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Plan
Today

1. Receiver architecture
— Tradeoffs between ISI and Noise
— Transmit/receive filter design: Raised Cosine Matched Filter

2. Bit error rate and Shannon Capacity
Coming up
« Realistic wireless channel

+ Using multiple antennas (MIMO)



Review of Digital I/Q Modulation
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« Leverage analog communication channel to send discrete-valued symbols
— e.g. send symbol from {-3,-1,1,3} on both | and Q channels every symboaol period

* Atreceiver, sample I/Q waveforms every symbol period

— Associate each sampled I/Q value with symbol from set, on both | and
Q channels



Review of Transmit and Receive Filters
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Transmit Filter Receive Filter

Constellation Diagram
« Last time: Transmit pulse-shaping filter q
— Tradeoff between transmitted bandwidth and 0o ; o1 | 11 : 10
intersymbol interference (1SI) ch e | i e 00
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wide bandwidth so as not to influence ISI) S IR
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Review of Tools for Examining ISI

| and Q Eye Diagrams
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« Constellation Diagram
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— Shows aggregate placement of sampled I/Q values

— ISl spreads the constellation points A __j___f_-oo
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Impact of Receiver Noise

IN(2~f)| | and Q Eye Diagrams
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Benefit of Lower Receiver Filter Bandwidth
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Primary nois_e source: Thermal
noise In receive circuits
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Receive Filter

Receive filter only passes noise within its passband
— Lowering receive filter bandwidth improves the

rejection of background noise
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How much can we lower receive filter bandwidth?
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Tradeoff: ISI Versus Noise
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Lowering receive filter bandwidth too -/ -
much again causes IS| to dominate :

Recenve Filter

Selection of receive filter bandwidth involves a
tradeoff between ISI, noise:

— Bandwidth too high: High Noise
— Bandwidth too low: High ISI
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Joint Transmit/Receive ISI Analysis
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Both transmit and receive filters influence ISI
— Combined filter response: G(2mjf) = P(2njf) - H2njf)



Viewing Filtering in the Time Domain
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« Combined filter G corresponds to convolution in the time domain with G’s
impulse response (inverse Fourier Transform of G)

« Time domain view allows us to more clearly see impact of overall filter on ISI
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Impulse Response and ISI: High Bandwidth

L di(t) gg(t)
* E
.
HU I N | — t
* Receiver samples I/Q every symbol period \Sﬁrr:gse
— Achieving zero ISI requires that each  Eye Diagram
symbol influence only one sample at the
combined filter output
- lIssue: Want lower overall filter bandwidth to
reduce spectrum bandwidth and lower noise : t
— But this causes smoothing of g(f) 1 %, Sample
Times
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Impulse Response and ISI: Low Bandwidth

............................

« Smoothed impulse response has a span
longer than one symbol period

— Convolution reveals that each symbol
impacts filter output at > 1 sample value #
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* Inter-symbol interference occurs WSz
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A More Direct View of the ISI Issue

« Consider impact of just one symbol on Times
received signal

— Samples at filter output more clearly show
the impact of the one symbol on other
sample values

0 S 7Y
s a
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The Nyquist Criterion for Zero ISI
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« Sample g(f) at the symbol period

— Nyquist Criterion: Samples must have

only one non-zero value to achieve zero ISI

« Can g(f) span >1 symbol period (low

bandwidth) and still meet Nyquist
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Raised Cosine Filter
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Raised cosine filter achieves low bandwidth and zero ISI

— Impulse response spans more than one symbol, but has
only one non-zero sample value

sin(rtt/T) cos(amt/T)
nt/T 1—-at/T)?

— Impulse response: g(t) =
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Raised Cosine Filter: Roll-off factor

90 1G(2x)
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Parameter a (0 < a < 1) is referred to as the roll-off factor of the filter

— Smaller values of a lead to:
» Reduced filter bandwidth
* Increased duration of the filter impulse response

Regardless of a, the raised cosine filter achieves zero ISI
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Impact of Large a on Eye Diagram

Large roll-off factor leads to nice, open eye N\Sample
diagram

Eye Diagram
Key observation: Achieving zero IS requires VAW, ‘
precise placement of sample times }\\Q/{‘ko,/i

N 7S
20N, €05, €0

— Error in placement of sample times leads ‘
NN Y 7/
A AN

to substantial ISI
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Impact of Small a on Eye Diagram

Small roll-off factor reduces the filter bandwidth N Times
and still allows zero ISI to be achieved

Issue: Greater sensitivity to sample time
placement than for large a

— Needs greater receiver complexity to
ensure precise sample time placement
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Transmitter and Receiver Filter Design
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Raised Cosine Filter

« Overall response is G(j2rf) = P(j2rnf)H(j2rf)
— Can choose that based on eye diagram

— How to choose transmit pulse shape (P) and receive
filter (H)?



Matched Filter Design
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- ig(t)
P(j2xf) —»

Wa aw

it)
X —>®—> H(j2xf) =

d.(t Lowpass + ) Lowpass
5 o) N 2cos(2nf,t) é__ 2cos(2nf,t)
2sin(2nft) 2sin(2nf,t) 3
t 12
P(J2‘J’!f) QK( ) q--
l,"Lowpass"“_"' ----------------- -

(). h(t)

/E\x=1.0 =3
: t

— T —

Eye and Q Eye Diagrams

A\ A Hé's Ny AT
\ 2 AKX

% £ X
N7 ;\,l; N

\ NG v Y

0 S8 SR X

Square-Root Raised Cosine Filter

Setting P(j2rf) = H(j2nf) yields a matched filter design

— Each filter is a square-root raised cosine filter 75
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\ 2 A 2

— Maximizes SNR at receiver A Times
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Today

1. Receiver architecture
— Tradeoffs between ISI and Noise
— Transmit/receive filter design: Raised Cosine

2. Bit error rate and Shannon Capacity
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Review of Digital Modulation

Baseband Input Receiver Output
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« Transmitter sends discrete-value signals over analog communication channel

* Receiver samples recovered baseband signal
— Noise and ISI corrupt received signal

« Key techniques:
— Properly design transmit and receive filters for low ISI

— Sample and slice received signals to detect symbols
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A Closer Look at the Transmitter
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« Amplitude of I/Q transmit signals impact power of
transmitted output

— Output power limited within a given spectral band

— Low output power desirable for portable
applications (battery life)
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A Constellation View of the Transmitter
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A Constellation View of the Receiver
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Impact of SNR on Receiver Constellation
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* SNR (in signal frequency band) is influenced by transmitted power, distance
between transmitter & receiver, and background noise
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Impact of Increased signal on Constellation

Q
* Increase in received signal power | o0 o M0
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Quantifying the Impact of Noise

» Distribution of noise:; zero-mean Gaussian distribution
— Variance of noise determines the width of the Gaussian

Probability Density
Function for Noise
Q (I-Component)

00
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Peak “
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’ ~. R _—
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Boundaries and
. O Probability Density
N k N Function for Noise
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Q
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Decision Boundaries

* Minimum separation between symbols: d,;,

— Bit errors occur when noise moves a symbol by more than ‘2 d_;,
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Impact of Reduced SNR
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*  Lower signal power leads to reduced value for d.;,
« Leads to a higher bit error rate

— Assuming noise variance unchanged

— Assuming received signal power reduced



Impact of Constellation Size Reduction
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Reducing the number of symbols leads to an increased value for d.;;,
Leads to a lower bit error rate
— Assuming signal power, noise variance constant

30



Can we Estimate Bit Error Rate?
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 Bit Error Rate depends on two factors:

1. SNR (ratio of received signal power to noise variance)
2. # constellation points, which sets d,,,;,, given a received signal power level
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Let’s Start with a Detailed System View

« Assumptions: No ISI, four-point constellation
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A Closer Examination of Signal and Noise
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Communication Channel
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The Binary Symmetric Channel Model
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Provides a succinct model of the wireless channel
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Computation of SNR

Signal Variance

d..:
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Communication Channel for Q Channel

= SNR(dB) = 10log ((dmin/2)*/c?)
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Resulting Bit Error Rate Versus SNR
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Shannon Capacity

Communication Channel
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Digital communication can achieve arbitrarily-low bit error rates if
appropriate coding methods are employed

The capacity, or maximum rate of a Gaussian channel with bandwidth BW
to support arbitrarily-low bit error rate communication is:

C = BWlog,(1 + SNR) bits/second (SNR in linear scale units)
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Impact of Channel Bandwidth on Capacity

Communication Channel
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C' = BW log,(1 + SNR) bits/second

A doubling of bandwidth allows twice the number of bits to be sentin time T
— Capacity (bits/second) increases linearly with bandwidth
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Impact of SNR on Capacity
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« Ahigher SNR allows more bits to be sent per symbol
— Adding n bits adds 2" constellation points, but reduces d,,;,

* High SNR (>> 1): Capacity increases linearly with SNR (dB, log scale)
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Summary

« Constellation diagrams allow intuitive approach of quantifying
uncoded bit error rate of a channel

— Function of SNR and number of constellation points

 Adigital communication channel can be viewed in terms of a
binary signaling model

— Focuses attention on key issue of bit error rate

« Coding theoretically allows arbitrarily low bit error rate
performance of a practical digital communication link



Tuesday Topic:
The Wireless Channel
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