
Implementation of Flying, Scaling, and Grabbing
in Virtual Worlds

Warren Robinett
Richard Holloway

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27599-3175

ABSTRACT

In a virtual world viewed with a head-mounted display, the user
may wish to perform certain actions under the control of a
manual input device. The most important of these actions are
flying through the world, scaling the world, and grabbing
objects. This paper shows how these actions can be precisely
specified with Frame-to-frame invariants, and how the code to
implement the actions can bc dcrivcd from the invariants by
algebraic manipulation.

INTRODUCTION

Wearing a Head-Mounted Display (HMD) gives a human user
the scnsalion of being inside a three-dimensional. computer-
simulated world. Because the HMD rcplaccs the sights and
sounds of the real world with a computer-gencratcd virtual
world, this synthesizccl world is called virtual reality.

The virtual world surrounding the user is dcfincd by a graphics
database called a model, which gives the colors and coordinates
for each of the polygons making up the virtual world. The
polygons making up the virtual world arc normally grouped
into cntitics called obj,jccfs, each of which has its own location
and orientation. The human being wearing the HMD is called
the user, and also has a location and orientation within the
virtual world.

To turn the data in the model into the illusion of a surrounding
virtual world, the HMD system requires certain hardware
components. The tracker measures the position and
orientation of the user’s head and hand. The graphics engine
gcncratcs the images seen by the user, which arc then displayed
on the HMD. The manual input device allows the user to use
gcslurcs of the hand to cause things to happen in the virtual
world.

BASIC ACTIONS

An aclinn changes ~hc state of the virtual world or the user’s
viewpoint wiLhin it under control of a gcsturc of the hand, as
mcasurcd by the manual input d&cc. The hand gesture
initiates and tcrminatcs the action, and the changing position

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
Q 1992 ACM 0-89791-471-6/92/000310189...$1.50

and orientation of the hand during the gesture is also used to
control what happens as the action progresses.

The manual input device may be a hand-held manipulandum
with pushbuttons on it, or it may be an instrumented glove. In
either case, the position and orientation of the input device
must be measured by the tracker to enable manual control of
actions. The input device must also allow the user to signal to
the system to start and stop actions, and to select among
alternative actions.

Certain fundamental manually-controlled actions may be
implemented for any virtual world. These actions involve
changing the location, orientation or scale of either an object
or a user, as shown in Table 1.

Tradate
Rotate

Scale expand or shrink scale object
the world

Table 1. Basic actions

Flying is defined here as an operation of translating in the
direction pointed by the hand-held input device, with steering
done by changing the hand orientation. This is different from
the type of flying available in a flight simulator, where the user
can not only translate but can also cause the virtual world to
rotate around him by banking. However, translation-only
flying is appropriate for a HMD because the user has the ability
to turn and look in any direction, and to point the input device
in any direction. We believe that keeping the orientation of
the virtual world locked to that of the real world helps the user
to navigate while flying through the virtual world.

Tilting the world is the ability to rc-orient the virtual world
rclativc to the user’s orientation; that is, to turn the
surrounding virtual world sideways. This is implemented by
rotating the user with respect to the virtual world, which is
subjectively perceived by the USCT as the entire virtual world
rotating around him.

Scaling the world is the capability to shrink OT expand the
world relative to the user, as occurs to Alice in Wonderland
when she drinks from the little bottle or cats the little cake. By
setting up the action code properly, the user can shrink and
expand the world while manually steering the center of

189

expansion. This cnablcs a powerful method of travel in very
large virtual worlds: the user shrinks the world down until the
dcs~ination is within arm’s reach and then expands the world.
continuously steering the ccntcr of expansion so as to arrive at
the correctly-scaled destination.

Grabbing an objecr is picking up and moving a simulated
object that appears in the virtual world. By analogy with real-
world grabbing of objects. this includes the ability to rotate
the held object before releasing it.

Scaling an object is just shrinking or expanding an individual
object alone.

This paper seeks to answer the following question: How can the
basic actions of flying, grabbing, scaling and tilting in a HMD
system bc spccificd and implemcntcd?

PRIOR WORK

The first HMD was built in 1968 by Ivan Sutherland [8], but
since it had no manual input dcvicc other than a keyboard, it did
not allow actions controlled by manual gcsturcs. At the
University of Utah, a tracked manual input dcvicc called a
“wand” was ad&d to the system [9]. The tip of the wand was
tracked in position but not orientation. The wand was used to
deform the surfaces of virtual objects composed of curved
patches [2].

In 1985 at NASA Ames Research Center, McGrcevy and
Humphrics built a HMD which was later improved by Fisher.
Robinctt and others [3]. Under contract to NASA, VPL
Rcscarch provided an instrumcntcd glove, later named the
“DataGlovc.” which scrvcd as a manual input device. The
position of the hand and head were tracked with a Polhemus
3Spacc magnetic tracker. In 1986 using the glove input
dcvicc, Robinctt implemcntcd on this system the actions of
flying through lhc world, scaling the world, rotating the world,
and grabbing objects.

Some of these actions, particularly flying and grabbing
objects, have since been implemented on HMD systems at
several sites. VPL Research began in 1989 selling
commercially a HMD system that used a glove to control the
actions of flying and grabbing [l]. At the University of North
Carolina [7][5], the actions of flying, scaling and grabbing
wcrc controlled with a hand-hclcl manual input device with
pushbuttons on it which was made from a billiard ball.

COORDINATE SYSTEMS DIAGRAM FOR A HMD

Various coordinate systems co-exist within a HMD system. All
of thcsc coordinate systems exist simultaneously, and although
over time they may bc moving with respect to one another, at
any given moment each pair of them has a relative position and
orientation. The instantaneous relationship bctwccn two
coordinate systems can bc dcscribcd with a transform that
converts the coordinates of a point described in one coordinate
system to the coordinates that represent that same point in the
second coordinate system.

Although transforms exist bctwccn any pair of coordinate
systems in the HMD system, certain pairs of coordinate
systems have rclativc positions that are cithcr constant,
mcasurcd by the tracker, or arc known for some other reason.
Thcsc arc the independent transforms, which arc shown in
relation to one another in Figure 1. In [his diagram, each node
stands for a coordinate system, and each edge linking two

nodes stands for a transform between those two coordinate
systems.

modified when user flies, modified when
tilts, or scales world

i

objects are moved

world

fixed offset

- measured by tracker

fixed offset

perspective projection
- through eyepoint

virtual image of virtual image of
left screen right screen

Figure 1. Coordinate systems diagram for a single-user
HMD system

NOMENCLATURE FOR TRANSFORMS

We abbreviate the coordinate systems with the first letters of
their names. The World-Object transform may be written as
Two. Transform Two converts a point PO in coordinate system
0 to a point PW in coordinate system W.

Pw = TwosPo

This notation is similar to that used in [4]. Notice that the
subscripts cancel nicely, as in [6]. Likewise, the composition
of the transform Two going from 0 to W with the transform
TRW going from W to R gives a transform TRO from 0 to R,
with the cancellation rule working here, too:

The inverse of transform TWO is written Tow.

SPECIFYING ACTIONS WITH INVARIANTS

An action in a virtual world is performed by activating the
input device, such as by pushing a button, and then moving the
input device to control the action as it progresses. As an
example. grabbing a simulated object requires, for each frame
while the grab action is in progress, that a new position for the
object be computed based on the changing position of the
USCT'S hand.

It is possible to precisely define grabbing and other actions
with an invariant, which is an equation that describes the

190

dcsircd relationship among certain transforms involved in the
action. The invariant is typically stated as a relation bctwcen
certain transforms in the current display frame and certain
transforms in the previous frame. In the case of grabbing, the
invariant to bc maintained is that the Object-Hand transform bc
equal to its value in the previous frame while the grab action is
in progress; in other words, that the object remain fixed with
rcspcct to the hand while it is being grabbed.

Starting from the invariant and a diagram of the coordinate
systems involved, a mathematical derivation can be pcrformcd
which products a formula for updating the proper transform to
cause the dcsircd action to occur. For grabbing, this would be
updating the Object-World transform to change the object’s
position and orientation in the virtual world.

Kigorously deriving the update formula from a simple invariant
is much easier and more reliable than attempting to write down
the update formula using the coordinate systems diagram and
informal reasoning. Also, the matching of adjacent subscripts
in the notation helps to cheek that the transforms arc in correct
order.

GRABBING AN OBJECT

To dcrivc the update formula for grabbing, WC first look at the
rclcvant part of the coordinate system diagram, shown in
Figure 2.

h&l fixed modified by
during grab grab action

constant

object

tracker 7
hand

mcasurcd by
tracker

for the grab action, the invariant
is to keep this single transform
unchanged from frame to frame

Figure 2. Coordinate systems diagram for grabbing an
object

A way of describing the action of grabbing is that the Object-
Hand transform To,, remain unchanged from frame to frame,
which is cxprcsscd by the invariant

Ton = TOII

whcrc the apostrophe in Tot,’ indicates a transform in the
current frame which is being updated, and no apostrophe means
the value of the transform from the previous frame.

To move an individual object, the Object-World transform Tow
must be updated each frame in a way that preserves the
invariant. To derive the update formula for grabbing, we start
with the invariant and decompose the transforms on both sides
based on the relationships among the coordinate systems as
shown in the coordinate system diagram.

T,,‘.T,‘.T,,‘.Tm’ = Tow.TM.TRT.TTH

We then use algebraic manipulations to isolate the desired
transform on the left side of the equation, remembering that
these transforms are not commutative.

Tow’ . T,’ - TRT’ = Tow+TWR.TRT.TTH.Tm’
Tow’ . TwR’ = Tow.T,,.TRT.T~.T~‘.TTR’

Tow’ = Tow . TwR . TRT. TTII . TKT’ . TTR’ a TRW’

This is the update formula for grabbing, which updates the
Object-World transform based on its previous value, the current
and previous values of the Hand-Tracker transform (which
changes as the hand moves), and the values of the intervening
transforms between Tracker and World. The effect of executing
this assignment each frame is to keep the object in a fixed
position and orientation relative to the hand, even though the
hand is moving around within the virtual world.

Another action which can be implemented in a similar manner
is “grabbing the fabric of space.” In this case, the user can
grab and tilt the entire virtual world, rather than just a single
object, by holding the World-Hand transform invariant while
the hand rotates.

FLYING

The action of flying is translating the user through the virtual
world in the direction pointed by the manual input device. The
user steers by rotating the manual input device as the flight
proceeds. A metaphor for this type of flying is that the user
holds a rocket pistol in his hand, which drags him through the
virtual world when hc squcczcs the trigger.

The manual input device is considered to point in a particular
direction that is relative to its local coordinate system. This
may be thought of as a 3D vector in Hand coordinates, where
the vector’s length specifies the flying speed and the vector’s
direction defines the direction the input device points. This
vector defines a translation transform, ~~~~~~~~~~~~ , which
moves a point in Hand coordinates to a new position in Hand
coordinates. To implement flying, we fist need to convert this
transformation to operate on points in Room coordinates.

T RuanslatcR' = TRII' -TI-I~I~WII' -Tm'

To make the user’s position change within the virtual world.
the World-Room transform must be modified each frame, so the
invariant for flying is

TWR' =TWR .T~tmslate.~'

which may be expanded to give the update formula for flying.

TWR' = T~R-TRT' -TTH' *T~~trans~ate~ .TIIT' 'TTR'

SCALING THE WORLD

It is possible to shrink or expand the surrounding virtual world.
This is comprehensible and effective because the user has direct

191

perception of the size of and distance to virtual objects through
stcreopsis and head-motion parallax, and can therefore easily
pcrccive the concerted motions of the objects in the virtual
world expanding around a ccntcr of expansion, or shrinking
towards a center of contraction.

The type of scaling used is uniform scaling, in which all three
dimensions arc always scaled by the same factor. There is
always a center of scaling when uniform scaling occurs, and for
the manually controlled action of scaling the world, it makes
scnsc to locate the center of scaling at the user’s hand. When
expanding the world, the center of scaling is the point that
virtual objects move away from as expansion occurs, and so to
end up at a specific desired location within a formerly-tiny
virtual world, the center of scaling must bc repeatedly re-
centered on the dcsircd location as it emerges during
expansion.

Implementing this action requires a derivation similar to that
used for flying. An incremental scaling transformation in Hand
coordinates,TIt,,,t~tt, will USC the Hand origin as the ccntcr of
scaling. Below WC give the invariant for scaling the world, and
the update formula ctcrivcd from it.

TWR' =TWR . TRacaleR'

TWR' = TWR .Tm' -TTII' ~TIISC,ICII *TK,’ ‘TTR’

GENERAL FORM

Upon examining the invariants for flying and scaling, we see a
strong similarity bctwccn them: both invariants are of the
form:

TWR' =TWR . TRaransfonn>R'

In fact, thcsc two invariants for updating TwR arc cxamplcs of a
more gcncral tcchniquc for updating a transform bctwccn two
coordinate systems based on a transform that occurs in a third
coordinate system. The gcncral form for updating the
transform TAls in terms oF an action in coordinate system K is:

whcrc thcrc may bc an arbitrary number of coordinate systems
bctwccn l3 and K. and TtsK is the product of the transforms that
go bctwccn Ihc two coordinate systems.

Using this gcncral form, scaling an object about the hand is
analogous to scaling the world about the hand:

CONCLUSIONS

The foregoing examples of grabbing, flying and scaling show
how actions can bc implcmentcd that operate under continuous
manual control by the user. For each action, the relationship
bctwccn the motion of the hand and the transforms to be
modified was prcciscly specified with an invariant. These
invariants not only provided a concise and prccisc
specification of each action, but also provided a starting point
for a formal derivation that produced update equations which
could bc usctl dircclly to implcmcnt the actions.

Using invariants and derivations to produce the code to
implcmcnt grabbing, scaling and flying is greatly superior to
the method which is ollcn used, namely, to just write down a

sequence of transforms that looks right based on the coordinate
system diagram. It is easy to get some of the transforms in the
wrong order. The notation used in this paper provides a check
against misordering the transforms by requiring adjacent
subscripts to match. The HMD software at UNC was
implemented using this notation and the formulas derived in
this paper, and serves as proof that they work.

ACKNOWLEDGEMENTS

We would like to thank many people for their contributions to
this work, starting with the HMD and Pixel-Planes teams at
UNC, led by Fred Brooks and Henry Fuchs. We thank Fred
Brooks for useful discussions about coordinate systems
diagrams and nomenclature. This work builds on earlier work at
NASA, and we would like to acknowledge the contributions of
Scott Fisher, Jim Humphries, Doug Kerr and Mike McGreevy.
We thank Ken Shoemakc for help with quaternions and Julius
Smith for rules-of-thumb about writing technical papers. This
research was supported by the following grants: DARPA
#DAEA 18-90-C-0044, NSF Cooperative Agreement #ASC-
8920219, and DARPA: “Scicncc and Technology Center for
Computer Graphics and Scientific Visualization”, ONR
#N00014-86-K-0680, and NIH #5-R24-RR-02170.

REFERENCES

[II

PI

[31

141

r51

I61

t71

@I

PI

Blanchard, C., S. Burgess, Y. Harvill, J. Lanier, A. Lasko,
M. Oberman, M. Teitet. Reality Built for Two: A Virtual
Reality Tool. Proc. 1990 Workshop on Interactive 30
Graphics. 3536.

Clark, J. 1976. Designing surfaces in 3-D.
Communications of the ACM. 19:8:454-460.

Fisher, S., M. McGrccvy, J. Humphrics, and W. Robinett.
1986. Virtual Environment Display System. Proc. 1986
Workshop on Interactive 30 Graphics. 77-87.

Foley. J., A. van Dam, S. Feiner, J. Hughes. 1990.
Computer Graphics: Principles and Practice (2nd ed.).
Addison-Wesley Publishing Co., Reading MA. 222-226.

Holloway, R., H. Fuchs, W. Robinett. 1991. Virtual-
Worlds Research at the University of North Carolina at
Chapel Hill. Proc. Computer Graphics ‘91. London,
England.

Pique, M. 1980. Nested Dynamic Rotations for Computer
Graphics. M.S. Thesis, University of North Carolina,
Chapel Hill, NC.

Robinett, W. 1990. Artificial Reality at UNC Chapel
Hill. [videotape] SIGGRAPH Video Review.

Sutherland, I. 1968. A head-mounted three-dimensional
display. 1968 Fall Joint Computer Conference, AFIPS
Conference Proceedings. 33~757-764.

Vickcrs, D. 1974. Sorcerer’s Apprentice: head mounted
display and wand. Ph.D. dissertation, Dept. of Computer
Science. Univ. of Utah, Salt Lake City.

192

