifies the flying speed and the vector’s 
direction defines the direction the input device points. This 
vector defines a translation transform, ~~~~~~~~~~~~ , which 
moves a point in Hand coordinates to a new position in Hand 
coordinates. To implement flying, we fist need to convert this 
transformation to operate on points in Room coordinates. 

T RuanslatcR' = TRII' -TI-I~I~WII' -Tm' 

To make the user’s position change within the virtual world. 
the World-Room transform must be modified each frame, so the 
invariant for flying is 

TWR' =TWR .T~tmslate.~' 

which may be expanded to give the update formula for flying. 

TWR' = T~R-TRT' -TTH' *T~~trans~ate~ .TIIT' 'TTR' 

SCALING THE WORLD 

It is possible to shrink or expand the surrounding virtual world. 
This is comprehensible and effective because the user has direct 
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perception of the size of and distance to virtual objects through 
stcreopsis and head-motion parallax, and can therefore easily 
pcrccive the concerted motions of the objects in the virtual 
world expanding around a ccntcr of expansion, or shrinking 
towards a center of contraction. 

The type of scaling used is uniform scaling, in which all three 
dimensions arc always scaled by the same factor. There is 
always a center of scaling when uniform scaling occurs, and for 
the manually controlled action of scaling the world, it makes 
scnsc to locate the center of scaling at the user’s hand. When 
expanding the world, the center of scaling is the point that 
virtual objects move away from as expansion occurs, and so to 
end up at a specific desired location within a formerly-tiny 
virtual world, the center of scaling must bc repeatedly re- 
centered on the dcsircd location as it emerges during 
expansion. 

Implementing this action requires a derivation similar to that 
used for flying. An incremental scaling transformation in Hand 
coordinates,TIt,,,t~tt, will USC the Hand origin as the ccntcr of 
scaling. Below WC give the invariant for scaling the world, and 
the update formula ctcrivcd from it. 

TWR' =TWR . TRacaleR' 

TWR' = TWR .Tm' -TTII' ~TIISC,ICII *TK,’ ‘TTR’ 

GENERAL FORM 

Upon examining the invariants for flying and scaling, we see a 
strong similarity bctwccn them: both invariants are of the 
form: 

TWR' =TWR . TRaransfonn>R' 

In fact, thcsc two invariants for updating TwR arc cxamplcs of a 
more gcncral tcchniquc for updating a transform bctwccn two 
coordinate systems based on a transform that occurs in a third 
coordinate system. The gcncral form for updating the 
transform TAls in terms oF an action in coordinate system K is: 

whcrc thcrc may bc an arbitrary number of coordinate systems 
bctwccn l3 and K. and TtsK is the product of the transforms that 
go bctwccn Ihc two coordinate systems. 

Using this gcncral form, scaling an object about the hand is 
analogous to scaling the world about the hand: 

CONCLUSIONS 

The foregoing examples of grabbing, flying and scaling show 
how actions can bc implcmentcd that operate under continuous 
manual control by the user. For each action, the relationship 
bctwccn the motion of the hand and the transforms to be 
modified was prcciscly specified with an invariant. These 
invariants not only provided a concise and prccisc 
specification of each action, but also provided a starting point 
for a formal derivation that produced update equations which 
could bc usctl dircclly to implcmcnt the actions. 

Using invariants and derivations to produce the code to 
implcmcnt grabbing, scaling and flying is greatly superior to 
the method which is ollcn used, namely, to just write down a 

sequence of transforms that looks right based on the coordinate 
system diagram. It is easy to get some of the transforms in the 
wrong order. The notation used in this paper provides a check 
against misordering the transforms by requiring adjacent 
subscripts to match. The HMD software at UNC was 
implemented using this notation and the formulas derived in 
this paper, and serves as proof that they work. 
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