Lecture 20:
Little Languages

Over-simplified history of programming languages

+ 1940's machine language

+ 1950's assembly language

- 1960's high-level languages: scripting languages:
Algol, Fortran, Cobol, Basic Snobol

+ 1970's systems programming: C shell

« 1980's object-oriented: C++ Awk

* 1990's strongly-hyped: Java Perl, Python, PHP, ...

- 2000's lookalike languages: C# Javascript

- 2010's retry: Go, Rust, Swift Dart, Typescript

Domain-specific languages

- also called application specific languages, little languages

narrow domain of applicability

not necessarily programmable or Turing-complete
— often declarative, not imperative

often small enough that you could build one yourself

examples:

— regular expressions

— parser and lexer generators: YACC, LEX, ANTLR

— shell, Awk

— markup languages: XML, HTML, Troff, (La)TeX, Markdown
— data format/exchange languages: YAML, JSON, ASN.1

— database access: SQL

— statistics: R

— mathematical optimization: AMPL

Example: Markup / document preparation languages

- illustrates topics of 333 in a different setting
— tools
— language design (good and bad); notation
— evolution of software systems; maintenance
— personal interest, research area for 10-20 years, heavy use in books

- examples:
— roff and related early formatters
— nroff (Unix man command still uses it)
— troff
— Tex / Latex
— HTML, Markdown, etc.

Unix document preparation: *roff

- text interspersed with formatting commands on separate lines
.Sp 2
.in 5
This is a paragraph ..
- originally just ASCII output, fixed layout, single column
- nroff: macros, a event mechanism for page layout (Turing complete)
- troff: version of nroff for phototypesetters
— adds features for size, font, precise positioning, bigger character sets
— originally by Joe Ossanna (~1972); inherited by BWK ~1977
- photypesetter produces output on photographic paper or film
- first high-quality output device at a reasonable price (~$15K)
— predates laser printers by 5-10 years
— predates Postscript (1982) by 10 years, PDF (1993) by 21 years
— klunky, slow, messy (chemicals!), expensive media
- complex program, complex language
— language reflects many of the weirdnesses of first typesetter
— macro packages make it usable by mortals for standard tasks

- troff + phototypesetter enables book-quality output
— ..., K&R, TPOP, Go, ...

Extension to complex specialized technical material

- mathematics
— called “penalty copy” in the printing industry

- tables

- drawings
- graphs

- references
- indexes

- etc.

- at the time, done by hand composition
— not much better than medieval technology

- Bell Labs authors writing papers and books with all of these
 being done by manual typewriters
- how can production be mechanized?

EQN: a language for typesetting mathematics

- BWK, with Lorinda Cherry ~1974

- idea: a language that matches the way mathematics is spoken aloud

- translate that into troff commands
— since the language is so orthogonal, it wouldn’t fit directly
— and there isn’t room anyway, since program has to be less than 65KB
— troff is powerful enough

 use a pipeline: eqn | troff

- math mode in TEX (1978) was inspired by EQN

EQN examples

X sup 2 + y sup 2 = z sup 2 x2+y2=22

f(t) = 2 pi int sin (omega t) dt

f(t) =27rfsin (wt) dr

lim from {x -> pi / 2} (tan x) inf

lim (tan x) =00
x—/2

x = {-b +- sqrt {b sup 2 — 4ac} over 2a}

~ —b+Vb? —4ac
X
2a

EQN implementation

- based on a YACC grammar
— first use of YACC outside mainstream compilers

- grammar is simple
— box model

— just combine boxes in various ways:
concatenate, above/below, sub and superscript, sqrt, ...

eqn: box | egn box
box: text | {eqn} | box over box | sqrt box
| box sub box | box sup box | box from box to box | ...

- YACC makes experimental language design easy

Pic: a language for pictures (line drawings)

new typesetter has more capabilities (costs more too: $50K in 1977)
can we use troff to do line drawings?

answer: invent another language, again a preprocessor
— add simple line-drawing primitives to troff: line, arc, spline

advantages of text descriptions of pictures
— systematic changes are easy, always have correct dimensions,

— Pic has loops, conditionals, etc., for repetitive structures
Turing complete!

implemented with YACC and LEX
— makes it easy to experiment with syntax
— human engineering:
free-form English-like syntax
implicit positioning: little need for arithmetic on coordinates

Pic examples

.PS
arrow "input"” above
box "process"

arrow "output" above
.PE

input

-

Proccss

output

Pic examples

.PS
V: arrow from O0,-1 to O0,1;

L: arrow from 0,0 to 4,0;
for i = 1 to 399 do X
j = i+l

line from (L + i/100, sin(i/10) / 3 + sin(i/20) / 2

voltage" ljust at V.end
time" ljust at L.end

+ sin(i/30) / 4) to (L + j/100, sin(j/10) / 3
+ sin(j/20) / 2 + sin(j/30) / 4)

‘vohage
. PE

SNAY

» time

2 \/

Grap: a language for drawing graphs

- line drawings, not “charts” in the Excel sense
- with Jon Bentley, ~1984

- a Pic preprocessor: grap | pic | troff

oGl
20 —

= O
.

15 —
10 —

16 5 .
25 . o
.G2 I | I I l I

gl & W N = O
i

The Go Programming Language experience

started with Markdown
— very good for simple documents
doesn't scale to books
— too many special cases if material is complicated (e.g., fonts, layout)
— very slow
Alan Donovan wrote a version in Go |
— better, but still too many special cases ,H“.(;()
LaTeX? Programming
— it's complicated, inflexible and uncontrollable Language
convert book text to XML, process by a Go program y
— about 20 tags, with attributes _J
L o)
— a nuisance to type, but many fewer special cases -
— generates HTML for proofing and ultimately ebooks

— generates Troff for paper version
— still lots of special-purpose shell scripts, e.g., indexing, special chars

R
5
H
3
2
£
3
-
-
g
9
:
7
I3
8

AMPL: A big DSL that got bigger

“word problem”
- alanguage and system for l

— describing optimization problems in a uniform, algebraic specification

natural way (model) data
— compiling descriptions into form needed by l

solver programs
— controlling execution of solvers modeling language

. : : (AMPL)

— displaying results in problem terms l

A MODELING LANGUAGE FOR MATHEMATICAL PROGRAMMING

AM PL AMPL Tmslamr

intermediate form
(sparse matrix)

l

Optimization program|
(solver)

Robert Fourer

David Gay l

Brian Kernighan answers

@ @

ROBERT FOURER DAVID M. GAY BRIAN W. KERNIGHAN

Cost minimization: a diet model

+ Find a minimum-cost mix of TV dinners that satisfies requirements on the
minimum and maximum amounts of certain nutrients.

- Given sets and parameters:
F, a set of foods
N, a set of nutrients
a; = amount of nutrient i in a package of food |
¢, = cost of package of food j, for eachje F
f;~ = minimum packages of food j, for each j & F
fir = maximum packages of food j, for eachje F
n; = minimum amount of nutrient i, for each i €N
n* = maximum amount of nutrient i, for eachi €N

+ Define decision variables:

X; = packages of food j to buy, for each j e F
- Minimize objective: Y,cr ¢ X
- Subject to constraints:

n" <Y cra; X;=n*, foreachieN

fr<X st foreachjEF

AMPL version of the diet model

set FOOD;
set NUTR;

param amt {NUTR,FOOD} >= O0;

param cost {FOOD} > O;

param £ min {FOOD} >= 0;

param f max {j in FOOD} >= f min[j];
param n_min {NUTR} >= 0;

param n max {i in NUTR} >= n min[i];

var Buy {j in FOOD} >= f min[j], <= f max[]];
minimize total cost: sum {j in FOOD} cost[]j] * Buyl[]];

subject to diet {i in NUTR}:
n min[i] <= sum {j in FOOD} amt[i,]j] * Buy[]] <= n max[i];

HOME

ANIPL

REAL OPTIMIZA

Build optimization into your large-scale
applications — quickly and reliably — using
AMPL’s powerful yet intuitive algebraic modeling

AMPL FOR BUSINESS

PRODUCTS ABOUT US

DEPLOY

ANALYZE

AMPL FOR RESEARCH

AMPL FOR TEACHING

= | : 1 l,EStreamlined optimization \ L.l FFree AMPL and solvers. L & ’/‘\‘_ [- Optimization modeling for
« A@)1 21 | development in business =i A \‘ . Full-featured, time-limited. - engineering, science,
PN e il applications of all kinds. R % . Easy to install & distribute. & * W economics, management.
i i i y #4 Read More & ' S M o Read More /{‘ ‘(m Read More

SOLVERS

Buy from us >>

CPLEX - Gurobl - Knitro - Xpress
CONOPT - LOQO - MINOS - SNOPT — BARON - LGO

Open-source optimizers >>

Full solver list >>

WHAT'S NEW?

Visit us at INFORMS Analytics 2019 in Austin, April 14-16
Pre-conference workshop on Adding Optimization to Your Applications
Technology tutorial on Model-Based Optimization + Application Programming

WHY AMPL?

The AMPL system supports the entire optimization modeling lifecycle
— formulation, testing, deployment, and maintenance — in an
integrated way promotes rapid development and reliable results.
Using a high-level algebraic representation that describes
optimization models in the same ways that people think about them,
AMPL can provide the head start you need to successfully implement
large-scale optimization projects.

AMPL integrates a modeling language for describing optimization
data, variables, objectives, and constraints; a command language for
debugging models and analyzing results; and a scripting language for
manipulating data and implementina optimization strategies. All use

Why languages succeed

solve real problems effectively

culturally compatible and familiar
— familiar syntax helps (e.g., C-like)
— easy to get started with
— portable to new environments

environmentally compatible
— don’t have to buy into an entire new environment to use it
— e.g., can use standard tools and link to existing libraries
— open source, not proprietary

weak competition

good luck

Why languages fail to thrive

* niche or domain disappears

* poor engineering
— too big, too complicated, too slow, too late
— incompatible with environments

- poor philosophical choices
— ideology over functionality
— single programming paradigm
— too "mathematical”
— too different, too incompatible

