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• The radio channel is what limits most communications systems – the 
main challenge!
– Understanding its properties is therefore key to understanding 

radio systems’ design

• There is variation in many different properties
– Carrier frequency, environment (e.g. indoors, outdoors, satellite, 

space)

• Many different models covering many different scenarios
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Radio Channel: Motivation



• A channel model describes what happens
– Gives channel output power for a particular input power
– “Black Box” – no explanation of mechanism
– Requires appropriate statistical parameters (e.g. loss, fading)

• A propagation model describes how it happens
– How signal gets from transmitter to receiver
– How energy is redistributed in time and frequency
– Can inform channel model parameters
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Channel and Propagation Models



1. Large scale channel model
– Friis Free space model

• How much power delivered from omnidirectional 
transmitter to omnidirectional receiver, in free space?

2. Small-scale channel models
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Today



• Deliver !" Watts to an omnidirectional transmitting antenna

• So then power density (Watts per unit area) at range d is # = %&
'()* W/m2

– Independent of wavelength (frequency)
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Transmitting in Free Space

+

Total spherical surface area: 4-+.

unit area
!"



• Effective aperture !": fraction of incident power density p	captured and 
received: %& = ()

*+

• Larger antennas at greater λ capture more power

• Therefore, power received ,- is the product of the power density and effective 
aperture:

,- = . / %& =
,012

(45)272
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Idealized Receive Antenna



• Antennas don’t radiate power equally 
in all directions
– Specific to the antenna design

• Model these gains in the directions of 
interest between transmitter, receiver:

– Transmit antenna gain Gt
– Receive antenna gain Gr
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Antenna Gain



• Power received !" is the product of the power received by 
idealized antennas, times transmit and receive antenna gains:

!" =
!$%$%"&'
(4*)','
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Friis Free Space Channel Model



1. Large scale channel models

2. Small-scale channel models
– Multi-path propagation

– Motion and channel coherence time
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Today



• Small-scale models: Characterize the channel over at most a few 
wavelengths or a few seconds
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Small-scale versus large-scale modeling



• Receiver gets multiple copies of signal
– Each copy follows different path, with different path length
– Copies can either strengthen or weaken each other

• Depends on whether they are in or out of phase

• Enables communication even when transmitter and receiver are not in “line of sight”
– Allows radio waves effectively to propagate around obstacles, thereby 

increasing the radio coverage area

• Transmitter, receiver, or environment object movement on the order of λ 
significantly affects the outcome
– e.g. 2.4 GHz à λ = 12 cm, 900 MHz à ≈ 1 ft
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Multipath Radio Propagation



Radio Propagation Mechanisms

Reflection Scattering Diffraction

• Refraction
– Propagation wave changes direction when impinging on different medium

• Reflection
– Propagation wave impinges on large object (compared to λ)

• Scattering
– Objects smaller than λ (i.e.  foliage, street signs etc.)

• Diffraction
– Transmission path obstructed by surface with sharp irregular edges
– Waves bend around obstacle, even when line of sight does not exist

Refraction



1. Large scale channel models

2. Small-scale channel models
– Multi-path propagation

• Frequency-domain view
• Time-domain view

– Motion and channel coherence time
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Today



• Suppose transmitter is distance d (propagation time delay τ = d / c) away 
from receiver (where c is the speed of light)

• Radio frequency transmitted signal: cos 2%&'( = cos 2%*/, - (
– Carrier frequency fc corresponds to radio wavelength λ

– Baseband transmitted signal in one symbol period: . = 1+ 02

How to model the effect of the channel?

Sinusoidal carrier, line of sight only
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ReceiverTransmitter d, τ

λ



• Represent channel’s amplitude attenuation with a real number a

• Models, e.g. attenuation due to two refractions and partial reflection as the 
signal passes through an indoor wall

Sinusoidal carrier, line of sight only:
Signal Attenuation
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ReceiverTransmitter a, d, τ



• Received signal travels distance d

• One wavelength corresponds to a 360˚ (2π radian) phase shift

• Represent path’s phase shift with an angle (real number) θ = 2π⋅ d / λ

– “Abstract away” distance and wavelength into (one) phase shift θ

Sinusoidal carrier, line of sight only:
Signal Phase Shift
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ReceiverTransmitter a, θ

λ



• Wireless channel h attenuates by a, phase-shifts by θ
– Therefore, ℎ = #$%&

• Received baseband signal: ' = ℎ ( ) (no noise)

Sinusoidal carrier, line of sight only:
Channel Model
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ReceiverTransmitter a, θ

I

Q

x

y
Rotate by θ

Scale by a

x

y



• What if reflections (e.g., indoor walls) introduce a second path?

• Wireless channel becomes the superposition of the direct path’s channel 
h1 and the reflection path’s channel h2

Line-of-sight plus reflecting path: Motivation
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ReceiverTransmitter h1 (a1, θ1)

h2 (a2, θ2)



• Channel is now ℎ = ℎ# + ℎ% = &# '()* + &%'()+

Line-of-sight plus reflecting path:
Channel Model
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ReceiverTransmitter h1 (a1, θ1)
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• Phase difference between paths ∆" = 2%/' () − (+
– Depends on wavelength and path length difference

• So, , depends on wavelength (frequency) as well as channel attenuation

Line-of-sight plus reflecting path:
Channel Model
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ReceiverTransmitter h1 (a1, θ1)
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• Interference between reflected and line-of-sight radio waves results in 
frequency dependent fading

• Coherence bandwidth Bc: Frequency range over which the channel is 
roughly the same (“flat”)

Reflections cause frequency selectivity
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• One 2.4 GHz Wi-Fi channel is centered at 
2412 MHz and spans a 20 MHz bandwidth

• Observe: Frequency-selective fading
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Practical Frequency-Selective Fading

[D. Halperin]

• Recall, phase shift for kth path !" = 2%&"/(
– Received phase difference between paths depends on wavelength

• Channel spans 2402–2422 MHz
– Lowest wavelength (2402 MHz): 12.49 cm
– Highest wavelength (2422 MHz): 12.39 cm

• Just one millimeter wavelength difference
– Almost the same.  Contradiction?
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Practical Frequency-Selective Fading
[D. Halperin]• Channel spans 2402–2422 MHz

– Lowest wavelength (2402 MHz): 12.49 cm
– Highest wavelength (2422 MHz): 12.39 cm

1. Recall, ∆" = 2%/' () − (+ causes additive vs. destructive fading

2. For Wi-Fi, (, < 50m so, e.g., (+ − () ≈ 20m, equals:
– 160�12.49 cm wavelengths
– 161�12.39 cm wavelengths

• So we move from e.g. constructive to destructive, to constructive fading 
from lowest to highest wavelength



• Forward channel (T to R) is ℎ"# = %& '()*+,/. + %)'()*+0/.

• Switch T and R roles, changing nothing else:
– Reverse channel (R to T) is ℎ#" = %& '()*+,/. + %)'()*+0/. = ℎ"#
– The reverse radio channel is “reciprocal”

• Practical radio receiver circuitry induces differences between ℎ"#, ℎ#"
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Radio Channels are “Reciprocal”

Receiver RTransmitter T a1,d1,τ1

a2,d2,τ2



• Approximate solutions to Maxwell’s electromagnetic equations by instead 
representing wavefronts as particles, traveling along rays
– Apply geometric reflection, diffraction, scattering rules

• Compute angle of reflection, angle of diffraction

• Error is smallest when receiver is many λ from nearest scatterer, and all 
scatterers are large relative to λ
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Putting it all Together: Ray Tracing

Example propagation modelExample propagation model
• Geometric optics (Snell’s laws + Geometrical Theory of 

Diffraction Uniform TD)Diffraction, Uniform TD)
• Finds approximate solution of Maxwell’s equations
• Most useful physical model at frequencies used for mobile 

i ticommunications
• Can predict (i) path loss, (ii) fading

Tx

Rx

• Good match to empirical data in rural areas, 
along city streets (radios close to ground), 
and indoors

• Completely site-specific
– Changes to site may invalidate model



1. Large scale channel models

2. Small-scale channel models
– Multi-path propagation

• Frequency-domain view
• Time-domain view

– Motion and channel coherence time
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Today



What does the channel look like in time?
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ReceiverTransmitter a1,d1,τ1

a2,d2,τ2
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• Power received via the path with excess time delay !" is the value (height) 
of the discrete PDP component #(%&) at !"

P(τ) corresponds to |h(τ)|2

P(τ)

t
0

Power delay profile (PDP)

%( %) %* %+ %,



• Given a PDP ! "# sampled at time steps "#:

• Mean excess delay ̅": Expected value of ! "# :

̅" = ∑#!("#) "#
∑#!("#)

• Root mean squared (RMS) delay spread *+ measures the spread of the 
power’s arrival in time
– RMS delay spread is the variance of ! "# :

*+ = ,"- − ̅" -, where ,"- = ∑/ 0(+/)+/1
∑/ 0(+/)

• Maximum excess delay < X dB "23 is the greatest delay at which the PDP 
is greater than X dB below the strongest arrival in the PDP

29

Characterizing a power delay profile



Finite bandwidth of 
measurement 

normally results in 
continuous PDP

PDP typically has 
a decaying 

exponential form

Environment RMS delay 
spread

Indoor cell 10 – 50 ns

Satellite mobile 40 – 50 ns

Open area 
(rural)

< 0.2 !s

Suburban 
macrocell

< 1 !s

Urban 
macrocell

1 – 3 !s

Hilly macrocell 3 – 10 !s

Typical RMS delay spreads

Example Indoor PDP Estimation
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Indoor power delay profile



• Slow down à sending data over a narrow bandwidth channel
– Channel is constant over its bandwidth
– Multipath is still present, so channel strength fluctuates over time

• How to model this fluctuation?
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Flat Fading

-400 -200 0 200 400
Frequency (kHz)

15

20

25

30

35

R
ec

ei
ve

d 
Po

w
er

 (d
Bm

) Channel

Not 
shown 
above!



• Random gain of kth arriving path: !" = !"$ + &!"'

• Therefore, the I and Q channel components ℎ$, ℎ' are zero-mean Gaussian 
distributed

• So ℎ = ℎ$* + ℎ'* is Rayleigh-distributed
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Rayleigh Fading ModelRayleigh fading modelRayleigh fading model
h(τ)

a1 a2 a3

x(t)

W

r(t)

G i f h i i thGain of each arriving path:

• I and Q components are statistically independent and zero-mean Gaussian p y p
distributed

• Then, amplitude is Rayleigh distributed

• Phase is uniformly distributed

Rayleigh fading modelRayleigh fading model
h(τ)

a1 a2 a3

x(t)

W

r(t)

G i f h i i thGain of each arriving path:

• I and Q components are statistically independent and zero-mean Gaussian p y p
distributed

• Then, amplitude is Rayleigh distributed

• Phase is uniformly distributed
+

Rayleigh PDF

Channel 
impulse 

response h(t)

tτ1

a1

τ2

a2 a3

τ3
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Rayleigh fading example



1. Large scale channel models

2. Small-scale channel models
– Multi-path propagation

– Motion and channel coherence time
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• Suppose reflecting wall, fixed transmit antenna, no other objects
– Receive antenna moving rightwards at velocity v

• Two arriving signals at receiver antenna with a path length difference of 
2(d − r(t))

Stationary transmitter, moving receiver
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Receiver
antenna



• Path length difference ∆= 2(% − ' ( )

• If ∆ mod - = .
/à receive ≈ 0

– Destructive interference

• If ∆ mod - = 0à receive ≈ 2
– Constructive interference
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How does fading in time arise?

λ/2 λ

sum

Receiver
antenna



• In the preceding example, the reflected wave and direct wave 
travel in opposite directions

– What happens if we move the reflecting wall to the left side of 
the transmitter?

• What is the nature of the multipath fading, both over time 
and over frequency?
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Stretch Break and In-Class Question

v

Transmit 
antennaWall

r(t)d



• A change in path length difference of λ / 2 transitions from constructive to 
destructive interference

– Receiver movement of λ/4: coherence distance

– Duration of time that transmitter, receiver, or objects in environment take 
to move a coherence distance: channel coherence time Tc

• Walking speed (2 mph) @ 2.4 GHz: ≈ 15 milliseconds
• Driving speed (20 mph) @ 1.9 GHz: ≈ 2.5 milliseconds
• Train/freeway speed (75 mph) @ 1.9 GHz: < 1 millisecond
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Channel Coherence Time



Another perspective: Doppler Effect
• Movement by the transmitter, receiver, or objects in the 

environment creates a Doppler Shift

∆" = $
% "
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và



• Doppler Shift of a path ∆" = $% & '()*+),
-

– vradial is radial component of receiver’s velocity vector along the path

• Positive ∆4 with decreasing path length, negative ∆4with 
increasing path length

• Suppose v = 60 km/h, fc = 900 MHz
– Direct path ∆" = −5089, reflection path ∆" = +5089

Stationary transmitter, moving receiver:
From a Doppler Perspective
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Receiver
antenna



• Channel Doppler Spread Ds: maximum path Doppler shift, minus minimum path 
Doppler shift

• Suppose v = 60 km/h, fc = 900 MHz
– Direct path ∆" = −50'(, reflection path ∆" = +50'(
– Doppler Spread: 100 Hz

• Results in sinusoidal “envelope” at frequency Ds / 2:

Stationary transmitter, moving receiver:
From a Doppler Perspective

42

Receiver
antenna

Received signal
5 ms



• Sinusoidal “envelope” at frequency !"# :

• Transition from 0 to peak in $#!"
– So qualitatively significant change in time %& = $

(!"
• Alternate definition of channel coherence time

Channel Coherence Time:
From a Doppler Perspective
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Received signal )*
2



Thursday Topic:
Receiver Designs for 
the Wireless Channel
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