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Erasure Codes for Systems
COS 518:  Advanced Computer Systems

Lecture 14

Michael Freedman

Slides originally by Wyatt Lloyd

Things Fail, Let’s Not Lose Data

• Replication
• Store multiple copies of the data
• Simple and very commonly used!
• But, requires a lot of extra storage

• Erasure coding
• Store extra information we can use to recover the data
• Fault tolerance with less storage overhead

Erasure Codes vs Error Correcting Codes

• Error correcting code (ECC):
• Protects against errors is data, i.e., silent corruptions
• Bit flips can happen in memory -> use ECC memory 
• Bits can flip in network transmissions -> use ECCs

• Erasure code:
• Data is erased, i.e., we know it’s not there
• Cheaper/easier than ECC

• Special case of ECC
• What we’ll discuss today and use in practice

• Protect against errors with checksums

Erasure Codes, a simple example w/ XOR

A A⊕BB
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A A⊕BB

Erasure Codes, a simple example w/ XOR

A A⊕BB

A⊕BB ⊕A =

Erasure Codes, a simple example w/ XOR

Reed-Solomon Codes (1960)
• N data blocks
• K coding blocks
• M = N+K total blocks

• Recover any block from any N other blocks!

• Tolerates up to K simultaneous failures

• Works for any N and K (within reason)

Reed-Solomon Code Notation
• N data blocks
• K coding blocks
• M = N+K total blocks

• RS(N,K)
• (10,4): 10 data blocks,  4 coding blocks

• f4 uses this, FB HDFS for data warehouse does too

• Will also see (M, N) notation sometimes
• (14,10): 14 total blocks, 10 data blocks, (4 coding blocks)
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Reed-Solomon Codes, How They Work
• Galois field arithmetic is the secret sauce

• Details aren’t important for us J

• See “J. S. Plank. A tutorial on Reed-Solomon coding for 
fault-tolerance in RAID-like systems. Software—Practice & 
Experience 27(9):995–1012, September 1997.”

Reed-Solomon (4,2) Example

1BA DC 2

Reed-Solomon (4,2) Example

1BA DC 2

Reed-Solomon (4,2) Example

1BA DC 2

1BA DC= + + +
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Reed-Solomon (4,2) Example

1BA DC 2

1BA DC
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Erasure Codes Save Storage

• Tolerating 2 failures
• 3x replication = ___ storage overhead

Erasure Codes Save Storage

• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = ___ storage overhead

Erasure Codes Save Storage

• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = (4+2)/4 = 1.5x storage overhead
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Erasure Codes Save Storage

• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = (4+2)/4 = 1.5x storage overhead

• Tolerating 4 failures
• 5x replication = 5x storage overhead
• RS(10,4) = ___ storage overhead

Erasure Codes Save Storage

• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = (4+2)/4 = 1.5x storage overhead

• Tolerating 4 failures
• 5x replication = 5x storage overhead
• RS(10,4) = (10+4)/10 = 1.4x storage overhead
• RS(100,4) = ___ storage overhead

Erasure Codes Save Storage

• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = (4+2)/4 = 1.5x storage overhead

• Tolerating 4 failures
• 5x replication = 5x storage overhead
• RS(10,4) = (10+4)/10 = 1.4x storage overhead
• RS(100,4) = (100+4)/100 = 1.04x storage overhead

What’s the Catch?
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Catch 1: Encoding Overhead
• Replication:
• Just copy the data

• Erasure coding:
• Compute codes over N data blocks for each of the K coding blocks

Catch 2: Decoding Overhead
• Replication
• Just read the data

• Erasure Coding

Catch 2: Decoding Overhead
• Replication
• Just read the data

• Erasure Coding
• Normal case is no failures -> just read the data!
• If there are failures

• Read N blocks from disks and over the network
• Compute code over N blocks to reconstruct the failed block

Catch 3: Updating Overhead
• Replication:
• Update the data in each copy

• Erasure coding
• Update the data in the data block
• And all of the coding blocks
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Catch 3’: Deleting Overhead
• Replication:
• Delete the data in each copy

• Erasure coding
• Delete the data in the data block
• Update all of the coding blocks

Catch 4: Update Consistency
• Replication:

• Erasure coding

Catch 4: Update Consistency

• Replication:
• Consensus protocol (Paxos!)

• Erasure coding
• Need to consistently update all coding blocks with a data block
• Need to consistently apply updates in a total order across all blocks
• Need to ensure reads, including decoding, are consistent

Catch 5: Fewer Copies for Reading

• Replication
• Read from any of the copies

• Erasure coding
• Read from the data block
• Or reconstruct the data on fly if there is a failure
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Catch 6: Larger Min System Size
• Replication
• Need K+1 disjoint places to store data
• e.g., 3 disks for 3x replication

• Erasure coding
• Need M=N+K disjoint places to store data
• e.g., 14 disks for RS(10,4) replication

What’s the Catch?
• Encoding overhead
• Decoding overhead
• Updating overhead
• Deleting overhead

• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Different codes make different tradeoffs

• Encoding, decoding, and updating overheads
• Storage overheads

• Best are “Maximum Distance Separable” or  “MDS” codes where K extra 
blocks allows you to tolerate any K failures

• Configuration options
• Some allow any (N,K), some restrict choices of N and K

• See “Erasure Codes for Storage Systems, A Brief Primer. James 
S. Plank. Usenix ;login: Dec 2013” for a good jumping off point
• Also a good, accessible resource generally

Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead
• Updating overhead

• Deleting overhead
• Update consistency
• Fewer copies for serving reads
• Larger minimum system size



3/31/19

9

Let’s Improve Our New Hammer!

Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead
• Updating overhead

• Deleting overhead
• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Immutable data
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Erasure Coding Big Picture
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Storing lots of data
(when storage overhead 
actually matters this is true)

Immutable data
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Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead

• Updating overhead
• Deleting overhead

• Update consistency
• Fewer copies for serving reads
• Larger minimum system size Storing lots of data

(when storage overhead 
actually matters this is true)

Low read rate

Immutable data

Data is stored for a long 
time after being written
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f4:
Facebook’s Warm BLOB Storage System
[OSDI ‘14]

1

Subramanian Muralidhar*, Wyatt Lloyd*ᵠ, Sabyasachi Roy*, Cory Hill*, Ernest Lin*, Weiwen Liu*, 
Satadru Pan*, Shiva Shankar*, Viswanath Sivakumar*, Linpeng Tang*⁺, Sanjeev Kumar*

*Facebook Inc., ᵠUniversity of Southern California, ⁺Princeton University
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Handling failures
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*  3  =  3.6Replication:

9 Disk failures3 Host failures3 Rack failures3 DC failures
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Handling load

6

HOSTHOSTHOSTHOSTHOST HOST HOST

Reduce space usage
AND

Not compromise reliability

Background: Data serving

• CDN protects storage

• Router abstracts storage

• Web tier adds business logic

User Requests

Web Servers CDN

BLOB
Storage

Router

Writes Reads

Background: Haystack [OSDI’10]
Header

Footer

BLOB1

BID1: Off

Volume

In-Memory Index

• Volume is a series of BLOBs

• In-memory index Header

Footer

BLOB1

Header

Footer

BLOB1

BID2: Off

BIDN: Off

Introducing f4: Haystack on cells
RackRackRack

Cell

Data+Index

Compute
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Data splitting

Stripe1 Stripe2

RS =>BLOB2

RS =>

10G Volume
Reed Solomon Encoding

BLOB1

BLOB2

BLOB3

BLOB4
BLOB5
BLOB5

BLOB6

BLOB7

BLOB8

BLOB9

BLOB10

BLOB11

BLOB4

BLOB2

BLOB4

4G parity

Data placement

Cell with 7 Racks

• Reed Solomon (10, 4) is used in practice (1.4X)
• Tolerates 4 racks (à 4 disk/host ) failures

Stripe1 Stripe2

10G Volume

4G parity

RS RS

Reads

Compute

Storage Nodes

Cell

Router
Index

User
Request

Index
Read

Data
Read

• 2-phase: Index read returns exact physical location of BLOB

Reads under cell-local failures

Compute (Decoders)

Storage Nodes

Cell

Router
Index

User
Request

Index
Read

Data
Read

Decode
Read

• Cell-Local failures (disks/hosts/racks) handled locally
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Reads under datacenter failures (2.8X)

2 * 1.4X = 2.8X

Compute (Decoders)
Cell in Datacenter1

User
Request

Compute (Decoders)
Mirror Cell in Datacenter2

Proxying

Cross datacenter XOR

Cell in
Datacenter1

Cell in
Datacenter2

Cell in
Datacenter3

33%

67%

(1.5 * 1.4 = 2.1X)
Index

Index

Index

Cross –DC
index copy

Reads with datacenter failures (2.1X)
IndexRouter

User
Request

Index
Read

Router

Router

Data
Read

Data
Read

XOR
Index

IndexIndex

Haystack 
3-way replication

f4 2.8
RS(10,4)

f4 2.1 
RS(10,4)

Replication 3.6X 2.8X 2.1X
Irrecoverable Disk Failures 9 10 10

Irrecoverable Host Failures 3 10 10
Irrecoverable Rack failures 3 10 10

Irrecoverable Datacenter
failures

3 2 2

Load split 3X 2X 1X
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Evaluation

• What and how much data is “warm”?

• Can f4 satisfy throughput and latency requirements?

• How much space does f4 save

• f4 failure resilience

Methodology

• CDN data: 1 day, 0.5% sampling

• BLOB store data:  2 week,  0.1% 

• Random distribution of BLOBs assumed

• The worst case rates reported
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f4 Performance: Most loaded disk in 
cluster
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Peak load on disk: 35 Reads/Sec
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f4 Performance: Latency

P80 = 30ms P99 = 80ms
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Summary

• Facebook’s BLOB storage is big and growing

• BLOBs cool down with age
• ~100X drop in read requests in 60 days

• Haystack’s 3.6X replication over provisioning for old, warm data.

• f4 encodes data to lower replication to 2.1X


