
COS 426: Computer Graphics (Spring 2019)

Reilly Bova & Carlo Rosati

Traditional Graphics Education and Industry Programming is in C++

• Pros:

– Great if you are going into industry
– Fast execution; systems access for optimization (memory, threads, etc.)
– Decades worth of libraries and support

• Cons:
– Showing its age (less graphics support for modern hardware)
– Steep learning curve; need to worry about syntax

– Hard to debug and high debugging overhead (need to recompile following any change)
– Not always portable, which makes both development and grading somewhat harder
– Difficult to share live C++ graphics demos, since users would need to download and compile

Our Assignments are written in JavaScript (and GLSL). Hear us out!

• Pros:

– High demand for 3D web development experience (this is great for you!)
– JS is far more accessible and far easier to debug and test (no compiling overhead!)
– Reduced overhead speeds up your development time a ton. We can assign more interesting tasks
– JS/WebGL can harness GPU; powerful enough to run realistic 3D games at high FPS
– Excellent JS graphics libraries (e.g. ThreeJS) with modern support/documentation
– Extremely portable and easy to share (can run directly in modern browsers)

– Assignments will give students the tools they to develop beautiful 3D art demos that they can drop right into a
personal website or publish to a github webpage.

• Great for impressing friends, family, and future employers :)
• Cons:

– Slower than C++, but not noticeably so within the use-cases of assignments
– Limited memory/threading, but these are not needed for assignments
– The portion of the class potentially interested in entering the graphics industry will eventually need to learn

C++; however, they will likely take additional graphics courses (covering C++) anyways

• https://tympanus.net/Tutorials/TheAviator/
• https://paperplanes.world/
• https://www.foosballworldcup18.com/
• http://playdoh-lagaleriedesespeces.com/en/
• https://threejs.org/examples/?q=rea#webgl_postprocessing_unreal_bloom
• https://threejs.org/examples/?q=ocea#webgl_shaders_ocean
• https://phoboslab.org/xibalba/
• https://jbechara.github.io/Singularity/

Rmk: No downloading required! The 3D viewer loads right into your browser!

https://tympanus.net/Tutorials/TheAviator/
https://paperplanes.world/
https://www.foosballworldcup18.com/
http://playdoh-lagaleriedesespeces.com/en/
https://threejs.org/examples/?q=rea#webgl_postprocessing_unreal_bloom
https://threejs.org/examples/?q=ocea#webgl_shaders_ocean
https://phoboslab.org/xibalba/
https://jbechara.github.io/Singularity/

• JavaScript syntax is somewhere in between Java and Python. If you know one
(or both) of these languages, you should be in good shape.

• Like Python, JavaScript is not compiled, but interpreted.

• Like Java, JavaScript requires brackets (although semicolons are optional) and
variables must be declared

• “Try translating a Python script to Java, but then give up halfway through.
That’s pretty much JavaScript”

α + (1 – α) =

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has global scope if it was declared as a var outside of any function:

var carName = "Volvo";

// code here can use carName

function myFunction() {
 // code here can also use carName
}

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has global scope by default if it was declared without a keyword:

myFunction();

// code here can use carName

function myFunction() {
 carName = "Volvo";
}

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has function scope (like Python variables) if it was declared as a var

inside a function:

// code here can NOT use carName

function myFunction() {
 var carName = "Volvo";
 // code here CAN use carName
}

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has block scope (like Java variables) if it was declared as a let inside

a function:

var x = 10;
// Here x is 10
{
 let x = 2;
 // Here x is 2
}
// Here x is 10

Variable Scope in JS
• The scope of a JavaScript variable depends on how it was declared
• There are three scopes: global, function, and block
• As of JS ES6 , there are three declaration keywords: var, const, and let
• A variable has block scope (like Java variables) if it was declared as a const

inside a function. Note that const variables cannot be changed:

var x = 10;
// Here x is 10
{
 const x = 2;
 // Here x is 2
}
// Here x is 10

Variable Scope in JS
• In general, it is best practice to avoid var altogether (our assignment code is

not great about this at the moment, but it will be changing).

for (var x = 0; x < 10; x++) {
 console.log(x);
 // prints 0, 1, ..., 9
}
console.log(x);
// prints “10” because x is still within function scope!

Data Types in JS
• JavaScript variables are dynamic; a variable that holds a number can be

redefined as a string, function, etc.
• There are seven main data types in JavaScript:

– Numbers (Rmk: there is no distinction between integers and floats)
– Strings
– Booleans
– Arrays
– Objects (including null)
– Functions
– Undefined

Data Types in JS
• JavaScript variables are dynamic; a variable that holds a number can be

redefined as a string, function, etc.
• There are seven main data types in JavaScript:

– Numbers (Rmk: there is no distinction between integers and floats)
– Strings (Rmk: use single or double quotes; use ` (back tick) for multiline)
– Booleans (Rmk: lowercase)
– Arrays
– Objects (including null)
– Functions
– Undefined

Arrays in JS
• Arrays in JavaScript work just like lists in Python
• You can append to arrays using the .push() function:

let arr = [];
for (let x = 0; x < 10; x++) {
 arr.push(x);
}
console.log(arr);
// prints [0, 1, ..., 9]

• Further useful Array operations (like sorting, mapping, and iteration) can be
found here.

https://www.w3schools.com/js/js_arrays.asp

Functions in JS
• There are three main ways to declare functions in JavaScript
• Version 1:

function myFunction(a, b=“default value”) {
 return a + b;
}

• Version 2:
const x = function (a, b=“default value”) {return a + b};

• Version 3 (arrow function; good for one-liners):
const x = (a, b=“default value”) => {return a + b};

Objects in JS
• Objects are declared similar to Python dictionaries, but function more like a

Java Class (although they can still be used like Python dictionaries)
• You can add and overwrite object properties as you go
• Objects can contain functions

let person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"}

let x = person;
x.age = 10; // This will change both x.age and person.age

Object Constructors in JS
• Objects can be declared as functions, which serve as constructors
• You cannot add a new method to an object constructor the same way you add

a new method to an existing object.

function Person(firstName, lastName, age, eyeColor) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 this.eyeColor = eyeColor;
 this.changeName = function (name) {
 this.lastName = name;
 };
}

Instancing Objects in JS
• You can instance objects (as you would instance a class in Java) using the new

keyword
• If you wish to add instance (i.e. non-static) variables or methods, use

Object.prototype

Person.prototype.name = function() {
 return this.firstName + " " + this.lastName;
};

let me = new Person(“Reilly”, “Bova”, 20, “Brown);

Getting Started
1. Visit the assignment 0 page.

2. Download the zip file.

Starting the Server
1. Extract the files.

$ unzip cos426-assign0.zip && cd cos426-assign0

2. Start the server with any of the following commands:

$ python3 -m http.server
$ python -m SimpleHTTPServer
$ php -S localhost:8000

https://www.cs.princeton.edu/courses/archive/spring19/cos426/assign/A0/index.php
https://www.cs.princeton.edu/courses/archive/spring19/cos426/assign/A0/cos426-assign0.zip

Who Are You?

1. Open “student.js”1 using your favorite editor. We recommend either:

– VSCode
– Atom

2. Edit ‘Student Name’ and ‘NetID’

3. Open the server and check that it worked! Visit2

http://localhost:8000

[1] Look in the directory named js
[2] We recommend Google Chrome for its developer tools, but Safari and Firefox are okay too.

“Implement” the Fill Tool

1. Now open “filters.js”

2. Uncomment the “setPixel” line

3. Verify that it works:

– Refresh http://localhost:8000

– Click the Fill button

Learn JavaScript

● Mozilla JavaScript Guide

○ Mozilla is one of the developers of, and contributor to, many web standards

● Wikibooks JavaScript "Book"

○ structured as a book, but available completely online

○ great reference for quickly finding syntax

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://en.wikibooks.org/wiki/JavaScript

