Routing I: Wireless Mesh Networks

COS 463: Wireless Networks Lecture 6

Kyle Jamieson

[Parts adapted from I. F. Akyildiz, B. Karp]

Wireless Mesh Networks: Motivation

- Most wireless network traffic goes through APs
- Mesh networks remove this restriction
- Multiple paths between most pairs: Mesh topology

Today

1. Distance Vector Routing

- New node join
- Route changes
- Broken link

2. Destination Sequenced Distance-Vector Routing (DSDV)
3. Dynamic Source Routing (DSR)
4. Roofnet: Quality-Aware Routing

Distance Vector Routing: Goal

- Every node maintains a routing table
- For each destination node in the mesh:
- The number of hops to reach the destination (metric)
- The next node on the path towards the destination
- All nodes periodically, locally broadcast routing table, learn about every destination in network

Distance Vector - New Node Join

- D joins the network

Distance Vector - New Node Join

- D joins the network
- D's broadcast first updates C's table with new entry for D

D's routing table

Distance Vector - New Node Join

- Now C broadcasts its routing table
- B and D hear and add new entries, incrementing metric

C's routing table

Distance Vector - New Node Join

- Now B broadcasts its routing table
- A and C hear and add new entries, if shorter route

Today

1. Distance Vector Routing

- New node join
- Route changes
- Broken link

2. Destination Sequenced Distance-Vector Routing (DSDV)
3. Dynamic Source Routing (DSR)
4. Roofnet: Quality-Aware Routing

Distance Vector - Route Change

- D moves to another place and broadcast its routing table

Distance Vector - Route Change

- D moves to another place and broadcast its routing table

Distance Vector - Route Change

D moves to another place and broadcast its routing table B broadcast its routing table

Dest.	Next	Metric
A	B	2
B	B	1
C	C	1
D	D	0

Dest.	Next	Metric
A	A	0
B	B	1
C	B	2
D	B	2

Dest.	Next	Metric
A	A	1
B	B	0
C	C	1
D	D	1

Dest.	Next	Metric
A	B	2
B	B	1
C	C	0
D	D	1

Today

1. Distance Vector Routing

- New node join
- Route changes
- Broken link

2. Destination Sequenced Distance-Vector Routing (DSDV)
3. Dynamic Source Routing (DSR)
4. Roofnet

Distance Vector - Broken Link

- Suppose link $C \leftrightarrow D$ breaks

Distance Vector - Broken Link

1. C hears no advertisement from D for a timeout period - C sets D's metric to ∞

Distance Vector - Broken Link

1. C sets D's metric to ∞
2. B broadcasts its routing table - C now accepts B's entry for D ($3<\infty$)

Broken Link: Counting to Infinity

1. C sets D's metric to ∞
2. B broadcasts its routing table
3. \mathbf{C} broadcasts its routing table

- B accepts C's new metric (previous next-hop: C)

Broken Link: Counting to Infinity

1. C sets D's metric to ∞
2. B broadcasts its routing table
3. C broadcasts its routing table
4. \mathbf{B} broadcasts its routing table

- A, C accept B's new metric (previous next-hops: B)

Today

1. Distance Vector Routing

2. Destination Sequenced Distance-Vector Routing (DSDV)

- New node join
- Broken link
- Route advertisement

3. Dynamic Source Routing (DSR)
4. Roofnet: Quality-Aware Routing

Destination Sequenced Distance-Vector (DSDV) Routing

- Guarantees loop freeness
- New routing table information: Sequence number

1. Per-destination information
2. Originated by destination
3. Included in routing advertisements

Destination	Next	Metric	Seq. $\mathbf{N r}$
A	A	$\mathbf{0}$	$\mathbf{5 5 0}$
B	B	$\mathbf{1}$	$\mathbf{1 0 2}$
C	B	3	588
D	B	$\mathbf{4}$	$\mathbf{3 1 2}$

DSDV: Route Advertisement Rule

- Rules to set sequence number:
- Just before node N's broadcast advertisement:
- Node N sets:
- $\operatorname{Seq}(\mathbf{N}) \leftarrow \operatorname{Seq}(\mathbf{N})+2$
- Node \mathbf{N} thinks neighbor P is no longer directly reachable
- Node N sets:
- $\operatorname{Seq}(P) \leftarrow \operatorname{Seq}(P)+1$
- Metric $(P) \leftarrow \infty$

DSDV - New Node

- D joins the network
- D's broadcast first updates C's table with new entry for D

1. D broadcast for first time Send Sequence number 000

DSDV - New Node

DSDV - New Node

3. C increases its sequence number to 592 then broadcasts its new table.
(A, B, 2, 55
(B, B, 1, 104)
(C, C, 0, 59
(D, D, 1, 000

Dest.	Next	Metric	Seq.
A	B	2	550
B	B	1	104
C	C	0	592
D	D	1	000

DSDV - New Node

4. B increases its own seqno and broadcasts its new table

Today

1. Distance Vector Routing

2. Destination Sequenced Distance-Vector Routing (DSDV)

- New node join
- Broken link
- Route advertisement

3. Dynamic Source Routing (DSR)
4. Roofnet: Quality-Aware Routing

DSDV - Broken Link

- Suppose link $\mathbf{C} \leftrightarrows D$ breaks

DSDV - Broken Link

DSDV: Routing Table Update Rule

- Rules to update routing table entry:
- Node N gets routing advertisement from neighbor Node P:
- Update routing table entry for node E when:
- Seq(E) in P's advertisement > Seq(E) in N's table

DSDV - Broken Link

- B next broadcasts its routing table
- No effect on C's entry for D (because 001 > 000)
- No loop \rightarrow no count to infinity

Today

1. Distance Vector Routing

2. Destination Sequenced Distance-Vector Routing (DSDV)

- New node join
- Broken link
- Route advertisement

3. Dynamic Source Routing (DSR)
4. Roofnet

Distance Vector - Route Advertisement

D moves to another place and broadcasts its routing table

Dest.	Next	Metric	Seq.
A	C	3	550
B	C	2	108
C	C	1	592
D	D	0	002

Dest.	Next	Metric	Seq.
A	A	0	550
B	B	1	108
C	B	2	592
D	B	3	000

Dest.	Next	Metric	Seq.
A	A	1	550
B	B	0	108
C	C	1	592
D	D	1	002

Dest.	Next	Metric	Seq.
A	B	2	550
B	B	1	108
C	C	0	592
D	D	1	002

Distance Vector - Route Advertisement

D moves to another place and broadcasts its routing table
B broadcasts its routing table

Dest.	Next	Metric	Seq.
A	B	2	550
B	B	1	110
C	C	1	592
D	D	0	002

Dest.	Next	Metric	Seq.
A	A	0	550
B	B	1	110
C	B	2	592
D	B	2	002

Dest.	Next	Metric	Seq.
A	A	1	550
B	B	0	110
C	C	1	592
D	D	1	002

Dest.	Next	Metric	Seq.
A	B	2	550
B	B	1	110
C	C	0	592
D	D	1	002

Today

1. Distance Vector Routing
2. Destination Sequenced Distance-Vector Routing (DSDV)
3. Dynamic Source Routing (DSR)
4. Roofnet: Quality-Aware Routing

Dynamic Source Routing (DSR)

- No periodic "beaconing" from all nodes
- When node \mathbf{S} wants to send a packet to node \mathbf{D} (but doesn't know a route to D), \mathbf{S} initiates a route discovery
- S network-floods a Route Request (RREQ)
- Each node appends its own id when forwarding RREQ

Route Discovery in DSR

Represents a node that has received RREQ for D from S

Route Discovery in DSR

Broadcast transmission

....... \rightarrow Represents transmission of RREQ
[X,Y] Represents list of identifiers appended to RREQ

Route Discovery in DSR

....... \rightarrow Represents transmission of RREQ
[X,Y] Represents list of identifiers appended to RREQ

Route Discovery in DSR

$\cdots \cdots$ Represents transmission of RREQ

- Node C receives RREQ from G and H, but does not forward it again, because node \mathbf{C} has already forwarded RREQ once

Route Discovery in DSR

$\ldots . . . \rightarrow$ Represents transmission of RREQ

- Nodes J and K both broadcast RREQ to node D
- Since nodes J and K are hidden from each other, their transmissions may collide

Route Discovery in DSR

....... \rightarrow Represents transmission of RREQ

- Node D does not forward RREQ, because node D is the intended target of the route discovery

Route Reply in DSR

- On receiving first RREQ, D sends a Route Reply (RREP)
- RREP sent on route obtained by reversing the route in the received RREQ
- RREP includes the route from \mathbf{S} to \mathbf{D} over which D received the RREQ

Dynamic Source Routing (DSR)

- On receiving RREP, S caches route included therein
- When \mathbf{S} sends a data packet to \mathbf{D}, includes entire route in packet header
- Intermediate nodes use the source route included in packet to determine to whom packet should be forwarded

Today

1. Distance Vector Routing

2. Destination Sequenced Distance-Vector Routing (DSDV)
3. Dynamic Source Routing (DSR)
4. Roofnet: Quality-Aware Routing

- Wireless mesh link measurements
- Routing and bit rate selection
- End-to-end performance evaluation

Context, ca. 2000-2005

- Mobile ad hoc networking research
- Mobile, hence highly dynamic topologies
- Chief metrics: routing protocol overhead, packet delivery success rate, hop count
- Largely evaluated in simulation
- Roofnet, a real mesh network deployment
- Fixed, PC-class nodes
- Motivation: shared Internet access in community
- Chief metric: TCP throughput
- "Test of time" system, led to Cisco Meraki

Roofnet: Design Choices

1. Volunteer users host nodes at home

- Open participation without central planning
- No central control over topology

2. Omnidirectional rather than directional antennas

- Ease of installation: no choice of neighbors/aiming
- Links interfere, likely low quality

3. Multi-hop routing (not single-hop hot spots)

- Improved coverage (path diversity)
- Must build a routing protocol

4. Goal: high TCP throughput

Roofnet: Goals and non-goals

- Each part of the mesh architecture had been previously examined in isolation
- Paper contribution: A systematic evaluation of whether architecture can achieve goal of providing Internet access
- Stated non-goals for paper:
- Throughput of multiple concurrent flows
- Scalability in number of nodes
- Design of routing protocols

Roofnet deployment

- Each node: PC, 802.11b card, roof-mounted omni antenna

Hardware design

- PC Ethernet interface provides wired Internet for user
- Omnidirectional antenna in azimuthal direction
-3 dB vertical beam width of 20 degrees
- Wide beam sacrifices gain but removes the need for perfect vertical antenna orientation
- 802.11b radios (Intersil Prism 2.5 chipset)
- 200 mW transmit power
- All share same 802.11 channel (frequency)

Example: Varying link loss rates

- $A \rightarrow C: 1$ hop; high loss
- $A \rightarrow B \rightarrow C: 2$ hops; lower loss
- But does this happen in practice?

Hop count and throughput (1)

Hop count and throughput

- Two-hop path is suboptimal
- Some 3-hop paths better, some worse than 2-hop

Link loss is high and asymmetric

- Vertical bar ends = loss rate on 1 link in each direction
- Many links asymmetric and very lossy in ≥ 1 way
- Wide range of loss rates

Routing protocol: Srcr

- Each link has an associated metric (not necessarily 1!)
- Data packets contain source routes
- Nodes keep database of link metrics
- Nodes write current metric into source route of all forwarded packets
- DSR-like: Nodes flood route queries when they can't find a route; queries accumulate link metrics
- Route queries contain route from requesting node
- Nodes cache overheard link metrics
- Dijkstra's algorithm computes source routes

Link metric: Strawmen

- Discard links with loss rate above a threshold?
- Risks unnecessarily disconnecting nodes
- Product of link delivery rates \rightarrow prob. of e2e delivery?
- Ignores inter-hop interference
- Prefers 2-hop, 0\% loss route over 1-hop, 10\% loss route (but latter is double throughput)
- Throughput of highest-loss link on path?
- Also ignores inter-hop interference

ETX: Expected Transmission Count

- Link ETX: predicted number of transmissions
- Calculate link ETX using forward, reverse delivery rates
- To avoid retry, data packet and ACK must succeed
- Link ETX $=1 /\left(d_{f} \times d_{r}\right)$
- $d_{f}=$ forward link delivery ratio (data packet)
- $d_{r}=$ reverse link delivery ratio (ack packet)
- Path ETX: sum of the link ETX values on a path

Measuring link delivery ratios

- Nodes periodically send broadcast probe packets
- All nodes know the sending period of probes
- All nodes compute loss rate based on how many probes arrive, per measurement interval
- Nodes enclose these loss measurements in their transmitted probes
- e.g. B tells node \mathbf{A} the link delivery rate from \mathbf{A} to \mathbf{B}

Multi-bitrate radios

- ETX assumes all radios run at same bit-rate
- But 802.11b rates: $\{1,2,5.5,11\}$ Mbit/s
- Can't compare two transmissions at $1 \mathrm{Mbit} / \mathrm{s}$ with two at 2 Mbit/s
- Solution: Use expected time spent on a packet, rather than transmission count

ETT: Expected Transmission Time

- ACKs always sent at 1 Mbps , data packets 1500 bytes
- Nodes send 1500-byte broadcast probes at every bit rate b to compute forward link delivery rates $d_{f}(b)$
- Send 60-byte (min size) probes at $1 \mathrm{Mbps} \rightarrow \boldsymbol{d}_{r}$
- At each bit-rate $b, \mathrm{ETX}_{b}=1 /\left(d_{f}(b) \times d_{r}\right)$
- For packet of length $S, \mathrm{ETT}_{b}=(S / b) \times \mathrm{ETX}_{b}$
- Link ETT = $\min _{b}\left(E T T_{b}\right)$

ETT: Assumptions

- Path throughput estimate t is given by
$-t_{i}=$ throughput of hop i

- Does ETT maximize throughput? No!

1. Underestimates throughput for long (≥ 4-hop) paths

- Distant nodes can send simultaneously

2. Overestimates throughput when transmissions on different hops collide and are lost

Roofnet evaluation

- TCP bulk transfers between all node pairs but always a single flow at a time
- But background traffic present: users always active
- Results:

1. Wide spread of end-to-end throughput across pairs
2. "Chain forwarding" indeed creates interference
3. Lossy links indeed useful in practice

Wireless Mesh Networks: Evolving Routing

- DSDV took DV out of wired (more static) networks
- Better coped with dynamism
- DSR addressed protocol overheads of routing
- ETX and ETT abolished hop-count as a viable metric
- Replaced it with throughput as the metric

Next Week's Precepts: Introduction to Lab 2: HackRF MAC Protocols

Tuesday Topic: Geographic Routing

