PART III: WIRELESS FROM THE PHYSICAL LAYER, UP

Preliminaries: Radio Communication, Modulation, and Filtering

COS 463: Wireless Networks Lecture 11 **Kyle Jamieson**

[Parts adapted from H. Balakrishnan, M. Perrot, C. Sodini, P. Steenkiste]

Radio Frequency (RF)

- Electromagnetic signal that propagates through space
 - Transmitted at some carrier frequency f_c
 - Travels at the speed of light (c)
- Wavelength in air: $\lambda = c/f_c$
- f_c range: (beyond) 3 KHz to 300 GHz (or, $\lambda = 100$ km to 1 mm)

Today

- Introduction to Signals: The Frequency Domain
 - Modulation and Demodulation
- Introduction to Filtering
- AM Radio
- Signals and Noise

Information Transmission

- Goal: Move information (voice, video, data etc.), encoded in signals (e.g., electromagnetic, optical, acoustic)
 - Over some channel (physical medium, e.g., free space, fiber, coax)

Key Tool: Fourier Series

- Suppose *x*(*t*) is our *information signal*
- A periodic waveform x(t) can be represented as a sum of weighted (a_n) sinusoids of different frequencies ω_n:

Frequency Domain View

• Idea: plot the weights a_n versus the frequencies ω_n :

Fourier Transform

- Fourier series deals with periodic signals
- Fourier transform deals with non-periodic signals
- Notation: $x(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(f)$

Fourier Transform of cosine wave

Key Tool: The Impulse Function

• An *impulse* of area A at time t_0 is denoted:

Defined in terms of its properties when combined with other (information carrying) signals

Today

- Introduction to Signals: The Frequency Domain
 Modulation and Demodulation
- Introduction to Filtering
- AM Radio
- Signals and Noise

Motivation for Modulation

- Physical medium of wireless channel usually free space
- Radio wavelength *inversely* proportional to frequency (1 GHz → 30 cm, while 1 KHz → 30 km wavelength)

- 1. Since **antenna**, **component size** related to wavelength:
 - Want to move signal to higher frequency for smaller devices
- 2. Higher frequency signals can send more data, further

Sinusoidal carrier signal

- RF signal propagates away from transmitter at light speed *c*
- At an **instant in time:** signal "looks" sinusoidal **in space**
- At a **point in space**: signal **oscillates sinusoidally in time**

Goal of Modulation

Given an *information signal* **Example:** Voice signal with 4 KHz *bandwidth*

Shift information signal to the carrier frequency

Example: 900 MHz carrier frequency

 \rightarrow Information signal **modulates** (changes) the carrier signal

Carrier signal parameters

The information signal modulates the carrier's parameters:

Goal of Demodulation

Given a transmitted signal, **Example:** Voice signal centered at 900 MHz

Recover the original signal from the transmission. Example: 4 KHz bandwidth voice signal centered at 0 Hz

Impulse: Sampling Property

• Multiplication of a function x(t) with an impulse at time t_0 :

• Results in scaling the impulse by the value of x(t) at t₀

Impulse: Convolution in Time

• Convolution of a **function** x(t) with an impulse at time t_0 :

Results in a time shift of x(t) by t₀

Impulse: Convolution in Frequency

Convolve function X(f) with impulse at frequency f₀:

• Results in a **frequency shift of** X(f) by f₀

Duality of Convolution and Multiplication

• **Multiplication** in time leads to **convolution** in frequency:

$$x(t)y(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(f) * Y(f)$$

• Convolution in time leads to multiplication in frequency:

$$x(t) * y(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(f)Y(f)$$

Modulation: Introduction

- Given a *data signal* (e.g. cosine wave) at frequency *f*₁ (*e.g.*, 1 Hz)
- *Modulate* it with carrier at frequency f₂ (*e.g.*, 10 Hz)

Transmitter: Principle of Modulation

• Modulate the carrier with the data: $cos(2\pi t) \times cos(2\pi 10t)$

Demodulation: Motivation

- Receiver wants to recover the original data signal
 - Multiplies modulated signal containing $f_1 f_2$ and $f_1 + f_2$ by **copy of carrier**

Receiver: Principle of Demodulation

- Receiver multiplies modulated signal by copy of carrier signal, $\cos(2\pi f_2 t)$
 - Frequency shift of $\pm f_2$ by the convolution property
- Result contains **original signal** and higher frequency sinusoids:

• How to remove the higher frequency sinusoids?

Today

- Introduction to Signals: The Frequency Domain
- Introduction to Filtering
- AM Radio
- Signals and Noise

The Concept of Filtering

 With input, filter produces output signal y(t) by convolution with a filter response h(t)

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

• So, in the frequency domain, the filter **multiplies** each input frequency f by $H(f) \leftrightarrow h(t)$

$$- \frac{Y(f) = X(f)H(f)}{Y(f)} \qquad X(f) \longrightarrow H(f) \longrightarrow Y(f)$$

Example Input Signal to Filter

y(**t**)

• Input signal: Sum of three sinusoids (10, 50, 90 Hz)

Low Pass Filter Example

y(**t**)

• H(f) = 1 below 20 Hz, approaches 0 above 20 Hz

Low Pass Filter Output

• H(f) = 1 below 20 Hz, approaches 0 above 20 Hz

High Pass Filter Example

y(**t**)

• H(f) = 0 below 70 Hz, approaches 1 above 70 Hz

High Pass Filter Output

• H(f) = 0 below 70 Hz, approaches 1 above 70 Hz

Bandpass Filter: Motivation

- Want to receive exclusively a certain frequency band of interest
 - In presence of other communication on adjacent channels

Bandpass Filter Output

• H(f) = 0 below 30 Hz, above 70 Hz, approaches 1 elsewhere

Today

- Introduction to Signals
- Introduction to Filtering
- AM Radio
- Signals and Noise

AM Radio Transmitter

Demodulation: Frequency Domain View

Demodulation: Time Domain View

Impact of a frequency offset

Frequency offset ε at receiver corrupts the output signal r(t)

Stretch Break and Partner Exercise: FDM-AM

- Using the principle of superposition and the AM radio circuits we've just seen:
 - 1. Draw a circuit to transmit **frequency division-multiplexed** amplitude modulation (FDM-AM) of the voice signals A, B, and C at frequencies f_A , f_B , and f_C , respectively
 - 2. Plot the **radio-frequency spectrum** of your circuit's output (the transmitted FDM-AM signal)
 - 3. Describe how a receiver would tune in to and demodulate just Signal B

Today

- Introduction to Signals: The Frequency Domain
- Introduction to Filtering
- AM Radio
- Signals and Noise

The Issue of Noise

- Noise: Unpredictable, corrupting signal that adds to desired signal
 - For RF receiver, mostly comes from analog receiver amplifier circuitry
- Undesired signals also add to and corrupt desired signal

Energy Transfer in Wireless Communication

- Receiver antenna captures a limited amount of desired signal's energy
 - Depending on antenna size, distance, environment

Signal versus Noise

- Moving transmitter closer to receiver generally increases desired signal energy
- Noise from analog receiver circuitry remains unchanged
- **Next few lectures**: *How is system performance impacted?*

Definition of Power, Energy

- Given a signal x[n]:
- **Energy** $E_x = \sum_{k=0}^{N-1} (x[k])^2$
- **Power** $P_x = \frac{1}{N} \sum_{k=0}^{N-1} (x[k])^2$

Signal to Noise Ratio (SNR)

- Signal-to-Noise Ratio (SNR) measures power ratio between a signal of interest and background noise: $SNR = \frac{P_{signal}}{P_{noise}}$
- SNR is often expressed in *decibels* (dB), 10 times the base-10 logarithm of a quantity: SNR (dB) = $10\log_{10}\left(\frac{P_{signal}}{P_{noise}}\right)$

SNR (dB)	SNR
30	1,000
20	100
10	10
0	1 (equal)
0 -10	1 (equal) 0.1
0 -10 -20	1 (equal) 0.1 0.01

Visualizing Signal to Noise Ratio

Summary

- Impulse function is an important concept for frequency domain "picture" analysis
 - Shifting, sampling properties of impulse explain modulation and demodulation

- "Picture analysis" of modulation and filtering
 - Modulation *shifts* in frequency (convolution with impulses)
 - Filtering *multiplies* in frequency

Good luck with the remainder of your midterms!

Tuesday, March 25 lecture: From AM Radio to Digital I/Q Modulation