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Review: The Data Link Layer (L2)

« Enables exchange of atomic messages (frames) between end
hosts on the same network

* Functions in L2:
— Determine start and end of bits and frames (framing)
— Establish link and deliver information reliably
* Today: How Wi-Fi establishes a link
— Control errors

— If needed, share the medium
* e.g., Shared-wire Ethernet, satellite uplink, Wi-Fi
* Today: Medium access control to share the medium



Motivation: Link-Layer Handoff

E TCP Connection

Server Internet

‘e

Wired local-area network

 Client moves out of AP 1's coverage, into AP 2’s coverage
* Ongoing TCP connections between client and server



Connecting to a Wi-Fi AP

* Notion of link-layer network: an Access Point (AP) and a set of
connected clients

— Named by the service set identifier (SSID)
— APs generally drop data from clients, APs outside the set

How is the wireless link connection established?

1. Discovery: Client detects presence of AP
2. Authentication: Establish identity of AP, client
3. Association: Establish shared state between AP, client



1. Discovery

How do clients find access points, and vice-versa?

« Access Points (APs) send short beacon frames every 100

milliseconds ‘ ‘

« Clients scan to discover the AP. Two ways:

1. Passive scan: Switch channels, listen for beacons, wait,
repeat on another channel

2. Active scan: Send packets to probe for the AP’s presence



Discovery: Active scan

* Don’t want to wait ca. 100 milliseconds for the next beacon
from an AP that may or may not be present

» Active scan protocol: On each channel:
1. Client broadcasts probe request frame

2. AP responds with probe response frame containing its SSID
(network name), data rates supported

—  Multiple APs may respond

3. Clients chooses AP to continue with



2. Authentication

* AP establishes its identity to the client, and vice-versa
— A security problem!

1. Open system authentication: Trivial, client sends
authentication frame, AP responds “success”

2. Shared key authentication: Configure both client and AP with
a shared secret key

—  Doesn’t scale too well

3. Enterprise authentication: Use public key certificates, akin to
web site authentication



3. Association

« The “commit” step that establishes shared AP-client state
1. Client sends association request frame to AP

2. AP sends association response frame to client

- Data now may flow, both to the AP (uplink) and to the client
(downlink)



Initiating The Wi-Fi Handoff

L]

-\
Server

« Back to the handoff example:

How is the handoff initiated?
 Client tracks received signal strength from AP’s frames

— Client initiates handoff if and when signal strength falls
below a threshold



Wi-Fi Handoff Process: High-Level View

* Discovery step |
— Same as before Server

* Authentication step
— Same as before

 Reassociation step

— Replaces association step of the connection process
discussed before
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Wi-Fi Handoff: Reassociation

[ ] Inter-Access Point Protocol (IAPP)

-\
Server

1. Reassociation Request: Client asks new AP to connect
— Supplies old AP identifier

2. |APP Move request: New AP asks for old AP’s state

3. IAPP Move response: Old AP supplies state to new AP

4. Reassociation Response: “Commit” step, data may flow
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Reassociation: Latency

« For how long is the client’s link-layer connection interrupted?
— This time duration is the reassociation latency

* Beginning: frames get dropped from old AP
— Imprecise: Link-layer retransmissions recover some losses

* End: Reassociation protocol completes with new AP
— Precise: Reassociation response message received

12



802.11 Reassociation Performance
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 Conventional 802.11 reassociation takes ca. 40 to 100 ms
— Long enough to trigger TCP duplicate ACKs, timeouts
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Improvements to Wi-Fi Handoff

* Wi-Fi standard 802.11r: Fast Roaming

— Store encryption keys on all APs in the network

* So no need for client to perform complete
authentication process on reassociation

« Wi-Fi Standard 802.11k: Assisted Roaming

— AP tells client a list of nearby other APs and their channels
« So no need for the client to scan
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Medium Access Control

1. Sharing by partitioning the medium
— Introduction, Time and Frequency division
— Code division

2. Contention-based sharing
— ALOHA

— The Ethernet



Medium access: The Problem

« Two questions:
1. How should the shared medium be divided?
2. Who gets to talk on a shared medium, and when?

 Amedium access control (MAC) protocol specifies the above
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Medium access: Metrics of Success

1. Efficiency
— High throughput (bits/second successfully received)
* j.e. high utilization (throughput / raw channel rate)

2. Fairness: All hosts with data to send should get a roughly
equal share of the medium over time

3. Latency: Want to minimize the time a host waits before being
granted permission to talk on the shared medium



Physical Limitation: Finite speed of light
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Vastly Different Timescales,
Same Medium Access Protocol!

Satellite
Communications

100 ms

Packet Radio

(ALOHA net)

3G/AG k
Cellular v 1 ms
Data ik

1 us
10-100 ns

3-30m 300 m 300 km 30,000 km 19



TDMA: Time Division Multiple Access

Channel time is divided fixed-period, repeating rounds

Each user gets a fixed-length s/ot (packet time) in each round
(unused slots are wasted)

Out-of-band: Mechanism for allocating/de-allocating slots

e.g.. six stations, only 1, 3, and 4 have data to send

Time =——>
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FDMA: Frequency Division Multiple Access

Channel spectrum divided into frequency bands

Each user gets a fixed frequency band (unused frequency
slots are wasted)

e.g.. six stations, only 1, 3, and 4 have data to send

" time
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TDMA and FDMA: Considerations

« Advantages

1. Users are guaranteed to be able to send bits, continuously
(FDMA) or periodically (TDMA)

 Disadvantages

1. Unused time slots or frequency bands reduce channel
utilization

2. An out-of-band mechanism is needed to allocate slots or bands
(which requires another channel)

3. Guard bands or guard times reduce channel utilization
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Medium Access Control

1. Sharing by partitioning the medium
— Introduction, Time and Frequency division
— Code division

2. Contention-based sharing
— ALOHA

— The Ethernet
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CDMA: Code Division Multiple Access

* All users transmit over the same frequencies, and at
the same time:

- !
Cathy Alice [__]

(CDMA) Bob

* Allows multiple users to coexist and transmit
simultaneously with no interference, in theory

 |n practice: also performs well
— Some cellular data networks have used CDMA



Representing bits as binary levels

« Let's represent bits with two (binary) levels as follows:
0 bit €-> +1 level 1 bit € -1 level

« Scenario: Alice receives data from Bob and Cathy:

Cathy Alice Bob
— TDMA e.g.: Bob sends bits 101, Cathy sends 001 :

+1
time
-1

\—'_l_'_l
TDMA timeslots: Bob Cathy
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CDMA: User codes Cathy Alice  Bob

Assign each user a unique binary sequence of bits: code
— Call each code bit a chip (convention)
— Call the code length M

CDMA example:

+1
>
) |
——

Bob’s code cbob Cathy’s code ccathy
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CDMA: Cathy Sending Cathy Alice  Bob

« Suppose Cathy alone sends message bits 001 :

Cathy’s message Algorithm (CDMA

encoding):

o=
| | f For each message bit m:
> time Send m x cguser

4

L data bits > M x L CDMA chips
ceathy: E, Bit rate: Factor of M slower

+1

Cathy’s transmitted
CDMA signal:
-1
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CDMA: Assumptions Cathy Alice  Bob

« Let's assume we have a way of:
— Synchronizing Cathy’s and Bob’s data bits in time
— Synchronizing Cathy’s and Bob’s CDMA chips in time

— Estimating and correcting the effect of the wireless channel
between Cathy and Bob to Alice
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o--—=== 2 SEETET -
What Alice Hears Cathy Alice  Bob
Bob’s transmitted +
CDMA signal: 1
Cathy’s transmitted +1
CDMA signal:
-1
I .
[ .
+2
+1

What Alice hears:

Result: Neither Bob nor Cathy’s signal — interference!
o -2
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Tool: Correlation

+1 Algorithm (correlation):
code cbob I) 1. Multiply two signals

-1 pointwise, across time
Sum the result across time
Normalize (divide) by the

Cathy’s +1 signal length 7
code ccathy >1

w N

— Sum: 0 = Correlation: 0
]
2. Sum 3. Normalize
1. Multiply +1 across time (+2)
pointwise:




Tool: Correlation

Cathy’s +1
code ccathy

I

I
1. Multiply I: +1
pointwise:

Algorithm (correlation):
1. Multiply two signals
pointwise, across time
Sum the result across time
Normalize (divide) by the
signal length

w N

4

Sum: 2 - Correlation: 1

2.Sum 3. Normalize
across time (+2)
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Correlating Cathy’s Code with
Cathy’s CDMA transmission

Cathy’s +1
transmission 4

corr

Cathy’s +1
code ccathy .

+1
Correlation >
-1

Cathysent: 0 0 1
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Listening to Cathy Cathy Alice  Bob
Alice hears
a mixture Bob’s transmission Cathy’s transmission

Cathy’s Zero-correlation with Bob’s code cancels

code Bob’s transmission from the mixture
ccathy

Correlation

Cathysent: 0 0 1 33



CDMA: How to choose codes?

« Let's generalize the Alice, Bob, Cathy scenario:
— N users, each user n has code c¢;;,, n=1...N
« (m=1...Code length M)

Zero mutual correlation condition:
n
le * C;:LZ = 0,7’11 * no

/I A A -~ "

.~ AP

”

User 1@~

* Goal: Ensure cancellation of all other users when correlating
against (each) one
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Example CDMA code: Walsh Codes

« Start with the Bob / Cathy code, write as rows in a matrix
Cbob 1 1
ccathy _ [1 _1]

* Recursive rule: given matrix M, form m M

—M

« e.qg. four users:

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1.

A Q0 Q o
AW N R



CDMA: Considerations

« CDMA advantages:
— Sending over entire channel frequency bandwidth
« Some parts of frequency band interfered? Okay!

« FDMA, TDMA, CDMA disadvantages:

— Rigid allocation of channel resources, requires advance
coordination (frequency, time, code)

— Partitioning the channel - reduced rate

« Can we have the best of both worlds, perhaps?
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Stretch Break with CDMA Calculation!

bob 1
 Recall the two-user Walsh code[ Cathy] [ and

M M

recursive rule: given matrix M, form M —M

] to double the

number of users in the system.

What's the Walsh code
in an Bl CDMA system?
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Medium Access Control

1. Sharing by partitioning the medium
— Introduction, Time and Frequency division
— Code division

2. Contention-based sharing
— Unslotted ALOHA, Slotted ALOHA
— The Ethernet
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Contention-based sharing

 When a station has a frame to send:
— Transmit at full channel data rate B
— No a priori coordination among nodes

* Two or more frames overlapping in time: collision
— Both frames lost, resulting in diminished throughput

- Arandom access MAC protocol specifies:
— How to detect collisions
— How to recover from collisions
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ALOHAnNet: Context

* Norm Abramson, 1970 at the University of Hawaii
— Seven campuses, on four islands
— Wanted to connect campus terminals and mainframe

— Telephone costs high, so built a packet radio network
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Unslotted ALOHA

Simplest possible medium access control: no control at all,
anyone can just transmit a packet without delay

Node | E e
Node 2 -
Node 3 -

Time

Suppose: Chance packet begins in time interval Atis A X At
— N senders in total, sending frames of time duration 1

A is the aggregate rate from all N senders

Individual rate NN for each sender
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Unslotted ALOHA: Performance

« Suppose some node i is transmitting; let's focus on i ’s frame

will overlap
with start of
+«—j’s frame—»

------------------

will overlap

with end of
<+— |'s frame —

node | frame

&

t-1 t

0 0

Vulnerable period—

t+1

0

|. Others send in [fy,—1, fy]: overlap i 's frame start - collision
ll. Others send in [f,, {y+1]: overlap i 's frame end - collision
lll. Otherwise, no collision, node i 's frame is delivered

« Therefore, vulnerable period of length 2 around /’s frame
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Unslotted ALOHA: Performance

will overlap will overlap
with start of with end of
<« |’s frame —»i+—i’s frame —»

-----------------------------------

node i frame <:I
Vulnerable period I

to-l to to+1

« What’s the chance no one else sends in the vulnerable period (length 2)?

Pr(no send from one node in 2) =1- 24

N

N-1
Pr(no send at all in 2) = (1 - %)

N-1 (@) O
1im(1_2) g2 ®

N—© N
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Unslotted ALOHA: Utilization

Utilization 02

1/2e = 18%

0.15f

0.1f ToQ many collisions! -

Not sending 0'05’1

fast enough

* Recall A is the aggregate rate from all senders
« S0, utilization = A x Pr(no other transmission in 2)
= Ae=2A



Slotted ALOHA

* Divide time into slots of duration 1, synchronize so that nodes
transmit only in a slot
— Each of N nodes transmits with probability p in each slot
— So aggregate transmissionrate A=N X p

* As before, if exactly one transmission in slot, can receive; if
two or more in slot, no one can receive (collision)

Node 1 | -
Node 2 : :
L %

Node 3 : :

Node N Time
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Slotted ALOHA: Utilization

(N nodes, each transmits with probability p in each slot)
What is the utilization as a function of aggregate rate A= N X p?

* Pr[A node is successful in a slot] = p(1—p)N-1
* Pr[Success in a slot] = Np(1=p)"-1

Utilization: ' 1/e = 37% LAV
Aet og Pr(success) = )L(l - —)
N
0.2 Vol
01 lim )L(l - i) =Ae™
N—» N




ALOHA throughput: slotted versus unslotted

0.4

1/e = 369
0.3y Slotted ALOHA:
AeA
1/2e = 189 \
0.1 Unslotted ALOHA: ‘
)\e—Z)\

I L —
0 1 2 3 4

Just by forcing nodes to transmit on slot
boundaries, we double peak medium utilization!
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Medium Access Control

1. Sharing by partitioning the medium
— Introduction, Time and Frequency division
— Code division

2. Contention-based sharing
— Unslotted ALOHA, Slotted ALOHA
— The Ethernet
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How did the Ethernet get built?

« Bob Metcalfe, PhD student at ’ s TN N
Harvard in early 1970s e X P i.
— Working on protocols for the e
ARPAnet LPYE L
— Intern at Xerox Palo Alto v Ener 2 )

Research Center (PARC), 1973

— Needed a way to network =100 Alto workstations in-building
— Adapted ALOHA packet radio

. g/letcalfe later founds 3Com, acquired by HP in April 10 for USD
2.7 bn



The Ethernet: Physical design

Coaxial cable, with propagation time 1
— Propagation speed: 3/5 X speed of light

Experimental Ethernet
— Data rate: B = 3 Mbits/s, maximum length: 1000 m

Goal: Any frame a station injects onto the coaxial cable
reaches all other stations with high probability

& = @ =
s & & =
' 10° m

Propagation delay t = ) ~5 us

3(3x10" m/s
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Collisions on the Ethernet

e G G G

Y
Propagation delay: T seconds

EF Two Problems: i
i 1. Sender doesn’t know whether frame collided or not i

* QOverlapping packets at B means signals sum
— Not time-synchronized: result is bit errors at B

* But: C receives OK in this example
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Who gets to transmit, and when?

Carrier Sense Multiple Access
with Collision Detection (CSMA/CD)

Begin the transmission procedure at any time

Carrier sensing: defer your transmission if you sense that
another station is transmitting

Collision detection: while sending, immediately abort your
transmission if you detect another station transmitting
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When might a collision happen?

— — — —
D .-

Propagation délay: T seconds

« Suppose Station A begins transmitting at time 0
« Assume that the packet lasts much longer than T

 All stations sense transmission and defer by time 1
— Don’t begin any new transmissions
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How long does a collision take to detect?

4

Propagation dglay: T seconds
« Suppose Station A begins transmitting at time 0
« Worst case: Z begins transmitting just before time 71

+ Just before time 21, A and B hear Z’s transmission (hence
detect collision)
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Collision detection and packet size

Ll B @ z
-

\ J
Y
Propagation delay: T seconds, transmit rate B bits/sec

* If packets take time 2T, A will still be transmitting when Z’s
packet arrives at A, so everyone will detect collision

« So Ethernet enforces a minimum packet size of 21B bits
— Experimental Ethernet:
 T=5 s, B =3 Mbits/s — 21B = 30 bits
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Resolving collisions

Upon abort (carrier detect), station enters the backoff state

Key idea: the colliding stations all wait a random time before
carrier sensing and transmitting again

— How to pick the random waiting time? (Should be based on
how stations have data to send)

— How to estimate the number of colliding stations?

Goal: Engineer such that nodes will wait different amounts of
time, carrier sense, and not collide
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Slotted Ethernet backoff

« Backoff time is slotted (like slotted ALOHA) and random
— Station’s view of the where the first slot begins is at the end of
the busy medium
— Random slot choice in contention window (CW)

™ I Slottime

/ Busy Medium

Contention Window

(cw)
« Goal: Choose slot time so that different nodes picking different
slots CS and defer - don’t collide
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Picking the length of a backoff slot

» Consider from the perspective of one packet at time t
1. Packets before t—1 will cause packet to defer
2. Packets after t+t will not happen (why not?)

« Packets beginning within time 1 apart will collide
« So should we pick a backoff slot length of T?

E—

<T—>=<T>

OK



The problem of clock skew

* No! Slots are timed off the tail-end of the last packet
— Therefore, stations’ clocks differ by at most t

* Suppose we use a backoff slot length of T
— Different stations picking different slots may collide!

OK

2

I

|
Station A, slot 1

T T

l—Dble1>l
Station B, slot 0
OK

1

—

o

----x-o
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Picking slot time in presence of clock skew

« Want other station’s other slots to all be in “OK” region
— Then, transmissions in different slots won’t collide
— Worst case clock skew: t
— So, pick a slottime of t +1t=21

14

N = osos o o o mn =

- e e o mm )

-x---_\

2T OK

O

P
OK----
—\L---

N
N

60



Binary Exponential Backoff

« Binary exponential backoff (BEB): double CW size on each
consecutive collision

« Stations wait some number of slots chosen uniformly at random
from CW = [0, 2m-1]
— Reset m < 1 upon a successful transmission
— First retransmit (m = 1): pick from [0, 1]
— Second retransmit (m = 2): pick from [0, 1, 2, 3]

« Observe: Stations transmitting new frames don’t take into
account recent collisions, might transmit before stations in

backoff



Comparing CDMA vs ALOHA random access

« CDMA wireless « ALOHA random access
— No interference between — Stations can transmit
transmitting stations using the entire medium,
_ Adaptation to Varying at full rate if alone
numbers of users possible — Almost-instant adaptation
by changing codes to varying traffic loads
— Reduced rate of individual — Concurrent transmissions
transmissions result in collisions,
reduced throughput

— Unused codes waste
overall capacity
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Monday, Tuesday Precepts
Introduction to Lab 1

Tuesday Topic:
Link Layer ll: Sharing the Medium,
Wi-Fi Above the PHY
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