Receiver Design and Performance; Shannon Capacity

COS 463: Wireless Networks Lecture 13

Kyle Jamieson

[Parts adapted from M. Perrott, C. Terman]

Plan

Today

- 1. Receiver architecture
 - Tradeoffs between ISI and Noise
 - Transmit/receive filter design: Raised Cosine Matched Filter
- 2. Bit error rate and Shannon Capacity

Coming up

- Realistic wireless channel
- Using multiple antennas (MIMO)

Review of Digital I/Q Modulation

- Leverage analog communication channel to send discrete-valued symbols
 e.g. send symbol from {-3,-1,1,3} on both I and Q channels every symbol period
- At receiver, sample I/Q waveforms every symbol period
 - Associate each sampled I/Q value with symbol from set, on both I and Q channels

Review of Transmit and Receive Filters

- Tradeoff between transmitted bandwidth and intersymbol interference (ISI)
- This time: Receive filter (previously assumed very wide bandwidth so as not to influence ISI)

Review of Tools for Examining ISI

- Shows aggregate placement of sampled I/Q values
- ISI spreads the constellation points

Impact of Receiver Noise

- Eye closes further
- Constellation points spread out

10

Benefit of Lower Receiver Filter Bandwidth

Tradeoff: ISI Versus Noise

Joint Transmit/Receive ISI Analysis

- Both transmit and receive filters influence ISI
 - Combined filter response: $G(2\pi jf) = P(2\pi jf) \cdot H(2\pi jf)$

Viewing Filtering in the Time Domain

- Combined filter G corresponds to convolution in the time domain with G's impulse response (inverse Fourier Transform of G)
- Time domain view allows us to more clearly see impact of overall filter on ISI

Impulse Response and ISI: High Bandwidth

- Receiver samples I/Q every symbol period
 - Achieving zero ISI requires that each symbol influence only one sample at the combined filter output
- Issue: Want lower overall filter bandwidth to reduce spectrum bandwidth and lower noise
 - But this causes smoothing of g(t)

Impulse Response and ISI: Low Bandwidth

- Smoothed impulse response has a span longer than one symbol period
 - Convolution reveals that each symbol impacts filter output at > 1 sample value
 - Inter-symbol interference occurs

A More Direct View of the ISI Issue

The Nyquist Criterion for Zero ISI

- Sample *g*(*t*) at the symbol period
 - Nyquist <u>Criterion</u>: Samples must have only one non-zero value to achieve zero ISI
- Can g(t) span >1 symbol period (low bandwidth) and still meet Nyquist Criterion?

Raised Cosine Filter

- Raised cosine filter achieves low bandwidth and zero ISI
 - Impulse response spans more than one symbol, but has only one non-zero sample value

- Impulse response:
$$g(t) = \frac{\sin(\pi t/T)}{\pi t/T} \frac{\cos(\alpha \pi t/T)}{1 - (2\alpha t/T)^2}$$

Raised Cosine Filter: Roll-off factor

- Parameter α ($0 \le \alpha \le 1$) is referred to as the *roll-off factor* of the filter
 - Smaller values of α lead to:
 - Reduced filter bandwidth
 - Increased duration of the filter impulse response
- Regardless of α, the raised cosine filter achieves zero ISI

Impact of Large α on Eye Diagram

- Large roll-off factor leads to nice, open eye diagram
- Key observation: Achieving zero ISI requires precise placement of sample times
 - Error in placement of sample times leads to substantial ISI

Impact of Small α on Eye Diagram

- Small roll-off factor reduces the filter bandwidth and still allows zero ISI to be achieved
- Issue: Greater sensitivity to sample time placement than for large α
 - Needs greater receiver complexity to ensure precise sample time placement

Transmitter and Receiver Filter Design

- Overall response is $G(j2\pi f) = P(j2\pi f)H(j2\pi f)$
 - Can choose that based on eye diagram
 - How to choose transmit pulse shape (P) and receive filter (H)?

Matched Filter Design

- Setting $P(j2\pi f) = H(j2\pi f)$ yields a **matched filter** design
 - Each filter is a square-root raised cosine filter
 - Maximizes SNR at receiver

Sample

Times

Today

- 1. Receiver architecture
 - Tradeoffs between ISI and Noise
 - Transmit/receive filter design: Raised Cosine
- 2. Bit error rate and Shannon Capacity

Review of Digital Modulation

- Transmitter sends discrete-value signals over analog communication channel
- Receiver samples recovered baseband signal
 - Noise and ISI corrupt received signal
- Key techniques:
 - Properly design transmit and receive filters for low ISI
 - Sample and slice received signals to detect symbols

A Closer Look at the Transmitter

- Amplitude of I/Q transmit signals impact power of transmitted output
 - Output power limited within a given spectral band
 - Low output power desirable for portable applications (battery life)

A Constellation View of the Transmitter

A Constellation View of the Receiver

Impact of SNR on Receiver Constellation

• SNR (in signal frequency band) is influenced by transmitted power, distance between transmitter & receiver, and background noise

Impact of Increased signal on Constellation

Quantifying the Impact of Noise

- Distribution of noise: zero-mean Gaussian distribution
 - Variance of noise determines the width of the Gaussian

- Minimum separation between symbols: d_{\min}
 - Bit errors occur when noise moves a symbol by more than ½ d_{min}

Impact of Reduced SNR

- Lower signal power leads to reduced value for d_{min}
- Leads to a higher bit error rate
 - Assuming noise variance unchanged
 - Assuming received signal power reduced

Impact of Constellation Size Reduction

- Reducing the number of symbols leads to an increased value for d_{min}
- Leads to a lower bit error rate
 - Assuming signal power, noise variance constant

Can we Estimate Bit Error Rate?

- Bit Error Rate depends on two factors:
- 1. SNR (ratio of received signal power to noise variance)
- 2. # constellation points, which sets d_{min} , given a received signal power level

Let's Start with a Detailed System View

Assumptions: No ISI, four-point constellation

A Closer Examination of Signal and Noise

The Binary Symmetric Channel Model

Provides a succinct model of the wireless channel

Computation of SNR

Resulting Bit Error Rate Versus SNR

Gaussian distribution of noise

Shannon Capacity

- Digital communication can achieve arbitrarily-low bit error rates if appropriate coding methods are employed
- The *capacity*, or maximum rate of a Gaussian channel with bandwidth *BW* to support arbitrarily-low bit error rate communication is: $C = BW \log_2(1 + SNR)$ bits/second (SNR in linear scale units)

Impact of Channel Bandwidth on Capacity

- A doubling of bandwidth allows twice the number of bits to be sent in time T
 - Capacity (bits/second) increases linearly with bandwidth

Impact of SNR on Capacity

- A higher SNR allows more bits to be sent per symbol
 Adding n bits adds 2ⁿ constellation points, but reduces d_{min}
- High SNR (>> 1): Capacity increases linearly with SNR (dB, log scale)

Summary

- Constellation diagrams allow intuitive approach of quantifying uncoded bit error rate of a channel
 - Function of SNR and number of constellation points

- A digital communication channel can be viewed in terms of a binary signaling model
 - Focuses attention on key issue of bit error rate

 Coding theoretically allows arbitrarily low bit error rate performance of a practical digital communication link Tuesday Topic: The Wireless Channel