
To appear in the SIGGRAPH conference proceedings

Unstructured Lumigraph Rendering

Chris Buehler Michael Bosse Leonard McMillan Steven Gortler Michael Cohen
MIT Computer Graphics Group Harvard University Microsoft Research

Abstract

We describe an image based rendering approach that generalizes
many image based rendering algorithms currently in use including
light field rendering and view-dependent texture mapping. In par-
ticular it allows for lumigraph style rendering from a set of input
cameras that are not restricted to a plane or to any specific manifold.
In the case of regular and planar input camera positions, our algo-
rithm reduces to a typical lumigraph approach. In the case of fewer
cameras and good approximate geometry, our algorithm behaves
like view-dependent texture mapping. Our algorithm achieves this
flexibility because it is designed to meet a set of desirable goals that
we describe. We demonstrate this flexibility with a variety of ex-
amples.
Keyword Image-Based Rendering

1 Introduction

Image-based rendering (IBR) has become a popular alternative to
traditional three-dimensional graphics. Two effective IBR meth-
ods are view-dependent texture mapping (VDTM) [3] and the light
field/lumigraph [10, 5] approaches. The light field and VDTM algo-
rithms are in many ways quite different in their assumptions and in-
put. Light field rendering requires a large collection of images from
cameras whose centers lie on a regularly sampled two-dimensional
patch, but it makes few assumptions about the geometry of the
scene. In contrast, VDTM assumes a relatively accurate geomet-
ric model, but requires only a small number of textures from input
cameras that can be in general position.

We suggest that, at their core, these two approaches are quite
similar. Both are methods for interpolating color values for a de-
sired ray as some combination of input rays. In VTDM this inter-
polation is performed using a geometric model to determine which
pixel from each input image “corresponds” to the desired ray. Of
these corresponding rays, those that are closest in angle to the de-
sired ray are appropriately weighted to make the greatest contribu-
tion to the interpolated result.

Light field rendering can be similarly interpreted. For each de-
sired ray (s; t; u; v), one searches the image database for rays that
intersect near some (u; v) point on a “focal plane” and have a simi-
lar angle to the desired ray, as measured by the rays intersection on
the “camera plane” (s; t). In a depth-corrected lumigraph, the focal
plane is effectively replaced with an approximate geometric model,
making this approach even more similar to view dependent texture
mapping.

With this research, we attempt to address the following ques-
tions. Is there a generalized rendering framework that spans all
of these various image-based rendering algorithms, having VDTM
and lumigraph/light fields as extremes? Might such an algorithm
adapt well to various numbers of input images from cameras in
general configurations while also permitting various levels of ge-
ometric accuracy?

In this paper we approach the problem by first describing a set
of goals that we feel any image based rendering algorithm should
have. We find that no previous IBR algorithm simultaneously sat-
isfies all of these goals. These algorithms behave quite well under

appropriate assumptions on their input, but can produce unneces-
sarily poor renderings when these assumptions are violated.

In this paper we describe “unstructured lumigraph rendering”
(ULR), an approach for IBR that generalizes both lumigraph and
VDTM rendering. Our algorithm is designed specifically with our
stated goals in mind. As a result, our renderer behaves well with a
wide variety of inputs. These include source cameras that are not
on a common (s; t) plane, and even sets of source cameras taken by
walking forward into the scene.

It should be no surprise that our algorithm bears many resem-
blances to previously published approaches. The main contribution
of our algorithm is that, unlike all previously published methods, it
is designed to meet our listed goals and, thus, works well on a wide
range differing inputs, from a few images with an accurate geomet-
ric model to many images with minimal geometric information.

2 Previous Work

The basic idea of view dependent texture mapping (VDTM) was put
forth by Debevec et al. [3] in their Facade image-based modeling
and rendering system. Facade was designed to estimate geomet-
ric models consistent with a small set of source images. As part
of this system, a rendering algorithm was developed where pixels
from all relevant data cameras were combined and weighted to de-
termine a view-dependent texture for the derived models. In later
work Debevec et al [4] describe a real-time VDTM algorithm. In
this algorithm, each polygon in the geometric model maintains a
“view map” data structure that is used to quickly determine a set of
three data cameras that should be used to texture it. Most real-time
VDTM algorithms use projective texture mapping [6] for efficiency.

At the other extreme, Levoy and Hanrahan [10] described the
light field rendering algorithm where a large collection of im-
ages were used to render novel views of a scene. This collec-
tion of images was captured from cameras whose centers lie on
a regularly sampled two-dimensional plane. Light fields otherwise
make few assumptions about the geometry of the scene. Gortler
et al. [5] described a similar rendering algorithm called the lumi-
graph. In addition, the authors of the lumigraph paper suggests
many workarounds to overcome limitations of the basic approach,
including a “rebinning” process to handle source images acquired
from general camera positions, and a “depth-corrected” extension
to allow for more accurate ray reconstructions when there is an in-
sufficient number of source cameras.

Many extensions, enhancements, alternatives, and variations to
these basic algorithms have since been suggested. This includes
techniques for rendering digitized three-dimensional models in
combination with acquired images such as Pulli et al. [13] and
Wood et al. [18]. Shum et al. [17] has suggested alternate lower
dimensional lumigraph approximations that use only approximate
depth correction. Kock et al. [7] described an algorithm to perform
IBR from an unstructured set of data cameras where the projections
of the source cameras’ centers were projected into the desired im-
age plane, triangulated, and used to reconstruct the interior pixels.
Isaksen et al. [9] have shown how the common “image-space” coor-
dinate frames used in light-field rendering can be viewed as a focal
plane for dynamically generating alternative ray reconstructions. A



To appear in the SIGGRAPH conference proceedings

formal analysis of the trade off between number of cameras fidelity
of geometry is presented in [1].

3 Goals

We begin by presenting the following list of desirable properties
that we feel an ideal image-based rendering algorithm should have.
We also point out that no previously published method satisfies all
of these goals.

Use of geometric proxies: When geometric knowledge is
present, it should be used to assist in the reconstruction of a desired
ray (see figure 1). We refer to such approximate geometric infor-
mation as a proxy. The combination of accurate geometric prox-
ies with surface reflectance properties that are nearly Lambertian
allows for high quality reconstructions from relatively few source
images. The reconstruction process merely entails looking for rays
from source cameras that see the “same” point. This idea is cen-
tral to all VDTM algorithms. It is also the distinguishing factor in
geometry-corrected lumigraphs and surface light-field algorithms.
Approximate proxies, such as the focal-plane abstraction used by
Isaksen [9], allow for the accurate reconstruction of rays at specific
depths from standard light fields.

With a highly accurate geometric model, the visibility of any
surface point relative to a particular source camera can also be de-
termined. If a camera’s view of the point is occluded by some other
point on the geometric model then that camera should not be used in
the reconstruction of the desired ray. When possible, image-based
algorithms should compute visibility.

C1

C5

C4

C3

D

C2

C6

Figure 1: When available, approximate geometric information
should be used to determine which source rays correspond well to
a desired ray.

Epipole consistency: When a desired ray passes through the
center of projection of a source camera it can be trivially re-
constructed from the ray database (assuming a sufficiently high-
resolution input image and the ray falls within the camera’s field
of view) (see Figure 2). In this case, an ideal algorithm should
return a ray from source image. An algorithm with epipole con-
sistency will reconstruct this ray correctly without any geometric
information. With large numbers of source cameras, algorithms
with epipole consistency can create accurate reconstructions with
essentially no geometric information. Light field and lumigraph al-
gorithms were designed specifically to maintain this property.

Surprisingly, many real-time VDTM algorithms, do not ensure
this property and so will not work properly when given poor ge-
ometry. The algorithms described in [13, 2], reconstruct all of the

rays in a fixed desired view using a fixed selection of three source
images but, as shown by the original light-field paper, proper re-
construction of a desired image may involve using some rays from
each of the source images. The algorithm described in [4], always
uses three source cameras to reconstruct all of the desired pixels
for an observed polygon of the geometry proxy. This departs from
epipole consistency if the proxy is coarse. The algorithm of Koch
et al. [7] is an notable exception that, like a light field or lumigraph,
maintains epipole consistency.

C1

C5

C4

C3C2

D

C6

Figure 2: When a desired ray passes through a source camera cen-
ter, that source camera should be emphasized most in the recon-
struction.

Resolution sensitivity: In reality, image pixels are not really
measures of a single ray, but instead an integral over a set of rays
subtending some solid angle. This angular extent should be ac-
counted for by the rendering algorithm (See Figure 3). In particu-
lar, if a source camera is far away from an observed surface, then its
pixels represent integrals over large regions of the surface. If these
ray samples are used to reconstruct a ray from a closer viewpoint, an
overly blurred reconstruction will result (assuming the desired and
reference rays subtend comparable solid angles). Resolution sen-
sitivity is an important consideration when combining source rays
from cameras with different fields-of-view, or when combining rays
from cameras located various distances from the imaged surface. It
is seldom considered in traditional light-field and lumigraph render-
ing, since the source cameras usually have common focal lengths
and are located roughly the same distance from any reconstructed
surface. However, when using unstructured input cameras, a wider
variation in camera-surface distances can arise, and it is important
to consider image resolution in the ray reconstruction process. Few
image-based rendering approaches have dealt with this problem.

Unstructured input: It is very desirable for an image-based
rendering algorithm to accept input images from cameras in gen-
eral position. The original light-field method assumes that the cam-
eras are arranged at evenly spaced positions on a single plane. This
limits the applicability of this method since it requires a special
capture gantry that is both expensive and is difficult to use in many
settings [11].

The lumigraph paper describes an acquisition system that uses
a hand-held video camera to acquire input images [5]. They then
apply a preprocessing step, called rebinning, that resamples the in-
put images from virtual source cameras situated on a regular grid.
The rebinning process adds in an additional layer of image qual-
ity degradation; a rebinned lumigraph cannot, in general, reproduce
its input images. The surface light-field algorithm suffers from the
same problem.



To appear in the SIGGRAPH conference proceedings

C1

C5

C4

C3

D

C2

C6

Figure 3: When cameras have different distances from the proxy,
their resolution differs. Care should be taken not to obtain an overly
blurry reconstruction

Equivalent ray consistency: Through any empty region of
space, the ray along a given line-of-sight should be reconstructed
consistently, regardless of the viewpoint position (unless dictated
by other goals such as resolution sensitivity or visibility) (See Fig-
ure 4). This is not the case for unstructured rendering algorithms
that use desired-image-space measurements of “ray closeness” [7].
As shown in figure 4, two desired cameras that share a desired ray
will have a different “closest” cameras, therefore giving different
reconstructions.

C1

C2

D2

D1

Figure 4: When ray angle is measured in the desired view, one can
get different reconstructions for the same ray. The algorithm of
Koch et al would determine C2 to be the closest camera for D1,
and C1 to be the closest camera for D2.

Continuity: When one requests a ray with vanishingly small dis-
tance from a previous ray but intersects the same or nearby point
on the proxy, the reconstructed ray should have a color value that is
correspondingly close to the previously reconstructed color. Recon-
struction continuity is important to avoid both temporal and spatial
artifacts. For example, the weight used for a camera should drop to
zero as one approaches the boundary of its field of view [3], or as
one approaches a part of a surface that is not seen by a camera due
to visibility [14].

The VDTM algorithm of [4], which uses a triangulation of the
directions to source cameras to pick the “closest three” does not
guarantee spatial continuity, even at high tesselation rates of the
proxy. Nearby points on the proxy can have different triangulations
of the “source camera view map” giving very different reconstruc-
tions.

While this objective is subtle, it is nonetheless important, since
lack of this continuity introduces significant artifacts.

Minimal angular deviation: In general, the choice of which
data cameras are used to reconstruct a desired ray should be based
on a natural and consistent measure of closeness (See Figure 5). In
particular, we use source image rays with the most similar angle to
the desired ray.

Interestingly, the light-field and lumigraph rendering algorithms
that select rays based on how close the ray passes to a source cam-
era manifold do not quite agree with this measure. As shown in
figure 5, the “closest” ray on the (s; t) plane is not the closest one
measured in angle.

C1 C2

D

q1

q2

Figure 5: Angle deviation is a natural measure of ray difference.
Interestingly, as shown in this case, the two plane parameterization
gives a different ordering of “closeness” Source camera C2’s ray is
closer in angle to the desired ray, but the ray intersects the camera
(s,t) plane closer to C1.

Real time: It is desirable that the rendering algorithm run at in-
teractive rates. Most of the image-based algorithms that we consid-
ered here achieve this goal.

Table 1 summarizes the goals what we would consider an ideal
rendering method. It also compares ULR to other published meth-
ods.

4 Algorithm

We present a lumigraph rendering technique that directly renders
views from an unstructured collection of input images. The input
to our algorithm is a collection of source images along with their
associated camera pose estimates.

4.1 Camera Blending Field

Our real-time rendering algorithm works by evaluating a “camera
blending field” at a set of vertices in the desired image plane and in-
terpolating this field over the whole image. This blending field de-
scribes how each source camera is weighted to reconstruct a given
pixel; the calculation of this field should be based on our stated
goals, and includes factors related to ray angular difference, esti-
mates of undersampling, and field of view [13, 12].

We begin by discussing how angle similarity is best utilized. A
given desired ray rd, intersects the surface proxy at some frontmost
point p. We consider the rays ri that connect p to the centers ci
of each source camera i. For each source camera we denote the
angular difference between ri and rd as angDi�(i) (see figure 6).

One way to define a smooth blending weight “angBlend” based
on our measured angDiff would be to set a constant threshold,
“angThresh”. angBlend could then decrease from one to zero as
angDiff increases from zero to angThresh.

This approach proves unsatisfactory when using unstructured in-
put data. In order to account for desired pixels where there are no
angularly close cameras we would need to set a large angThresh.



To appear in the SIGGRAPH conference proceedings

lh96 gor96 deb96 pul97 deb98 pigh98 koc99 wood00 ULR
Use of Geometric Proxy n y y y y y y y y
Epipolar Consistency y y y n n n y y y
Resolution Sensitivity n n n n n n n n y
Unstructured Input n resamp y y y y y resamp y
Equivalent Ray Consistency y y y y y y n y y
Continuity y y y y n y y y y
Minimal Angular Deviation n n y n y y n y y
Real-Time y y n y y y y y y

Table 1: Comparison of algorithms according to our desired goals.

C1 C2

D

P

Ck

angDiff(2)
angThresh

...

Figure 6: The angle of the kth angularly furthest camera is used as
an angle threshold.

But using a large angThresh would blend unnecessary cameras at
desired pixels where there are many angularly close cameras. This
would result in an unnecessary loss of view dependence.

An adaptive way to compute an angBlend would be to always
use the k source cameras with smallest angDiff. In this case we
must take care that a particular camera’s angBlend falls to zero as
it leaves the set of “closest k”.

We can accomplish this by combining the ideas of “closest k”
and the use of an angular threshold. We define angThresh locally
to be the kth largest value of angDiff searching over the source
cameras and compute the blend as

angBlend(i) = max(0; 1�
angDi�(i)

angThresh
)

In order to have the blending weights sum to unity we normalize
as

normalizedAngBlend(i) =
angBlend(i)

Pk

j=1
angBlend(j)

This is well defined as long as not all k closest cameras are equidis-
tant. For a given camera i, normalizedAngBlend(i) is a smooth
function as one varies the desired ray along a continuous proxy sur-
face.

Resolution To reconstruct a given desired ray rd, we do not
want to use source rays ri that significantly undersample the ob-
served proxy point p. Given the positions of the cameras, their
fields of view, and p’s normal, we could compute an accurate pre-
diction of the degree of undersampling. For simplicity we perform
this computation as

resDi�(i) = max(0; k p� ci k � k p� d k)

where d is the center of the desired camera.
Given the two difference measurements angDiff and resDiff, we

compute a combined difference measure as the weighted combina-
tion:

angResDi�(i) = � angDi�(i) + � resDi�(i)

Using this new distance measure, we can compute the k closest
cameras, define a “angResThresh” threshold and compute “angRes-
Blend(i)”

angResBlend(i) = max(0; 1�
angResDi�(i)

angResThresh
)

Field of view and visibility In our rendering, we do not want
to use rays that fall outside the field of view of the source camera.
To incorporate this, when searching for the k closest cameras as
measured by angResDiff, we only look at cameras where ri falls
within its field of view. To incorporate this factor smoothly, we
define fovBlend(i) to be a “feathering” that goes to zero as ri ap-
proaches the edge of the fov of ci.

By multiplying angResBlend(i) with fovBlend(i), we obtain

angResFovBlend(i) = angResBlend(i)fovBlend(i)

Normalizing over all the i gives us the final

normalizedAngResFovBlend(i) =
angResFovBlend(i)

Pk

j=1
angResFovBlend(j)

With an accurate proxy, we would in fact compute visibility be-
tween p and ci and only consider source rays that potentially see
p [4]. In our setting we have proxies with unit depth complexity,
so we have not needed to implement visibility computation. One
complication is how to incorporate visibility and smoothness to-
gether into one metric. A proper feathering approach would use an
algorithm like that described in [12, 14].

In figure 7 we visualize a camera blending field by applying this
computation at each desired pixel. In this visualization, each source
camera is assigned a color. These colors are blended at each pixel
to show how they combine to define the blending field.

4.2 Real time rendering

The basic strategy of our real time renderer is to compute the cam-
era blending only at a discrete set of points in the image plane,
triangulate these points, and interpolate the camera blending over
the image (see figure 9).

To obtain a real time rendering algorithm we take advantage of
the fact that pixel correspondence over a planar region of the proxy
is projective. Our rendering can then use projective texture mapping
to map the source pixels onto the desired image.

Our strategy is to define a triangulation of the image plane using
the following steps (see figure 8).

� Only a single planar region of the proxy must be observed
through each triangle in the image plane. This will allow us
to use texture mapping hardware to assist our rendering. With
this property in mind, project all of the vertices and edges of
the proxy into the desired image plane. The edges are used to



To appear in the SIGGRAPH conference proceedings

Figure 7: A visualized color blending field. Camera weights are
computed at each pixel. This example is from the “hallway” dataset
shown in the results section.

C1

C2

D

e1

e2

Figure 8: Our real time renderer uses the projection of the proxy,
the projection of the source camera centers and a regular grid to
triangulate the image plane.

constrain the triangulation. 1 New vertices are inserted at all
edge-edge crossings.

� To maintain epipole consistency, we include a vertex at the
desired image plane projection of each source camera’s center.

� To obtain a sufficiently dense vertex set, needed to capture the
interesting spatial variation of the camera blending weights,
we include a regular grid of vertices on the desired image
plane. The edges of this regular grid are also added as con-
straints in the triangulation. This static structure of edges
helps keep the computed triangulation from having triangle
“flips” as the desired camera is moved and the other vertices
move relative to each other.

� Given this set of vertices and edges, we create a constrained
Delaunay triangulation of the image plane using the con-
strained Delaunay code of [16].

1In our system we project all of the vertices and edges regardless of
visibility. This conservative algorithm can create more than the necessary
number of regions. More efficient approaches are certainly possible.

� At each vertex of the triangulation, we compute and store a
set of cameras and their associated blending weights. Recall
that at a vertex, these weights sum to one.

� Over the face of a triangle we interpolate these blending
weights linearly.

� We render the desired image as a set of projectively mapped
triangles as follows. Suppose that there are a total of m unique
cameras with nonzero blending weights at the three vertices
of a triangle. Then this triangle is rendered m times, using
the texture from each of the m cameras. When a triangle is
rendered using one of the source camera’s texture, each of its
three vertices is assigned an alpha value equal to its weight
at that vertex. The texture matrix is set up to properly pro-
jectively texture the source camera’s data onto the rendered
proxy triangle. 2

Figure 9: A visualized color blending field from the real time ren-
derer. Camera weights are computed at each vertex of the triangu-
lation.

It is interesting to note that if rays are shot only at the projected
epipoles, then one gets a rendering algorithm similar to that of [7].

5 Results

We have collected a wide variety of data sets to test the ULR al-
gorithm. In the following, we describe how the data sets are cre-
ated and show some renderings from our real-time ULR algorithm.
These examples are also shown in the accompanying video.

Pond The pond dataset (Plate Ia) is constructed from a two sec-
ond (60 frame) video sequence that we captured with a digital hand-
held video camera. The camera is calibrated to recover the focal
length and radial distortion parameters of the lens. After running a
feature tracker on the sequence, the camera’s positions are recov-
ered using structure-from-motion techniques borrowed from com-
puter vision.

We use a single plane for the geometric proxy. The position of
the plane is computed based on the positions of the cameras and the

2To properly do the projective texturing, we must know which plane is
observed through some particular triangle. There are many possible ways
to do this (such as using frame-buffer reading). In our system, we typically
have proxies of low depth complexity, so we actually render each triangle
ml times, where l is the depth complexity observed through the triangle,
and let the z-buffer toss out all but the frontmost rendering.



To appear in the SIGGRAPH conference proceedings

positions of the three-dimensional structure points that are com-
puted during the vision processing. Specifically, the plane is ori-
ented (roughly) parallel to the camera image planes and placed at
the average 1=z distance [1] from the cameras.

Since the cameras are arranged along a linear path, and the proxy
is a single plane, the pond dataset exhibits parallax in only one di-
mension. However, the effect is convincing for simulating views at
about the height that the video camera was held.

Robot The Robot dataset (Plate Ib) was constructed in the same
manner as the pond dataset. In fact, it is quite simple to build un-
structured lumigraphs from short video sequences. The robot se-
quence exhibits view-dependent highlights and reflections on its leg
and on the tabletop.

Helicopter The Helicopter dataset (Plate Ic) uses the ULR algo-
rithm to achieve an interesting hack: motion in a lumigraph. To
create this lumigraph, we exploit the fact that the motion in the
scene is periodic.

The lumigraph is constructed from a continuous 30 second video
sequence in which the camera is moved back and forth repeatedly
over the scene. The video frames are then calibrated spatially using
the structure-from-motion technique described above. The frames
are also calibrated temporally by measuring accurately the period of
the helicopter. Assuming the framerate of the camera is constant,
we can assign each video frame a timestamp expressed in terms of
the period of the helicopter. Again, the geometric proxy is a plane.

During rendering, a separate unstructured lumigraph is con-
structed and rendered on-the-fly for each time instant. Since very
few images occur at precisely the same time, the unstructured lu-
migraph is constructed over a time window. The current time-
dependent rendering program (an early version of the ULR algo-
rithm) ignores the timestamps of the images when sampling camera
weights. However, it would be straightforward to blend cameras in
and out temporally as the time window moves.

Knick-knacks The Knick-knacks dataset (Plate Id) exhibits
camera motion in both the vertical and horizontal directions. In
this case, the camera positions are determined using a Faro digitiz-
ing arm. The camera is synchronized with and attached to the Faro
arm. When the user takes a picture, the location and orientation of
the camera is automatically recorded. Again the proxy is a plane,
which we position interactively by “focusing” [9] on the red car in
the foreground.

Car While the previous datasets primarily occupy the light field
end of the image-based spectrum, the Car dataset (Plate Ie) demon-
strates the VDTM aspects of our algorithm. This dataset consists
of only 36 images and a 500 face polygonal geometric proxy. The
images are arranged in 10 degree increments along a circle around
the car. The images are from an “Exterior Surround Video” (similar
to a QuicktimeVR object) database found on the carpoint.msn.com
website.

The original images have no calibration information. Instead,
we simply assume that the cameras are on a perfect circle looking
inward. Using this assumption, we construct a rough visual hull
model of the car. We simultaneously adjust the camera focal lengths
to give the best reconstruction. We simplify the model to 500 faces
while maintaining the hull property according to the procedure in
[15]. Note that the geometry proxy is significantly larger than the
actual car, and it also has noticeable polygonal silhouettes. How-
ever, when rendered using the ULR algorithm, the rough shape of
the proxy is largely hidden. In particular, the silhouettes of the ren-
dered car are determined by the images and not the proxy, resulting
in a smooth contour.

Note that in these renderings, the camera blending field is only
sampled at the vertices of the proxy. This somewhat sparse sam-
pling gives reasonable results when the complexity of the proxy is
high relative to the number of cameras.

Hallway The Hallway dataset (Plate If) is constructed from a
video sequence in which the camera moves forward into the scene.
The camera is mounted on an instrumented robot that records its
position as it moves. This forward camera motion is not commonly
used in lumigraph-style image-based rendering techniques, but it is
handled by our algorithm with no special considerations.

The proxy for this scene is a six sided rectangular tunnel that is
roughly aligned with the hallway walls [8]. None of the cabinets,
doors, or other features are explicitly modeled. However, virtual
navigation of the hallway gives the impression that the hallway is
populated with actual three-dimensional objects.

The Hallway dataset also demonstrates the need for resolution
consideration. In Figure 10a, we show the types of blurring artifacts
that can occur if resolution is ignored. In Figure 10b, we show
the result of using our simple resolution heuristic. Low resolution
images are penalized, and the wall of the hallway appears much
sharper, with a possible loss of view-dependence where the proxy is
poor. Below each rendering in Figure 10 appears the corresponding
camera blending field. Note that 10b uses fewer images on the left
hand side of the image, which is where the original rendering had
most problems with excessive blurring. In this case, the removed
cameras are too far behind the viewer.

6 Conclusion

We have presented a new image-based rendering technique for ren-
dering convincing new images from unstructured collections of in-
put images. We have demonstrated that the algorithm can be exe-
cuted efficiently in real-time.

Our technique is a generalization of the lumigraph and VDTM
rendering algorithms. We allow for unstructured sets of cameras
as well as variable information about scene geometry. Our real-
time implementation has all the benefits of real-time structured lu-
migraph rendering, including speed and photorealistic quality, and
it also allows the use of geometric proxies, unstructured input cam-
eras, and variations in resolution and field-of-view.

References
[1] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung Shum. Plenop-

tic sampling. SIGGRAPH 00, pages 307–318.

[2] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating static envi-
ronments using image-space simplification and morphing. 1997 Symposium on
Interactive 3D Graphics, pages 25–34.

[3] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from
photographs. SIGGRAPH 96, pages 11–20.

[4] Paul E. Debevec, Yizhou Yu, and George D. Borshukov. Efficient view-
dependent image-based rendering with projective texture-mapping. Eurograph-
ics Rendering Workshop 1998.

[5] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen.
The lumigraph. SIGGRAPH 96, pages 43–54.

[6] Paul Heckbert and Henry Moreton. Interpolation for polygon texture mapping
and shading. State of the Art in Computer Graphics: Visualization and Modeling,
1991.

[7] B. Heigl, R. Koch, M. Pollefeys, J. Denzler, and L. Van Gool. Plenoptic modeling
and rendering from image sequences taken by hand-held camera. Proc. DAGM
99, pages 94–101.

[8] Youichi Horry, Ken ichi Anjyo, and Kiyoshi Arai. Tour into the picture: Using a
spidery mesh interface to make animation from a single image. SIGGRAPH 97,
pages 225–232.



To appear in the SIGGRAPH conference proceedings

(a) (b)

Figure 10: Operation of our scheme for handling resolution issues: (a) shows the hallway scene with no consideration of resolution and (b)
shows the same viewpoint rendered with consideration of resolution. Below each image is the corresponding camera blending field.

[9] A Isaksen, L. McMillan, and S. Gortler. Dynamically reparameterized light
fields. SIGGRAPH ’00, pages 297–306.

[10] M. Levoy and P. Hanrahan. Light field rendering. SIGGRAPH 96, pages 31–42.

[11] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg,
Jonathan Shade, and Duane Fulk. The digital michelangelo project: 3d scanning
of large statues. SIGGRAPH 2000, pages 131–144.

[12] Frédéric Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, and David H.
Salesin. Synthesizing realistic facial expressions from photographs. SIGGRAPH
98, pages 75–84.

[13] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues Hoppe, Linda Shapiro, and
Werner Stuetzle. View-based rendering: Visualizing real objects from scanned
range and color data. Eurographics Rendering Workshop 1997, pages 23–34.

[14] Ramesh Raskar, Michael S. Brown, Ruigang Yang, Wei-Chao Chen, Greg
Welch, Herman Towles, Brent Seales, and Henry Fuchs. Multi-projector dis-
plays using camera-based registration. IEEE Visualization ’99, pages 161–168.

[15] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John Sny-
der. Silhouette clipping. SIGGRAPH 2000, pages 327–334.

[16] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality mesh generator
and delaunay triangulator. First Workshop on Applied Computational Geometry,
pages 124–133, 1996.

[17] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics. SIG-
GRAPH 99, pages 299–306.

[18] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp,
David H. Salesin, and Werner Stuetzle. Surface light fields for 3d photography.
SIGGRAPH 2000, pages 287–296.



To appear in the SIGGRAPH conference proceedings

(a) (b) (c)

(d) (e) (f)

Figure 11: Renderings from the real-time unstructured lumigraph renderer. (a) Pond,(b) Robot, (c) Helicopter, (d) Knick-knacks, (e) Car, (f)
Hallway


