MIMO III: Channel Capacity, Interference Alignment

COS 463: Wireless Networks Lecture 18 Kyle Jamieson

[Parts adapted from D. Tse]

Today

1. Interference Channel Capacity – Single-Antenna Context

2. MIMO Channel Capacity

3. Interference Alignment

Two-User Interference Channel

• On the same frequency channel at the same time:

- Sender 1 sends signal x_1 with power P_1
- Sender 2 sends signal x_2 with power P_2
- **AP receives:** $y[m] = x_1[m] + x_2[m] + w[m]$
 - w[m] is background Gaussian Noise with variance σ^2
- What are the fundamental limits of communication here?

Extension of Capacity to Multiple Users

- **Single-channel** Shannon capacity is a **single rate** (bits/s/Hz)
- Generalizing for two users capacity becomes a region:
 - Set of all pairs (R_1, R_2) such that **simultaneously**,
 - User 1 can reliably communicate at rate R_1 and
 - User 2 can reliably communicate at rate R_2
 - Tradeoff between reliable communication rates:
 - If User 1 wants to increase its rate, User 2 may need to decrease its rate

Two-User Interference Channel: Single-User Bounds

Interference Doesn't Help

• Assumption: User 1's data are completely independent from User 2's data, and vice-versa

• Thought exercise: Point-to-point link sending with power $P_1 + P_2$ – Must outperform interfering link (otherwise interference helps)

• So therefore,
$$R_1 + R_2 < \log(1 + \frac{P_1 + P_2}{\sigma^2})$$

Two-User Interference Channel: Capacity Region

Successive Interference Cancellation (SIC)

- Receiver decodes information **from both senders** in three stages:
- 1. Decode data of user 1, treating signal from user 2 as noise

Reconstruct user 1's signal (x'₁[m]) from decoded data and subtract from aggregate received signal y[m], cancelling it:

 $y'[m] = y[m] - x'_1[m]$

 $= x_2[m] + (x_1[m] - x'_1[m]) + w[m]$

3. Decode user 2's signal from y'[m]

Decoding Strong BPSK with weak QPSK

Power Difference Helps Superposition Coding

SIC: Choice of User Order

Comparison with CDMA

- **CDMA:** Every user decoded treating the other users as noise
 - Achieves Point C
 - But, User 1 starves

- **CDMA power control:** Reduce power of the strong user
 - Achieves Point D

Comparison with TDMA/FDMA + Power Control

- Allocate α time- or frequencyfraction to User 1; 1 – α to User 2
- Scale each user's power
 according to allocated proportion
- User 1 maximum rate:

$$\alpha \log \left(1 + \frac{P_1}{\alpha \sigma^2}\right)$$

• User 2 maximum rate:

$$(1-\alpha)\log\left(1+\frac{P_2}{(1-\alpha)\sigma^2}\right)$$

Comparison with TDMA/FDMA + Power Control

Today

1. Interference Channel Capacity

2. MIMO Channel Capacity

3. Interference Alignment

Review: The MIMO Channel

• Transmit **three symbols** per symbol time: $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

• Represent the MIMO channel as $\vec{y} = \mathbf{H}\vec{x} + \vec{w}$

$$- H = \begin{bmatrix} h_{11} & h_{12} & h_{11} \\ h_{21} & h_{22} & h_{11} \\ h_{31} & h_{32} & h_{11} \end{bmatrix}$$
 is the MIMO *channel matrix,* \vec{w} noise

Recap: MIMO Radio Channel

MIMO link with n_t transmit, n_r receive antennas

MIMO radio channel itself:

Recap: Zero-Forcing MIMO

- **Transmitter** does not know **H** (channel)
- Each symbol time:
 - Sends n_t symbols (**original Data**), one per transmit antenna
- Data arrives mixed together at receiver antennas y

Recap: Zero-Forcing MIMO

- Receiver knows H (channel)
- Each symbol time:
 - Receive n_r mixed-up signals y
 - **For each** of the n_t transmitted symbols:
 - Zero-Forcing Receiver nulls all but that symbol

Today

1. Interference Channel Capacity

- 2. MIMO Channel Capacity
 - Vector Space Intuition
 - Eigenmode Forcing via Singular Value Decomposition

3. Interference Alignment

MIMO Channel Capacity: Motivation

- The story so far: Copy data into $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ each symbol time
 - Looked at when this performed well, poorly
 - Answer: MIMO channel conditioning ← "Rich multipath environment" around sender, receiver

* * *

- Today's first topic: Is this the best bits/seconds/Hz possible?
 - What's the capacity of a MIMO channel?
 - Similar question: **Shannon capacity** of a single-input, single-output (**SISO**) **channel**

Where's the Room for Improvement?

- Suppose the transmitter knows H (channel)
- Zero-forcing receiver heard h_1 , h_2 , h_3

- Power loss at receiver (due to $Proj_{\perp}$) for h_3

Idea: Use transmit antennas 2 and 3 to send the ideal direction
 No longer simply one symbol, one transmit antenna

How Might We Control Directions?

- Sender precodes data x
 into actual transmission in desired directions x
- Receiver processing changes accordingly

What Kind of Precoding?

 Recall, we wanted to make independent channels on each wireless channel path

• Suppose H were diagonal:

$$\mathbf{H} = \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_{n_t} \end{bmatrix}$$

Then the y_k channel output would only depend on x_k
 – Parallel, independent channels

Today

1. Interference Channel Capacity

2. MIMO Channel Capacity

- Vector Space Intuition
- Eigenmode Transmission

3. Interference Alignment

Singular Value Decomposition (SVD)

- The insight lies in a special way of "factoring" matrix H
- Any matrix **H** has an SVD: $H \rightarrow U\Lambda V^*$
 - ∧ is a diagonal matrix (contains zeroes off-diagonal)
 - -**U**and**V**are*unitary*(**UU**^{*} =**U**^{*}**U**=**VV**^{*} =**V**^{*}**V**=**I**)

Interpreting the SVD Steps

- A matrix with the $m = \min(n_t, n_r)$ singular values $\lambda_1, \dots, \lambda_m$ - One per significant radio channel path
- V* translates to the radio channel path coordinate system where channels are decoupled
- U translates back, to antenna coordinate system (undoes the V* translation)

Leveraging the SVD in a Practical System

- Alone, SVD does nothing (just analyzes what H does)
- Want to put data into the radio channel coordinate system

MIMO Radio Channel H

Leveraging the SVD in a Practical System

- Sender precodes with V, receiver "post-codes" with U*
 - V is unitary, so **V*****V** = **I** (same for U)
 - So data sees independent channels
- This is called MIMO eigenmode transmission

A Model for Eigenmode Transmission

- Performance model for the eigenmode transmitter/receiver
- All channels decoupled, transmit power $P_k \rightarrow SNR$ on *i* th channel: $\frac{P_i \lambda_i^2}{\sigma^2}$

Performance: Uniform Power Division

 At high SNR (the common case in wireless LANs), with *total* transmit power P evenly divided over spatial paths

• Data rate =
$$\sum_{i=1}^{k} \log\left(1 + \frac{P\lambda_i^2}{kN_0}\right) \approx k \log(SNR)$$

* * *

- How can we do better?
 - Idea: Allocate different transmit powers P_i to different radio channel paths i
 - Problem we've seen before in 463 in OFDM context

Waterfilling for MIMO Power Allocation

MIMO Capacity: Takeaways

• OFDM – MIMO analogy:

A transformation (OFDM: FFT, MIMO: SVD) renders interfering channels in (OFDM: frequency, MIMO: space) independent

- MIMO Eigenmode transmission:
 - Transmitter **sends directionally**, along spatial paths of the radio channel
 - Receiver listens directionally, along same spatial paths
 - Achieves the MIMO channel capacity

Today

1. Interference Channel Capacity

2. MIMO Channel Capacity

3. Interference Alignment

Interference Alignment (IA)

- Number of concurrent MIMO streams a client can send is limited by the number of antennas
 - Sending more streams results in **interference between streams**
 - Also limited by the amount of multipath in the environment

New Idea: Use MIMO precoding techniques to align interference at receivers to advantage

- Requires APs cooperating via a wired backhaul
 - e.g. APs owned by one organization

MIMO channel representation

- As before, model channel from one antenna *i* to another *j* as one complex number h_{ij}
- Channel matrix **H** from a client to an AP is formed by $[h_{ij}]$

Uplink: Interference Between Networks

- Client 1 has 2 packets for AP 1; Client 2 has a packet for AP 2

 Two-antenna APs, so each decoding in a 2-D space
- Three packets form three vectors in the 2-D space at each AP

 Therefore, the APs can't decode these 3 packets

Interference alignment: Basic idea (1)

- Clients transmit *p*₂ and *p*₃ aligned at access point (AP) 1
 They add up in their one direction
- 2. AP **1 zero-forces to decode** *p*₁, sends it **over backhaul to AP 2**
- 3. AP **2** subtracts p_1 from the signal it receives, **cancelling it**

Interference alignment: Basic idea (2)

- 4. AP **2** uses zero-forcing receiver to decode p_2 , p_3
- 5. AP **2** sends p_2 to AP **1** (or onward on behalf of client **1**)

Uplink: Sketching a Practical Plotocol

- Transmit precoding: client multiplies packet by vector v
 - Changes alignment at receiver
- **1.** Client 1 picks random precoding vectors v_1 and v_2
- 2. Client 1 begins transmission
- 3. Client 2 chooses v_3 so that $H_{11}v_2 = H_{21}v_3$
 - How does client 2 know H_{11} and H_{21} ?
 - Client 1 can include in its packet header

Uplink: Four Concurrent Packets?

- All packets but one (p_1) must align at AP **1**, so AP **1** can decode
- Subtract p_1 from p_1 four packets a AP **2**, leaving three packets
- AP **2** can only decode two packets at a time (2-d space)
 - Can't decode p_3 and p_4 at AP 2: Can only decode p_1 and p_2

Downlink Interference Alignment

- Clients can't exchange frames over backhaul
- Instead, align neighboring APs' interference at each client

Thursday Topic: Ripple II: Faster Communication through Physical Vibration

(Download & Pre-read paper!)