More on Transformations

COS 426, Spring 2019
Princeton University
Agenda

Grab-bag of topics related to transformations:

- General rotations
 - Euler angles
 - Rodrigues’s rotation formula

- Maintaining camera transformations
 - First-person
 - Trackball

- How to transform normals
3D Coordinate Systems

• Right-handed vs. left-handed
3D Coordinate Systems

- Right-handed vs. left-handed
- Right-hand rule for rotations: positive rotation = counterclockwise rotation about axis
General Rotations

- Recall: set of rotations in 3-D is 3-dimensional
 - Rotation group SO(3)
 - Non-commutative
 - Corresponds to orthonormal 3×3 matrices with determinant $= +1$

- Need 3 parameters to represent a general rotation (Euler’s rotation theorem)
Euler Angles

• Specify rotation by giving angles of rotation about 3 coordinate axes

• 12 possible conventions for order of axes, but one standard is Z-X-Z
Euler Angles

- Another popular convention: X-Y-Z
- Can be interpreted as yaw, pitch, roll of airplane
Rodrigues’s Formula

- Even more useful: rotate by an arbitrary angle (1 number) about an arbitrary axis (3 numbers, but only 2 degrees of freedom since unit-length)
Rodrigues’s Formula

- An arbitrary point \(p \) may be decomposed into its components along and perpendicular to \(a \)

\[
p = a \left(p \cdot a \right) + \left[p - a \left(p \cdot a \right) \right]
\]
Rodrigues’s Formula

- Rotating component **along** \mathbf{a} leaves it unchanged
- Rotating component **perpendicular** to \mathbf{a} (call it \mathbf{p}_\perp) moves it to $\mathbf{p}_\perp \cos \theta + (\mathbf{a} \times \mathbf{p}_\perp) \sin \theta$
Rodrigues’ Formula

• Putting it all together:

\[Rp = a (p \cdot a) + p_\perp \cos \theta + (a \times p_\perp) \sin \theta \]
\[= aa^T p + (p - aa^T p) \cos \theta + (a \times p) \sin \theta \]

• So: \[R = aa^T + (I - aa^T) \cos \theta + [a]_x \sin \theta \]

where \([a]_x\) is the “cross product matrix”

\[[a]_x = \begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix} \]

Rotating One Direction into Another

- Given two directions \(\mathbf{d}_1, \mathbf{d}_2 \) (unit length), how to find transformation that rotates \(\mathbf{d}_1 \) into \(\mathbf{d}_2 \)?
 - There are many such rotations!
 - Choose rotation with minimum angle

- Axis = \(\mathbf{d}_1 \times \mathbf{d}_2 \)

- Angle = \(\text{acos}(\mathbf{d}_1 \cdot \mathbf{d}_2) \)

- More stable numerically: \(\text{atan2}(|\mathbf{d}_1 \times \mathbf{d}_2|, \mathbf{d}_1 \cdot \mathbf{d}_2) \)
Agenda

Grab-bag of topics related to transformations:

• General rotations
 ◦ Euler angles
 ◦ Rodrigues’s rotation formula

• Maintaining camera transformations
 ◦ First-person
 ◦ Trackball

• How to transform normals
Camera Coordinates

Canonical camera coordinate system

- Convention is right-handed (looking down –z axis)
- Convenient for projection, clipping, etc.

Camera back vector maps to Z axis (pointing out of page)

Camera up vector maps to Y axis

Camera right vector maps to X axis
Viewing Transformation

- Mapping from world to camera coordinates
 - Eye position maps to origin
 - Right vector maps to +X axis
 - Up vector maps to +Y axis
 - Back vector maps to +Z axis
Finding the viewing transformation

- We have the camera (in world coordinates)
- We want T taking objects from world to camera
 \[p^c = T \; p^w \]
- Trick: find T^{-1} taking objects in camera to world
 \[p^w = T^{-1} p^c \]

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 m & n & o & p
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\]
Finding the Viewing Transformation

• Trick: map from camera coordinates to world
 ○ Origin maps to eye position
 ○ Z axis maps to Back vector
 ○ Y axis maps to Up vector
 ○ X axis maps to Right vector

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
w'
end{bmatrix} =
\begin{bmatrix}
 R_x & U_x & B_x & E_x \\
 R_y & U_y & B_y & E_y \\
 R_z & U_z & B_z & E_z \\
 R_w & U_w & B_w & E_w
end{bmatrix}
\begin{bmatrix}
 x \\
y \\
z \\
w
end{bmatrix}
\]

• This matrix is \(T^{-1} \) so we invert it to get \(T \) … easy!
Maintaining Viewing Transformation

For first-person camera control, need 2 operations:

- Turn: rotate(θ, 0, 1, 0) in local coordinates
- Advance: translate(0, 0, $-v^{*}\Delta t$) in local coordinates

- Key: transformations act on local, not global coords
- To accomplish: right-multiply by translation, rotation

$$M_{\text{new}} \leftarrow M_{\text{old}} T_{-v^{*}\Delta t, z} R_{\theta, y}$$
Maintaining Viewing Transformation

Object manipulation: “trackball” or “arcball” interface

- Map mouse positions to surface of a sphere
- Compute rotation axis, angle
- Apply rotation to global coords: \(\text{left-multiply} \)

\[
M_{\text{new}} \leftarrow R_{\theta, a} M_{\text{old}}
\]
Agenda

Grab-bag of topics related to transformations:

• General rotations
 ◦ Euler angles
 ◦ Rodrigues’s rotation formula

• Maintaining camera transformations
 ◦ First-person
 ◦ Trackball

• How to transform normals
Transforming Normals

Normals do not transform the same way as points!

- Not affected by translation
- Not affected by shear perpendicular to the normal
Transforming Normals

• Key insight: normal remains perpendicular to surface tangent

• Let \(\mathbf{t} \) be a tangent vector and \(\mathbf{n} \) be the normal

\[
\mathbf{t} \cdot \mathbf{n} = 0 \quad \text{or} \quad \mathbf{t}^\top \mathbf{n} = 0
\]

• If matrix \(\mathbf{M} \) represents an affine transformation, it transforms \(\mathbf{t} \) as

\[
\mathbf{t} \rightarrow \mathbf{M}_L \mathbf{t}
\]

where \(\mathbf{M}_L \) is the linear part (upper-left 3×3) of \(\mathbf{M} \)
Transforming Normals

• So, after transformation, want

\[(M_L t)^T n_{\text{transformed}} = 0\]

• But we know that

\[t^T n = 0\]

\[t^T M_L^T (M_L^T)^{-1} n = 0\]

\[(M_L t)^T (M_L^T)^{-1} n = 0\]

• So,

\[n_{\text{transformed}} = (M_L^T)^{-1} n\]
Transforming Normals

• Conclusion: normals transformed by inverse transpose of linear part of transformation

• Note that for rotations, inverse = transpose, so inverse transpose = identity
 ◦ normals just rotated
COS 426 Midterm exam

• This Thursday, April 14

• Regular time/place: 3:00-4:20, Friend 006

• Covers everything through week 5: color, image processing, shape representations transformations (but not today’s lecture)
 ◦ Also responsible for material in required parts of first two programming assignments

• Closed book, no electronics, one page of notes / formulas