
Lecture 20: 
Little Languages

Over-simplified history of programming languages

•  1940's machine language

•  1950's assembly language

•  1960's high-level languages: scripting languages:

 Algol, Fortran, Cobol, Basic Snobol

•  1970's systems programming: C shell

•  1980's object-oriented: C++ Awk

•  1990's strongly-hyped: Java Perl, Python, PHP, …

•  2000's lookalike languages: C# Javascript

•  2010's retry: Go, Rust, Swift Dart, Typescript

Domain-specific languages
•  also called application specific languages, little languages

•  narrow domain of applicability
•  not necessarily programmable or Turing-complete

–  often declarative, not imperative
•  often small enough that you could build one yourself

•  examples:
–  regular expressions
–  parser and lexer generators: YACC, LEX, ANTLR
–  shell, Awk
–  markup languages: XML, HTML, Troff, (La)TeX, Markdown
–  data format/exchange languages: YAML, JSON, ASN.1
–  database access: SQL
–  statistics: R
–  mathematical optimization: AMPL
–  …

Example: Markup / document preparation languages

•  illustrates topics of 333 in a different setting
–  tools
–  language design (good and bad); notation
–  evolution of software systems; maintenance
–  personal interest, research area for 10-20 years, heavy use in books

•  examples:
–  roff and related early formatters
–  nroff (Unix man command still uses it)
–  troff
–  Tex / Latex
–  HTML, Markdown, etc.

Unix document preparation: *roff
•  text interspersed with formatting commands on separate lines
 .sp 2
 .in 5
 This is a paragraph …
•  originally just ASCII output, fixed layout, single column
•  nroff: macros, a event mechanism for page layout (Turing complete)
•  troff: version of nroff for phototypesetters

–  adds features for size, font, precise positioning, bigger character sets
–  originally by Joe Ossanna (~1972); inherited by BWK ~1977

•  photypesetter produces output on photographic paper or film
•  first high-quality output device at a reasonable price (~$15K)

–  predates laser printers by 5-10 years
–  predates Postscript (1982) by 10 years, PDF (1993) by 21 years
–  klunky, slow, messy (chemicals!), expensive media

•  complex program, complex language
–  language reflects many of the weirdnesses of first typesetter
–  macro packages make it usable by mortals for standard tasks

•  troff + phototypesetter enables book-quality output
–  ..., K&R, TPOP, Go, …

Extension to complex specialized technical material

•  mathematics
–  called “penalty copy” in the printing industry

•  tables
•  drawings
•  graphs
•  references
•  indexes
•  etc.

•  at the time, done by hand composition
–  not much better than medieval technology

•  Bell Labs authors writing papers and books with all of these
•  being done by manual typewriters
•  how can production be mechanized?

EQN: a language for typesetting mathematics

•  BWK, with Lorinda Cherry ~1974

•  idea: a language that matches the way mathematics is spoken aloud

•  translate that into troff commands
–  since the language is so orthogonal, it wouldn’t fit directly
–  and there isn’t room anyway, since program has to be less than 65KB
–  troff is powerful enough

•  use a pipeline: eqn | troff

•  math mode in TEX (1978) was inspired by EQN

EQN examples
x sup 2 + y sup 2 = z sup 2

f(t) = 2 pi int sin (omega t) dt

lim from {x -> pi / 2} (tan x) = inf

x = {-b +- sqrt {b sup 2 – 4ac} over 2a}

EQN implementation

•  based on a YACC grammar
–  first use of YACC outside mainstream compilers

•  grammar is simple
–  box model
–  just combine boxes in various ways:

concatenate, above/below, sub and superscript, sqrt, ...

 eqn: box | eqn box
 box: text | { eqn } | box over box | sqrt box
 | box sub box | box sup box | box from box to box | ...

•  YACC makes experimental language design easy

Pic: a language for pictures (line drawings)

•  new typesetter has more capabilities (costs more too: $50K in 1977)

•  can we use troff to do line drawings?

•  answer: invent another language, again a preprocessor
–  add simple line-drawing primitives to troff: line, arc, spline

•  advantages of text descriptions of pictures
–  systematic changes are easy, always have correct dimensions,
–  Pic has loops, conditionals, etc., for repetitive structures

Turing complete!

•  implemented with YACC and LEX
–  makes it easy to experiment with syntax
–  human engineering:

free-form English-like syntax
implicit positioning: little need for arithmetic on coordinates

Pic examples

.PS
arrow "input" above
box "process"
arrow "output" above
.PE

Pic examples
.PS
V: arrow from 0,-1 to 0,1; " voltage" ljust at V.end
L: arrow from 0,0 to 4,0; " time" ljust at L.end
for i = 1 to 399 do X
 j = i+1
 line from (L + i/100, sin(i/10) / 3 + sin(i/20) / 2
 + sin(i/30) / 4) to (L + j/100, sin(j/10) / 3
 + sin(j/20) / 2 + sin(j/30) / 4)
X
.PE

Grap: a language for drawing graphs

•  line drawings, not “charts” in the Excel sense
•  with Jon Bentley, ~1984

•  a Pic preprocessor: grap | pic | troff

 .G1
 0 0
 1 1
 2 4
 3 9
 4 16
 5 25
 .G2

•  started with Markdown
–  very good for simple documents

•  doesn't scale to books
–  too many special cases if material is complicated (e.g., fonts, layout)
–  very slow

•  Alan Donovan wrote a version in Go
–  better, but still too many special cases

•  LaTeX?
–  it's complicated, inflexible and uncontrollable

•  convert book text to XML, process by a Go program
–  about 20 tags, with attributes
–  a nuisance to type, but many fewer special cases
–  generates HTML for proofing and ultimately ebooks
–  generates Troff for paper version
–  still lots of special-purpose shell scripts, e.g., indexing, special chars

The Go Programming Language experience

AMPL: A big DSL that got bigger

•  a language and system for
–  describing optimization problems in a uniform,

natural way
–  compiling descriptions into form needed by

solver programs
–  controlling execution of solvers
–  displaying results in problem terms

“word problem”

algebraic specification
(model)

modeling language
(AMPL)

AMPL translator

intermediate form
(sparse matrix)

Optimization program
(solver)

answers

data

Robert Fourer
David Gay
Brian Kernighan

Cost minimization: a diet model
•  Find a minimum-cost mix of TV dinners that satisfies requirements on the

minimum and maximum amounts of certain nutrients.
•  Given sets and parameters:

F, a set of foods
N, a set of nutrients
aij = amount of nutrient i in a package of food j
cj = cost of package of food j, for each j ∈ F
fj - = minimum packages of food j, for each j ∈ F
fj+ = maximum packages of food j, for each j ∈ F
ni

- = minimum amount of nutrient i, for each i ∈ N
ni

+ = maximum amount of nutrient i, for each i ∈ N
•  Define decision variables:

Xj = packages of food j to buy, for each j ∈ F
•  Minimize objective: ∑j ∈ F cj Xj

•  Subject to constraints:
ni

- ≤ ∑j ∈ F aij Xj ≤ ni
+, for each i ∈ N

fj- ≤ Xj ≤ fj
+, for each j ∈ F

AMPL version of the diet model

set FOOD;
set NUTR;

param amt {NUTR,FOOD} >= 0;
param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

minimize total_cost: sum {j in FOOD} cost[j] * Buy[j];

subject to diet {i in NUTR}:
 n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

Why languages succeed

•  solve real problems effectively

•  culturally compatible and familiar
–  familiar syntax helps (e.g., C-like)
–  easy to get started with
–  portable to new environments

•  environmentally compatible
–  don’t have to buy into an entire new environment to use it
–  e.g., can use standard tools and link to existing libraries
–  open source, not proprietary

•  weak competition

•  good luck

Why languages fail to thrive

•  niche or domain disappears

•  poor engineering
–  too big, too complicated, too slow, too late
–  incompatible with environments

•  poor philosophical choices
–  ideology over functionality
–  single programming paradigm
–  too "mathematical"
–  too different, too incompatible

