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• Electromagnetic signal that propagates through space
– Transmitted at some carrier frequency fc
– Travels at the speed of light (c)

• Wavelength in air: ! = #/%&

• fc range: (beyond) 3 KHz to 300 GHz (or, λ = 100 km to 1 mm)

Radio Frequency (RF)



• Introduction to Signals: The Frequency Domain
– Modulation and Demodulation

• Introduction to Filtering

• AM Radio

• Signals and Noise

Today



Information Transmission
• Goal: Move information (voice, video, data etc.), encoded in signals (e.g.,

electromagnetic, optical, acoustic)

– Over some channel (physical medium, e.g., free space, fiber, coax)
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Key Tool: Fourier Series
• Suppose x(t) is our information signal

• A periodic waveform x(t) can be represented as a sum of weighted (an) 
sinusoids of different frequencies ωn:
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• Idea: plot the weights an versus the frequencies ωn:

Frequency Domain View
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• Fourier series deals with periodic signals

• Fourier transform deals with non-periodic signals

• Notation: ! " ↔$ % &
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Fourier Transform of cosine wave

6.082 Spring 2007 Fourier Series and Fourier Transform, Slide 9

Fourier Transform of Cosine Wave
• Two real impulses in frequency needed for cosine in 
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• An impulse of area A at time t0 is denoted:

• Defined in terms of its properties when combined with other (information 
carrying) signals

Key Tool: The Impulse Function

Aδ(t-t0)

tt0
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• Introduction to Signals: The Frequency Domain
– Modulation and Demodulation

• Introduction to Filtering

• AM Radio

• Signals and Noise

Today



Motivation for Modulation
• Physical medium of wireless channel usually free space

• Radio wavelength inversely proportional to frequency (1 GHz à 30 cm, while 
1 KHz à 30 km wavelength)

1. Since antenna, component size related to wavelength:
– Want to move signal to higher frequency for smaller devices 

2. Higher frequency signals can send more data, further



• RF signal propagates away from transmitter at light speed c

• At an instant in time: signal “looks” sinusoidal in space

• At a point in space: signal oscillates sinusoidally in time

Sinusoidal carrier signal

c

Transmitter



Goal of Modulation 

Given an information signal
Example: Voice signal with 4 KHz bandwidth

Shift information signal to the carrier frequency
Example: 900 MHz carrier frequency

à Information signal modulates (changes) the carrier signal
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Carrier signal parameters

Amplitude

Wavelength

tPhase

• The information signal modulates the carrier’s parameters:



Goal of Demodulation 

Given a transmitted signal,
Example: Voice signal centered at 900 MHz

Recover the original signal from the transmission.
Example: 4 KHz bandwidth voice signal centered at 0 Hz
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• Multiplication of a function x(t) with an impulse at time t0:

• Results in scaling the impulse by the value of x(t) at t0

Impulse: Sampling Property
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• Convolution of a function x(t) with an impulse at time t0:

• Results in a time shift of x(t) by t0

Impulse: Convolution in Time
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• Convolve function X(f) with impulse at frequency f0:

• Results in a frequency shift of X(f) by f0

Impulse: Convolution in Frequency
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• Multiplication in time leads to convolution in frequency:

! " # " ↔% & ' ∗ )(')

• Convolution in time leads to multiplication in frequency:

! " ∗ # " ↔% & ' )(')

Duality of Convolution and Multiplication



• Given a data signal (e.g. cosine wave) at frequency f1 (e.g., 1 Hz)

• Modulate it with carrier at frequency f2 (e.g., 10 Hz)

Modulation: Introduction
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Transmitter: Principle of Modulation

f1+f2 = 11 Hz 
Cosine

f1−f2 = 9 Hz 
Cosine
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• Modulate the carrier with the data: cos(2πt) × cos(2π10t)
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Demodulation: Motivation
• Receiver wants to recover the original data signal

– Multiplies modulated signal containing f1−f2 and f1 + f2 by copy of carrier
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Receiver: Principle of Demodulation
• Receiver multiplies modulated signal by copy of carrier signal, cos(%&'%()

– Frequency shift of ±+, by the convolution property

• Result contains original signal and higher frequency sinusoids: 
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• How to remove the higher frequency sinusoids?
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• Introduction to Signals: The Frequency Domain

• Introduction to Filtering

• AM Radio

• Signals and Noise

Today



• With input, filter produces output signal y(t) by convolution
with a filter response h(t)

• So, in the frequency domain, the filter multiplies each input 
frequency f by !(#)↔& ℎ(()

– Y(f) = X(f)H(f)

The Concept of Filtering

x(t) h(t) y(t)

X(f) H(f) Y(f)



• Input signal: Sum of three sinusoids (10, 50, 90 Hz) 

Example Input Signal to Filter
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• H(f) = 1 below 20 Hz, approaches 0 above 20 Hz

Low Pass Filter Example
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• H(f) = 1 below 20 Hz, approaches 0 above 20 Hz

Low Pass Filter Output
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• H(f) = 0 below 70 Hz, approaches 1 above 70 Hz

High Pass Filter Example
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• H(f) = 0 below 70 Hz, approaches 1 above 70 Hz

High Pass Filter Output
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Bandpass Filter: Motivation

• Want to receive exclusively a certain frequency band of interest
– In presence of other communication on adjacent channels

RF Transmitter RF Receiver
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• H(f) = 0 below 30 Hz, above 70 Hz, approaches 1 elsewhere

Bandpass Filter Output
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• Introduction to Signals

• Introduction to Filtering

• AM Radio

• Signals and Noise

Today



AM Radio Transmitter

Time domain view:

Carrier signal (f0 Hz):

x(t)

Carrier signal:

Frequency domain view:

Carrier signal (f0 Hz):



Demodulation: Frequency Domain View

Transmitter:

Receiver:



Demodulation: Time Domain View

Receiver:

Transmitter:



Impact of a frequency offset

6.082 Spring 2007 Fourier Series and Fourier Transform, Slide 15

y(t) = 2cos(2π(fo+ε)t)

z(t) r(t)
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Impact of Frequency Offset

• Baseband signal is 
corrupted!
– Filtering cannot fix this 
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• Baseband signal is 
corrupted!
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y(t) = 2cos(2π(fo+ε)t)
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Impact of Frequency Offset

• Baseband signal is 
corrupted!
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Frequency offset ε at receiver corrupts the output signal r(t)



• Using the principle of superposition and the AM radio circuits we’ve just seen:

1. Draw a circuit to transmit frequency division-multiplexed amplitude 
modulation (FDM-AM) of the voice signals A, B, and C at frequencies !", 
!#, and !$, respectively

2. Plot the radio-frequency spectrum of your circuit’s output (the 
transmitted FDM-AM signal)

3. Describe how a receiver would tune in to and demodulate just Signal B

38

Stretch Break and Partner Exercise: FDM-AM
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• Introduction to Signals: The Frequency Domain

• Introduction to Filtering

• AM Radio

• Signals and Noise

Today



• Noise:Unpredictable, corrupting signal that adds to desired signal
– For RF receiver, mostly comes from analog receiver amplifier circuitry

• Undesired signals also add to and corrupt desired signal

The Issue of Noise

RF Receiver
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• Receiver antenna captures a limited amount of desired 
signal’s energy
– Depending on antenna size, distance, environment

Energy Transfer in Wireless Communication
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• Moving transmitter closer to receiver generally increases 
desired signal energy

• Noise from analog receiver circuitry remains unchanged

• Next few lectures: How is system performance impacted?

Signal versus Noise
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• Given a signal x[n]:

• Energy !" = ∑%&'()*(, - )/

• Power 0" = *
(∑%&'

()*(, - )/

Definition of Power, Energy

6.082 Spring 2007 Energy and Noise, Slide 8

• DC average or mean, µx, is defined as

• Power, Px, and energy, Ex, are defined as

– For communication systems, we often remove the mean 
since it is essentially irrelevant in terms of information:

Definition of Mean, Power, and Energy

n

x[n]

1



• Signal-to-Noise Ratio (SNR) measures power ratio between a 
signal of interest and background noise: SNR = %&'()*+

%),'&-

Signal to Noise Ratio (SNR)

SNR (dB) SNR
30 1,000
20 100
10 10
0 1 (equal)
-10 0.1
-20 0.01
-30 0.001

• SNR is often expressed in decibels (dB), 
10 times the base-10 logarithm of a 
quantity: SNR (dB) = 10log78

%&'()*+
%),'&-



Visualizing Signal to Noise Ratio

Signal view: Constellation
view:



• Impulse function is an important concept for frequency domain 
“picture” analysis
– Shifting, sampling properties of impulse explain modulation 

and demodulation

• “Picture analysis” of modulation and filtering
– Modulation shifts in frequency (convolution with impulses)
– Filtering multiplies in frequency

Summary



Good luck with the
remainder of your midterms!

Tuesday, March 25 lecture:
From AM Radio to Digital I/Q Modulation

47


