Lecture 15: C++

Program structure issues

 how to cope with ever bigger programs?
* objects
— user-defined data types
- components
— related objects
- frameworks
— automatic generation of routine code
- interfaces
— boundaries between code that provides a service and code that uses it

- information hiding

— what parts of an implementation are visible
* resource management

— creation and initialization of entities

— maintaining state

— ownership: sharing and copying

— memory management

— cleanup

- error handling; exceptions

C++

- designed & implemented by Bjarne Stroustrup
— started ~ 1980; ISO C++98 standard; C++11; C++14; C++17; C++ 20 on track
a better C
— almost completely upwards compatible with C
— more checking of interfaces (e.g., function prototypes, added to ANSI C)
— other features for easier programming
data abstraction
— methods reveal only WHAT is done
— classes hide HOW something is done in a program, can be changed
as program evolves
object-oriented programming
— Inheritance -- define new types that inherit properties from previous types
— polymorphism or dynamic binding -- function to be called is determined by
data type of specific object at run time
templates or "generic" programming
— compile-time parameterized types
— define families of related types, where the type is a parameter
a "multi-paradigm" language
— lots of ways to write code

C++ synopsis

- data abstraction with classes
— a class defines a type that can be used to declare variables of that type,
control access to representation
- operator and function name overloading

— almost all C operators (including =, +=..., (), [], ==, argument passing and
function return) can be overloaded to apply to user-defined types

- control of creation and destruction of objects
— initialization of class objects, recovery of resources on destruction

- inheritance: derived classes built on base classes
— virtual functions override base functions
— multiple inheritance: inherit from more than one class
- exception handling
- namespaces for separate libraries
- templates (generic types)
— Standard Template Library: generic algorithms on generic containers
— template metaprogramming: execution of C++ code during compilation

(almost) upward compatible with C except for new keywords

A simple stack class

// stk3.c: new, destructors, delete

class stack {

private:

int *stk; // allocated dynamically

int *sp; // next free place
public:

int push (int) ;

int pop () ;

stack () ; // constructor

stack (int n); // constructor

~stack () ; // destructor

stack: :stack () {
stk = new int[100]; sp = stk;

stack: :stack(int n) {
stk = new int[n]; sp = stk;

stack: :~stack () {
delete [] stk;

Constructors and destructors

- constructor: create a new object (including initialization)
— implicitly, by entering the scope where it is declared

— explicitly, by calling new

- destructor: destroy an existing object (including cleanup)
— implicitly, by leaving the scope where it is declared

— explicitly, by calling delete on an object created by new

- construction includes initialization, so it may be parameterized
— by multiple constructor functions with different args
— an example of function overloading

- new can be used to create an array of objects
— in which case delete can delete the entire array

Implicit and explicit allocation and deallocation

- implicit:

£() {
int 1i;

stack s; // calls constructor stack::stack ()

// calls s.~stack() implicitly
}

- explicit:
£(0) {

int *ip = new int;
stack *sp = new stack; // calls stack::stack()

delete sp; // calls sp->~stack()
delete ip;

Operator overloading

- almost all C operators can be overloaded

— a new meaning can be defined when one operand of an operator is a user-
defined (class) type

— define operator + for object of type T
T T::operator+(int n) {...}
T T::operator+(double d) {...}

— define regular + for object(s) of type T
T operator +(T £, int n) {...}

— can't redefine operators for built-in types
int operator +(int, int) isILLEGAL

— can't define new operators
— can't change precedence and associativity
e.g., Nis low precedence even if used for exponentiation
- 3 short examples
— complex numbers: overloading arithmetic operators
— 10 streams: overloading << and >> for input and output
— subscripting: overloading []

- later: overloading assignment and function calls

Operator overloading: a complex number class

class complex ({
double re, im;
public:
complex (double r
{ re = r; im

0, double i = 0)
i; } // constructor

friend complex operator + (complex,complex);
friend complex operator * (complex,complex);

};

complex operator +(complex cl, complex c2) ({
return complex(cl.re+c2.re, cl.im+c2.im);

}

- complex declarations and expressions
complex a(l1.1, 2.2), b(3.3), c(4), d4d;

d=2 * a;
2 coerced to 2.0 (C promotion rule)
then constructor invoked to make complex(2.0, 0.0)

- operator overloading works well for arithmetic types

References: controlled pointers

- need a way to access object, not a copy of it
* in C, use pointers

void swap(int *x, int *y) ({
int temp;
temp = *x; *x = *y,; *y = temp;

}
swap (&a, &b);

- in C++, references attach a name to an object

- a way to get "call by reference" (var) parameters without using explicit
pointers

void swap(int &x, int &y) {
int temp;
temp = x; x = y; y = temp;
}

swap(a, b); // pointers are implicit

- because it's really a pointer, a reference provides a way to access an
object without copying it

A vector class: overloading []

class ivec { // vector of ints

int *v; // pointer to an array
int size; // number of elements
public:

ivec(int n) { v = new int[size = n]; }

int& operator[] (int n) { // checked
assert(n > 0 && n < size);
return v[n];

ivec iv(10) ; // declaration
iv[1l0] = 1; // checked access on left side of =

- operator|] returns a reference
- a reference gives access to the object so it can be changed
* necessary so we can use [] on left side of assignment

Input and output with iostreams

- overload operator << for output and >> for input
— very low precedence, left-associative, so
cout << el <K<K e2 <K< e3
— is parsed as
(((cout << el) <K<K e2) <KL e3)

#include <iostream>
ostreamé& operator<<(ostream& os, const complexé& c) {

os < "(" <K c.real() <K ", " L c.imag() << ")";
return os;

}

while (cin >> name >> wval) {
cout << name << " ="
<< val << "\n";

}
takes a reference to iostream and data item

returns the reference so can use same iostream for next expression
each item is converted into the proper type
iostreams cin, cout, cerr already open (== stdin, stdout, stderr)

Formatter in C++

#include <iostream>
#include <string>
using namespace std;

const int maxlen = 60;
string line;

void addword(const stringé&) ;
void printline() ;

main (int argc, char **argv) {
string word;
while (cin >> word)
addword (word) ;
printline() ;
}
void addword(const stringé& w) {
if (line.length() + w.length() > maxlen)
printline() ;
if (line.length() > 0)
line += " ";
line += w;
}
void printline () {
if (line.length() > 0) {
cout << line << endl;
line = "";

Summary of references

a reference is in effect a very constrained pointer

— points to a specific object

— can't be changed, though whatever it points to can certainly be changed
provides control of pointer operations for applications where addresses
must be passed for access to an object

— e.g., a function that will change something in the caller

— like swap(x, y)
provides notational convenience

— compiler takes care of all * and & properly
permits some non-intuitive operations like the overloading of []

- int &operator[] permits use of [] on left side of assignment

— v[e] means v.operator[] (e)

Life cycle of an object

construction: creating a new object
— implicitly, by entering the scope where it is declared
— explicitly, by calling new
— construction includes initialization
copying: using existing object to make a new one
— "copy constructor" makes a new object from existing one of the same kind
— implicitly invoked in (some) declarations, function arguments, function return
assignment: changing an existing object
— occurs explicitly with =, +=, etc.
— meaning of explicit and implicit copying must be part of the representation
default is member-wise assignment and initialization
destruction: destroying an existing object
— implicitly, by leaving the scope where it is declared

— explicitly, by calling delete on an object created by new
— includes cleanup and resource recovery

Strings: constructors & assignment

another type that C and C++ don't provide

implementation of a String class combines
— constructors, destructors, copy constructor
— assignment, operator =
— constant references
— handles, reference counts, garbage collection

— can assign to a string, copy a string, etc.

— can pass them to functions, return as results, ...
storage managed automatically

— no explicit allocation or deletion

— grow and shrink automatically

— efficient

can create String from "..." C char* string
can pass String to functions expecting char*

Strings should behave like strings in Awk, Python, Java, ...

"Copy constructor"

- when a class object is passed to a function, returned from a function, or
used as an initializer in a declaration, a copy is made:

String substr (String s, int start, int len)

- a "copy constructor" creates an object of class X from an existing object
of class X

- obvious way to write it causes an infinite loop:
class String {
String(String s) {...} // doesn't work
};
* copy constructor parameter must be a reference so object can be
accessed without copying
class String {
String(const Stringé& s) {...}
//
};
- copy constructor is necessary for declarations, function arguments,
function return values

String class

class String {

private:
char *sp;

public:
String() { sp=strdup(""); } // String s;
String(const char *t) { sp=strdup(t); } // String s("abc");
String(const String &t) { sp=strdup(t.sp); } // String s(t);
~String() { delete [] sp; }

String& operator =(const char *);// s="abc"
String& operator =(const String &);// sl=s2

const char *s() { return sp; } // as char¥*
};
- assignment is not the same as initialization
— changes the state of an existing object
- the meaning of assignment is defined by a member function

named operator=
X = y means x.operator=(y)

Assignment operators

String& String: :operator =(const char *t) { // s = "abc"
delete [] sp;
sp = strdup(t);
return *this;

}
String& String::operator=(const String& t) { // sl = s2
if (this '= &t) { // avoid sl = sl
delete [] sp;
sp = strdup(t.sp)

}

return *this;

}

- in a member function, this points to current object, so *this is the
object (returned as a reference)

- assignment operators almost always end with
return *this

which returns a reference to the LHS
— permits multiple assignment s1 = s2 = s3

Handles and reference counts

- how to avoid unnecessary copying for classes like strings, arrays, other
containers

copy constructor may allocate new memory even if unnecessary
— e.g.,, in £(const String& s) string value would be copied
even if it won't be changed by £

a handle class manages a pointer to the real data

implementation class manages the real data
— string data itself
— counter of how many Strings refer to that data
— when String is copied, increment the ref count
— when String is destroyed, decrement the ref count
— when last reference is gone, free all allocated memory

with a handle class, copying only increments reference count
— "shallow" copy instead of "deep" copy

Reference counts

LA abc LA

" def"

abc

abc

def

Inheritance

- a way to create or describe one class in terms of another
— "a D is like a B, with these extra properties..."
— "aDisaB,plus..."
— B is the base class or superclass

— D is the derived class or subclass
C++, Perl, Python, ... use base/derived; Java, Ruby, ... use super/sub

- inheritance is used for classes that model strongly related concepts
— objects share some common properties, behaviors, ...
— and have some properties and behaviors that are different

- base class contains aspects common to all
- derived classes contain aspects different for different kinds

Derived classes

class Shape {

Shape

Shape

Shape

int color;
virtual Shapeé& draw() ;

// other items common to all Shapes

}i
class Rect: public Shape {

Point origin; double ht, wid;
Shape& draw() {...} // how to draw a rectangle

};

class Circle: public Shape

{

Point center; double rad;

Shape& draw() {...} // how to draw a circle

};

- a Rect is a derived class of (a kind of) Shape

— a Rect "is a" Shape
— inherits all members of Shape
— adds its own members

- a Circle is also a derived class of Shape

— adds its own different members

Circle

Rect

Virtual Functions

- a function in a base class that can be overridden by a function in a
derived class (with same name and arguments)

class Shape {
public:
virtual Shapeé& draw() ;

};

- "virtual" means that a derived class may provide its own version of this
function, which will be called automatically for instances of that derived

class
- the base class can provide a default implementation

- if the base class is "pure", it must be derived from
— pure base class can't exist on its own; no default implementation

Polymorphism

- when a pointer or reference to a base-class type points to a derived-class
object

- and you use that pointer or reference to call a virtual function
- this calls the derived-class function

- "polymorphism": proper function to call is determined at run-time
* e.g., drawing Shapes on a linked list:

draw_all (Shape *sp) {
for (; sp !'= NULL; sp = sp->next)

[» »
' V _L

- the virtual function mechanism automatically calls the right draw() function
for each object

- the loop does not change if more kinds of Shapes are added

sp->draw () ;

Implementation of virtual functions

- each class object that has virtual functions has one extra word that holds
a pointer to a table of virtual function pointers ("vtbl")

« each class with virtual functions has one vtbl
- a call to a virtual function calls it indirectly through the vtbl

Circle C1 Mbl for class Circle
— code

draw

Circle C2

vitbl for class Rect

(‘ draw - code

Rect R1

Rect R2

Summary of inheritance

- a way to describe a family of types
- by collecting similarities (base class)
- and separating differences (derived classes)

- polymorphism: proper member functions determined at run time
— virtual functions are the C++ mechanism

* not every class needs inheritance
— may complicate without compensating benefit

- use composition instead of inheritance?
— an object contains (has) an object
rather than inheriting from it
- "is-a" versus "has-a"
— inheritance describes "is-a" relationships
— composition describes "has-a" relationships

Templates (parameterized types, generics)

- another approach to polymorphism
- compile time, not run time
- a template specifies a class or a function that is the same for

several types
— except for one or more type parameters

- e.g., a vector template defines a class of vectors that can be instantiated
for any particular type
vector<int>
vector<String>
vector<vector<int>>

- templates versus inheritance:
— use inheritance when behaviors are different for different types
drawing different Shapes is different
— use template when behaviors are the same, regardless of types
accessing the n-th element of a vector is the same,
no matter what type the vector is

Vector template class

- vector class defined as a template, to be instantiated with different types
of elements

template <typename T> class vector ({

T *v; // pointer to array
int size; // number of elements
public:

vector (int n=1) { v = new T[size = n]; }
T& operator [] (int n) {

assert(n >>= 0 && n < size);

return v[n];

};

vector<int> iv(100) ; // vector of ints
vector<complex> cv(20) ; // vector of complex
vector<vector<int>> wvvi(10); // vector of vector of int
vector<double> d; // default size

- compiler instantiates whatever types are used

Standard Template Library (STL)

Alex Stepanov
(GE > Bell Labs > HP > SGI > Compaq > Adobe > A9 > ...)

general-purpose library of

containers (vector, list, set, map, ...)

generic algorithms (find, replace, sor, ...)
algorithms written in terms of iterators performing

specified access patterns on containers
— rules for how iterators work, how containers have to support them

generic: every algorithm works on a variety of containers,
including built-in types
— e.g., find elements in char array, vector<int>, list<...>

iterators: generalization of pointer for uniform access to items
in a container

Containers and algorithms

STL container classes contain objects of any type

— sequences: vector, list, slist, deque

— sorted set, map, multiset, multimap; unordered_set, unordered_map
each container class is a template that can be instantiated to contain
any type of object
generic algorithms

— find, find_if, find_first_of, search, ...

— count, min, may, ...

— copy, replace, fill, remove, reverse, ...

— accumulate, inner_product, partial_sum, ...

— sort

— binary_search, merge, set_union, ...
performance guarantees

— each combination of algorithm and iterator type specifies worst-case (O(...))
performance bound
e.g., maps are O(log n) access, vectors are O(1) access

Iterators

- a generalization of C pointers
for (p = begin; p < end; ++p)
do something with *p

 range from begin () to just before end () [begin, end)

« ++iter advances to the next if there is one
« *jiter dereferences (points to value)

- uses operator !=to test for end of range
for (iter i = v.begin(),; i != v.end();,
do something with *i

#include <vector>
#include <iterator>
using namespace ::std;
int main() {
vector<double> v;
for (int i = 1; i <= 10; i++)
v.push _back(i);
vector<double>: :const iterator it;
double sum = 0;
for (it = v.begin(); it !'= v.end(),; ++it)
sum += *it;
printf ("$g\n", sum);

++i)

lterators (2)

* no change to loop if type or representation changes

not all containers support all iterator operations

input iterator

— canonly read items in order, can't store into them (e.g., input from file)
output iterator

— can only write items in order, can't read them (output to a file)
forward iterator

— can read/write items in order, can't go backwards (singly-linked list)
bidirectional iterator

— can read/write items in either order (doubly-linked list)

random access iterator
— can access items in any order (array)

Example: STL sort

#include <iostream>
#include <iterator>
#include <vector>
#include <string>
#include <algorithm>
using namespace ::std;

int main() { // sort stdin by lines

vector<string> vs;

string tmp;

while (getline(cin, tmp))
vs.push back (tmp) ;

sort(vs.begin(), vs.end())

copy (vs.begin(), vs.end(),
ostream iterator<string>(cout, "\n"));

}

- vs.push_back(s) pushes s onto "back" (end) of vs

- 3rd argument of copy is a "function object" that calls a function for each
iteration

— uses overloaded operator()

Word frequency count: C++ STL

#include <iostream>
#include <map>
#include <string>

int main() {
string temp;
map<string, int> v;
map<string, int>::const iterator 1i;

while (cin >> temp)
v[temp] ++;
for (auto 1 : v)
cout << i.first << " " << i.second << "\n";

Word frequency count: Java

public class freghash {
public static void main(String args[]) throws IOException {
FileReader fl = new FileReader (args[0]);
BufferedReader f2 = new BufferedReader (fl);

Map<String, Integer> hs = new HashMap<String,Integer>() ;
String buf;
while ((buf = f£2.readLine()) '= null) {
String nv[] = buf.split("[1+") ;
for (int i = 0; i1 < nv.length; i++) {
Integer oldv = hs.get(nv[i]);
if (oldv == null)
hs.put(nv[i], 1);
else
hs.put(nv[i], oldv+l);
}
}
for (String n : hs.keySet()) {
Integer v = hs.get(n)
System.out.println(n + " " + v);
}

Sorting in Java and C++

String s;

List<string> al = new Arraylist<string>()

while ((s = f2.readLine()) !'= null)
al.add(s) ;

Collections.sort(al) ;
for (String j : al)
System.out.println(j) ;

string tmp;
vector<string> v;
while (getline(cin, tmp))
v.push back (tmp) ;
sort(v.begin(), v.end());
copy (v.begin(), v.end(),
ostream iterator<string>(cout,"\n"));

What to use, what not to use?

- Use - Use sparingly / cautiously
— classes — overloaded functions
— const — inheritance
— const references — virtual functions
— default constructors — exceptions
— C++ -style casts — STL
— bool
— new / delete - Don't use
— C++ string type — malloc / free
— range for — multiple inheritance

— auto — run time type identification
— references if not const

— overloaded operators (except for
arithmetic types)

— default arguments (overload functions
instead)

