MIMO I: Spatial Diversity

COS 463: Wireless Networks Lecture 16 Kyle Jamieson

[Parts adapted from D. Halperin et al., T. Rappaport]

What is MIMO, and why?

- *Multiple-Input, Multiple-Output (MIMO)* communications
 - Send/receive > 1 signal on different transmit and receive antennas
- We've already seen **frequency**, **time**, **spatial** multiplexing in 463:
 - MIMO is a more powerful way to multiplex wireless medium in space
 - Transforms multipath propagation from impediment to advantage

Many Uses of MIMO

- At least three different ways to **leverage space:**
- 1. Spatial diversity: Send or receive redundant streams of information in parallel along multiple spatial paths
 - Increase reliability and range (unlikely all paths are degraded simultaneously)
- 2. Spatial multiplexing: Send independent streams of information in parallel along multiple spatial paths
 - Increases rate, if we can avoid interference
- 3. Interference alignment: "Align" two streams of interference at receiver, resulting in impact of just one interference stream

MIMO-OFDM

- Multipath fading: different effects on different frequencies
 - OFDM: Orthogonal Frequency Domain Multiplexing
 - Different subcarriers are independent of each other
- Channel model for OFDM: $y = h \cdot x + w$
 - A single complex number h captures the effect of the channel on data in a particular subcarrier
- For MIMO: Think about each subcarrier, independent of other subcarriers

Plan

1. Today: Diversity in Space

- Receive Diversity
- Transmit Diversity

2. Next time: Multiplexing in Space

3. Next time: Interference Alignment

Path Diversity: Motivation

1. Multi-Antenna Access Points (APs), especially 802.11n,ac:

2. Multiple APs cooperating with each other:

3. Distributed Antenna systems, separating antenna from AP:

Review: Fast Fading

- Typical outdoor **multipath propagation environment**, channel **h**
- On one link each subcarrier's power level experiences Rayleigh fading:

Uncorrelated Rayleigh Fading

- Suppose two antennas, separated by distance d₁₂
- Channels from each to a distant third antenna (h_{13}, h_{23}) can be uncorrelated
 - Fading happens at different times with no bias for a simultaneous fade

When is Fading Uncorrelated, and Why?

- Channels from each antenna (*h*₁₃, *h*₂₃) to a third antenna
 - Channels are **uncorrelated** when $d_{12} > \approx 1.5\lambda$
 - Channels **correlated**, fade together when $d_{12} < \approx \lambda$

- This correlation distance depends on the radio environment around the pair of antennas
 - Increases, *e.g.*, atop cellular phone tower

Plan

1. Today: Diversity in Space – Receive Diversity

- Selection Diversity
- Maximal Ratio Combining
- Transmit Diversity

2. Next time: Multiplexing in Space

3. Next time: Interference Alignment

Channel Model for Receive Diversity

- One transmit antenna sends a symbol to two receive antennas
 - Receive diversity, or Single-Input, Multi-Output (SIMO)

- Each receive antenna gets own copy of transmitted signal via:
 - A different path
 - A (likely) different channel

Selection Diversity

- Two receive antennas share one receiving radio via a switch
- Receiver selects antenna with stronger signal to connect to the radio
 - Helps reliability (both unlikely bad)
 - Wastes received signal from other antenna(s)

Selection Diversity: Performance Improvement in Uncorrelated Rayleigh Fading

- In general, might have *M* receive antennas (average SNR Γ)
 - $-\gamma_i$: SNR of the *i*th receive antenna
- Probability selected SNR is less than some threshold γ (outage):

-
$$\Pr[\gamma_1, \cdots, \gamma_M \le \gamma] = (\Pr[\gamma_i \le \gamma])^M$$

 One more "9" of reliability per additional selection branch

 \leftarrow lower threshold SNR IO LOG (γ/Γ), dB

Leveraging All Receive Antennas

- Want to just add the two received signals together
 But if we did the signals would often cancel out
- Solution: Receive *M* radios, align signal phases, then add
 Requires *M* receive radios, in general

How to Choose Weights?

- Suppose phase of incoming signal on the *i*th branch is θ_i
- To align { y_i } in phase, let the combiner output y = Σ^M_{i=1} a_ie^{-jθ_i}
 How to choose amplitudes a_i?
- Idea: Put more weight into branches with high SNR: Let a_i = γ_i
 This is called *Maximal Ratio Combining (MRC)*

MRC: Performance Improvement

 Two "9"s of reliability improvement between one (*i.e.*, no MRC) and two MRC branches

Selection Diversity, in Frequency

- Antennas A and C experience different fades on different subcarriers
- Selection Combining ("SEL") improves but certain subcarriers still experience fading
- MRC increases power and flattens nulls, leading to fewer bit errors

MRC's Capacity Increase

MRC with M branches increases SNR
 – Increased Shannon capacity

• Sub-linear (logarithmic) capacity increase in *M*: $- C_{MRC} = BW \cdot \log(1 + M \cdot SNR)$ bits/second/Hz

Plan

- 1. Today: Diversity in Space
 - Receive Diversity
 - Transmit Diversity
 - Transmit beamforming
 - Introduction to Space-Time Coding: Alamouti's Scheme

2. Next time: Multiplexing in Space

3. Next time: Interference Alignment

Transmit Diversity: Motivation

- More space, power, processing capability available at the transmitter?
 - Yes, likely! e.g. Cell tower, Wi-Fi AP sending downlink traffic to mobile
- But, a possible requirement: Transmitter may need to know radio channel before transmission commences
 - cf. receive diversity: receiver knows channel from preamble
- So, a tension: Want to separate transmit antennas for path diversity
 - Need to move timely radio channel measurements between locations
 - Introduces overhead and design complexity

Transmit Beamforming: Motivation

- Suppose transmitter knows the channel to receivers
- Transmitters align their signals so that constructive interference occurs at the single receive antenna
 - Align **before transmission**, not after reception (receive beamforming)

Transmit Beamforming

- Leverage channel reciprocity, receive beamforming "in reverse"
- Send one **data symbol** *x* from two antennas

At each transmit antenna, multiply (pre-code) x by the complex conjugate of the respective channel to the receive antenna

Plan

1. Today: Diversity in Space

- Receive Diversity
 - **Transmit Diversity**
 - Transmit beamforming
 - Introduction to Space-Time Coding: Alamouti's Scheme

2. Next time: Multiplexing in Space

3. Next time: Interference Alignment

Alamouti Scheme: Motivation

- Suppose transmitters don't know channel to receiver: what to do?
- 1. Naïve ("blind") beamforming (just send same signals)
 - Signals would often cancel out
- 2. Repetition in time
 - Each antenna takes turns transmitting same symbol
 - Receiver combines coherently
 - Uses **M** symbol times
 - Increases diversity ("SNR" term in Shannon capacity)
 - Cuts Shannon rate by 1/M factor

Alamouti Scheme

- Scope: A two-antenna transmit diversity system (M = 2)
- Sends two symbols, s₁ and s₂, in two symbol time periods:

Symbol Time Period	1	2	
Antenna 1:	Send s ₁	Send $-s_2^*$	
Antenna 2:	Send s ₂	Send s_1^*	

Then, by superposition the receiver hears:

Symbol Time Period	1	2
Receiver hears:	$y_1 = h_1 s_1 + h_2 s_2$	$y_2 = -h_1 s_2^* + h_2 s_1^*$

Alamouti Receiver Processing

Symbol Time Period	1	2
Receiver hears:	$y[1] = h_1 s_1 + h_2 s_2$	$y[2] = -h_1 s_2^* + h_2 s_1^*$ $y^*[2] = h_2^* s_1 - h_1^* s_2$

$$\begin{bmatrix} y[1] \\ y^*[2] \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$

• Rewrite (receiver has channel information):

$$\begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \propto \begin{bmatrix} h_1^* & h_2 \\ h_2^* & -h_1 \end{bmatrix} \begin{bmatrix} y[1] \\ y^*[2] \end{bmatrix}$$

- So receiver can solve for transmitted symbols
- But, what's happening in terms of the physical wireless channel?

Intuition for Alamouti Receiver Processing

• Start with the inverted channel matrix:

$$\begin{bmatrix} \boldsymbol{s_1} \\ \boldsymbol{s_2} \end{bmatrix} \propto \begin{bmatrix} \boldsymbol{h_1^*} & \boldsymbol{h_2} \\ \boldsymbol{h_2^*} & -\boldsymbol{h_1} \end{bmatrix} \begin{bmatrix} \boldsymbol{y}[1] \\ \boldsymbol{y^*}[2] \end{bmatrix}$$

- Consider the computation for s₁:
 - Rotate y[1] by $-\theta_1$
 - Rotate $y^*[2]$ by θ_2
 - **Sum** the result

Alamouti: Impact of Phase Rotations

- Consider the **computation for s**₁:
 - Rotate y[1] by $-\theta_1$
 - Rotate $y^*[2]$ by θ_2
 - Sum the result

Symbol Time Period	1 2	
Receiver hears:	$y[1] = h_1 s_1 + h_2 s_2$	$y^*[2] = h_2^* s_1 - h_1^* s_2$
	\downarrow \downarrow	\downarrow \downarrow
Phase after rotation:	$0 \qquad \boldsymbol{\theta}_2 - \boldsymbol{\theta}_1$	$0 \qquad \boldsymbol{\theta}_2 - \boldsymbol{\theta}_1$

Alamouti: Receiver-Side Picture

Symbol Time Period	1		2	
Receiver hears:	$\mathbf{y}[1] = h_1 s_1$	$+ h_2 s_2$	$y^*[2] = h_2^*s$	$s_1 - h_1^* s_2$
Phase after rotation:	↓ 0	$\downarrow \\ \boldsymbol{\theta}_2 - \boldsymbol{\theta}_1$	↓ 0	$\downarrow \\ \boldsymbol{\theta}_2 - \boldsymbol{\theta}_1$
Receiver then sums all te	<mark>rms above:</mark>			

Alamouti: Interpretation

$$\begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \propto \begin{bmatrix} h_1^* & h_2 \\ h_2^* & -h_1 \end{bmatrix} \begin{bmatrix} y[1] \\ y^*[2] \end{bmatrix}$$

$$\mathbf{H}$$

- Two new signal dimensions:
- 1. Multiply two received symbols by the top column of H
 - Name this dimension $[h_1^* \quad h_2]^T$
 - s₁ arrives along this dimension (only!)
- 2. Multiply two received symbols by the lower column of H
 - Name this dimension $[h_2^* h_1]^T$
 - s₂ arrives along this dimension (only!)

Alamouti: Performance

• Two dimensions: $[h_1^* \ h_2]^T$, $[h_2^* \ -h_1]^T$

Send half power on each antenna

- For both symbols,
$$SNR = \frac{|h|_1^2 + |h|_2^2}{2\sigma^2}$$

Rate gain from enhanced SNR, maintains one symbol/symbol time

 But not two symbols/symbol time: no true spatial
 multiplexing, yet

Multi-Antenna Diversity: Summary

- Leverage path diversity
 - Decrease probability of "falling into" to deep Rayleigh fade on a single link
- Defined new "dimensions" of independent communication channels based on space
 - Segue to spatial multiplexing next time

Thursday Topic: MIMO II: Spatial Multiplexing