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Today

1. Receiver architecture
– Tradeoffs between ISI and Noise
– Transmit/receive filter design: Raised Cosine Matched Filter

2. Bit error rate and Shannon Capacity

Coming up

• Realistic wireless channel

• Using multiple antennas (MIMO)
2

Plan



• Leverage analog communication channel to send discrete-valued symbols
– e.g.send symbol from {-3,-1,1,3} on both I and Q channels every symbol period

• At receiver, sample I/Q waveforms every symbol period
– Associate each sampled I/Q value with symbol from set, on both I and 

Q channels
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Review of Digital I/Q Modulation
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Sending Digital Bits

• Assign each I/Q symbol to a 
set of digital bits
– Example:  I/Q = {1,3} translates 

to bits of 1110
– Gray coding minimizes bit errors

when symbol errors are made
• Example:  I/Q = {1,1} translates 

to bits of 1010
– Only one bit change from 

I/Q = {1,3}
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Review of Transmit and Receive Filters

• Last time: Transmit pulse-shaping filter
– Tradeoff between transmitted bandwidth and 

intersymbol interference (ISI)

• This time: Receive filter (previously assumed very 
wide bandwidth so as not to influence ISI)
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Review of Tools for Examining ISI

• Constellation Diagram
– Shows aggregate placement of sampled I/Q values
– ISI spreads the constellation points

• Eye Diagram
– For transition behavior between symbols
– ISI causes eye to close



• Receiver noise adds to desired I/Q signals, 
causes corruption
– Eye closes further
– Constellation points spread out
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Impact of Receiver Noise



• Primary noise source: Thermal 
noise in receive circuits
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Benefit of Lower Receiver Filter Bandwidth

• Receive filter only passes noise within its passband
– Lowering receive filter bandwidth improves the 

rejection of background noise

• How much can we lower receive filter bandwidth?



• Lowering receive filter bandwidth too 
much again causes ISI to dominate
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Tradeoff: ISI Versus Noise

• Selection of receive filter bandwidth involves a 
tradeoff between ISI, noise:
– Bandwidth too high: High Noise
– Bandwidth too low: High ISI
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Joint Transmit/Receive ISI Analysis

• Both transmit and receive filters influence ISI
– Combined filter response: ! 2#$% = ' 2#$% ⋅ ) 2#$%



• Combined filter G corresponds to convolution in the time domain with G’s 
impulse response (inverse Fourier Transform of G)

• Time domain view allows us to more clearly see impact of overall filter on ISI
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Viewing Filtering in the Time Domain



• Receiver samples I/Q every symbol period

– Achieving zero ISI requires that each 
symbol influence only one sample at the 
combined filter output

• Issue: Want lower overall filter bandwidth to 
reduce spectrum bandwidth and lower noise
– But this causes smoothing of g(t)
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Impulse Response and ISI: High Bandwidth
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Impulse Response and ISI: Low Bandwidth

• Smoothed impulse response has a span 
longer than one symbol period

– Convolution reveals that each symbol 
impacts filter output at > 1 sample value

• Inter-symbol interference occurs
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A More Direct View of the ISI Issue

• Consider impact of just one symbol on 
received signal

– Samples at filter output more clearly show 
the impact of the one symbol on other 
sample values



• Sample g(t) at the symbol period
– Nyquist Criterion: Samples must have 

only one non-zero value to achieve zero ISI

• Can g(t) span >1 symbol period (low 
bandwidth) and still meet Nyquist Criterion?
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The Nyquist Criterion for Zero ISI

Sample Times



• Raised cosine filter achieves low bandwidth and zero ISI

– Impulse response spans more than one symbol, but has 
only one non-zero sample value

– Impulse response: ! " = $%& ⁄() *
⁄() *

+,$ ⁄-() *
./ 0- ⁄) * 1
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Raised Cosine Filter



• Parameter α (0 ≤ α ≤ 1) is referred to as the roll-off factor of the filter

– Smaller values of α lead to:
• Reduced filter bandwidth
• Increased duration of the filter impulse response

• Regardless of α, the raised cosine filter achieves zero ISI
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Raised Cosine Filter: Roll-off factor
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Impact of Large α on Eye Diagram

• Large roll-off factor leads to nice, open eye 
diagram

• Key observation: Achieving zero ISI requires 
precise placement of sample times
– Error in placement of sample times leads 

to substantial ISI



• Small roll-off factor reduces the filter bandwidth 
and still allows zero ISI to be achieved

• Issue: Greater sensitivity to sample time 
placement than for large α
– Needs greater receiver complexity to 

ensure precise sample time placement
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Impact of Small α on Eye Diagram
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Transmitter and Receiver Filter Design

• Overall response is ! "2$% = ' "2$% ( "2$%
– Can choose that based on eye diagram

– How to choose transmit pulse shape (P) and receive 
filter (H)?
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Matched Filter Design

• Setting ! "2$% = ' "2$% yields a matched filter design

– Each filter is a square-root raised cosine filter

– Maximizes SNR at receiver 



1. Receiver architecture
– Tradeoffs between ISI and Noise
– Transmit/receive filter design: Raised Cosine

2. Bit error rate and Shannon Capacity
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Today
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Review of Digital Modulation
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• Transmitter sends discrete-value signals over analog communication channel

• Receiver samples recovered baseband signal
– Noise and ISI corrupt received signal

• Key techniques:
– Properly design transmit and receive filters for low ISI
– Sample and slice received signals to detect symbols



cos(2πfot)
sin(2πfot)

ir(t)

qr(t)

it(t)

qt(t)

cos(2πfot)
sin(2πfot)

Lowpass

H(j2πf)

Lowpass

H(j2πf)

Receiver Output

t

t

t

Baseband Input

t

Sample
Times

I

Q

A
A/3

-A/3
-A

A
A/3

-A/3
-A

t

A
A/3

-A/3
-A

t

A
A/3

-A/3
-A

t

2A

2A

RF I/Q Components

IRF(t)

QRF(t)

out(t)

out(t)

IRF(t)

QRF(t)

n(t)

• Amplitude of I/Q transmit signals impact power of 
transmitted output
– Output power limited within a given spectral band
– Low output power desirable for portable 

applications (battery life)
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A Closer Look at the Transmitter
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• Provides intuitive view of 
the relationship between 
symbol separation and 
transmitted power
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A Constellation View of the Transmitter
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A Constellation View of the Receiver
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• SNR (in signal frequency band) is influenced by transmitted power, distance 
between transmitter & receiver, and background noise
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Impact of SNR on Receiver Constellation
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Impact of Increased signal on Constellation
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• Increase in received signal power 
leads to increased separation 
between symbols
– SNR improved if and when 

noise level unchanged
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Quantifying the Impact of Noise
• Distribution of noise: zero-mean Gaussian distribution

– Variance of noise determines the width of the Gaussian

• Minimum separation between symbols: dmin
– Bit errors occur when noise moves a symbol by more than ½ dmin



• Lower signal power leads to reduced value for dmin
• Leads to a higher bit error rate

– Assuming noise variance unchanged
– Assuming received signal power reduced
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Impact of Reduced SNR
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• Reducing the number of symbols leads to an increased value for dmin
• Leads to a lower bit error rate

– Assuming signal power, noise variance constant
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Impact of Constellation Size Reduction

Probability Density
Function for Noise

(I-Component)
Probability Density
Function for Noise

(Q-Component)

I

Q

Decision
Boundary

00 10

01 11

Received
 Peak 

Amplitude

Decision Boundary

dmin

dmin



• Bit Error Rate depends on two factors:

1. SNR (ratio of received signal power to noise variance)
2. # constellation points, which sets dmin, given a received signal power level
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Can we Estimate Bit Error Rate?
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• Assumptions: No ISI, four-point constellation 32

Let’s Start with a Detailed System View
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A Closer Examination of Signal and Noise
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The Binary Symmetric Channel Model
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• Provides a succinct model of the wireless channel
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Computation of SNR
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Resulting Bit Error Rate Versus SNR
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Shannon Capacity
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• Digital communication can achieve arbitrarily-low bit error rates if
appropriate coding methods are employed

• The capacity, or maximum rate of a Gaussian channel with bandwidth BW
to support arbitrarily-low bit error rate communication is:

! = #$ log( 1 + +,- bits/second (SNR in linear scale units)



• A doubling of bandwidth allows twice the number of bits to be sent in time T
– Capacity (bits/second) increases linearly with bandwidth
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Impact of Channel Bandwidth on Capacity
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Impact of SNR on Capacity
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• A higher SNR allows more bits to be sent per symbol
– Adding n bits adds 2n constellation points, but reduces dmin

• High SNR (>> 1): Capacity increases linearly with SNR (dB, log scale)



• Constellation diagrams allow intuitive approach of quantifying 
uncoded bit error rate of a channel
– Function of SNR and number of constellation points

• A digital communication channel can be viewed in terms of a 
binary signaling model
– Focuses attention on key issue of bit error rate

• Coding theoretically allows arbitrarily low bit error rate 
performance of a practical digital communication link
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Summary



Tuesday Topic:
The Wireless Channel
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