
Lecture 15: C++

Program structure issues
•  how to cope with ever bigger programs?
•  objects

–  user-defined data types
•  components

–  related objects
•  frameworks

–  automatic generation of routine code
•  interfaces

–  boundaries between code that provides a service and code that uses it
•  information hiding

–  what parts of an implementation are visible
•  resource management

–  creation and initialization of entities
–  maintaining state
–  ownership: sharing and copying
–  memory management
–  cleanup

•  error handling; exceptions

C++
•  designed & implemented by Bjarne Stroustrup

–  started ~ 1980; ISO C++98 standard; C++11; C++14; C++17; C++ 20 on track
•  a better C

–  almost completely upwards compatible with C
–  more checking of interfaces (e.g., function prototypes, added to ANSI C)
–  other features for easier programming

•  data abstraction
–  methods reveal only WHAT is done
–  classes hide HOW something is done in a program, can be changed
 as program evolves

•  object-oriented programming
–  inheritance -- define new types that inherit properties from previous types
–  polymorphism or dynamic binding -- function to be called is determined by
 data type of specific object at run time

•  templates or "generic" programming
–  compile-time parameterized types
–  define families of related types, where the type is a parameter

•  a "multi-paradigm" language
–  lots of ways to write code

C++ synopsis
•  data abstraction with classes

–  a class defines a type that can be used to declare variables of that type,
 control access to representation

•  operator and function name overloading
–  almost all C operators (including =, +=..., (), [], ->, argument passing and

function return) can be overloaded to apply to user-defined types
•  control of creation and destruction of objects

–  initialization of class objects, recovery of resources on destruction
•  inheritance: derived classes built on base classes

–  virtual functions override base functions
–  multiple inheritance: inherit from more than one class

•  exception handling
•  namespaces for separate libraries
•  templates (generic types)

–  Standard Template Library: generic algorithms on generic containers
–  template metaprogramming: execution of C++ code during compilation

•  (almost) upward compatible with C except for new keywords

A simple stack class
// stk3.c: new, destructors, delete

class stack {
 private:
 int *stk; // allocated dynamically
 int *sp; // next free place
 public:
 int push(int);
 int pop();
 stack(); // constructor
 stack(int n); // constructor
 ~stack(); // destructor
};

stack::stack() {
 stk = new int[100]; sp = stk;
}
stack::stack(int n) {
 stk = new int[n]; sp = stk;
}
stack::~stack() {
 delete [] stk;
}

Constructors and destructors
•  constructor: create a new object (including initialization)

–  implicitly, by entering the scope where it is declared
–  explicitly, by calling new

•  destructor: destroy an existing object (including cleanup)
–  implicitly, by leaving the scope where it is declared
–  explicitly, by calling delete on an object created by new

•  construction includes initialization, so it may be parameterized
–  by multiple constructor functions with different args
–  an example of function overloading

• new can be used to create an array of objects
–  in which case delete can delete the entire array

Implicit and explicit allocation and deallocation

•  implicit:

 f() {
 int i;
 stack s; // calls constructor stack::stack()
 ...
 // calls s.~stack() implicitly
 }

•  explicit:

 f() {
 int *ip = new int;
 stack *sp = new stack; // calls stack::stack()
 ...
 delete sp; // calls sp->~stack()
 delete ip;
 ...
 }

Operator overloading
•  almost all C operators can be overloaded

–  a new meaning can be defined when one operand of an operator is a user-
defined (class) type

–  define operator + for object of type T
T T::operator+(int n) {...}
T T::operator+(double d) {...}

–  define regular + for object(s) of type T
T operator +(T f, int n) {...}

–  can't redefine operators for built-in types
int operator +(int, int) is ILLEGAL

–  can't define new operators
–  can't change precedence and associativity

e.g., ^ is low precedence even if used for exponentiation
•  3 short examples

–  complex numbers: overloading arithmetic operators
–  IO streams: overloading << and >> for input and output
–  subscripting: overloading []

•  later: overloading assignment and function calls

Operator overloading: a complex number class
class complex {
 double re, im;
 public:
 complex(double r = 0, double i = 0)
 { re = r; im = i; } // constructor

 friend complex operator +(complex,complex);
 friend complex operator *(complex,complex);
};

complex operator +(complex c1, complex c2) {
 return complex(c1.re+c2.re, c1.im+c2.im);
}

•  complex declarations and expressions
 complex a(1.1, 2.2), b(3.3), c(4), d;

 d = 2 * a;
 2 coerced to 2.0 (C promotion rule)
 then constructor invoked to make complex(2.0, 0.0)

•  operator overloading works well for arithmetic types

References: controlled pointers
•  need a way to access object, not a copy of it
•  in C, use pointers

void swap(int *x, int *y) {
int temp;
temp = *x; *x = *y; *y = temp;

}
swap(&a, &b);

•  in C++, references attach a name to an object
•  a way to get "call by reference" (var) parameters without using explicit

pointers

void swap(int &x, int &y) {
int temp;
temp = x; x = y; y = temp;

}
swap(a, b); // pointers are implicit

•  because it's really a pointer, a reference provides a way to access an
object without copying it

A vector class: overloading []
class ivec { // vector of ints
 int *v; // pointer to an array
 int size; // number of elements
 public:
 ivec(int n) { v = new int[size = n]; }

 int& operator[](int n) { // checked
 assert(n >= 0 && n < size);
 return v[n];
 }
};

 ivec iv(10); // declaration
 iv[10] = 1; // checked access on left side of =

•  operator[] returns a reference
•  a reference gives access to the object so it can be changed
•  necessary so we can use [] on left side of assignment

Input and output with iostreams
•  overload operator << for output and >> for input

–  very low precedence, left-associative, so
cout << e1 << e2 << e3

–  is parsed as
(((cout << e1) << e2) << e3)

#include <iostream>
 ostream& operator<<(ostream& os, const complex& c) {

 os << "(" << c.real() << ", " << c.imag() << ")";
 return os;

 }
 while (cin >> name >> val) {
 cout << name << " = "
 << val << "\n";
 }

•  takes a reference to iostream and data item
•  returns the reference so can use same iostream for next expression
•  each item is converted into the proper type
•  iostreams cin, cout, cerr already open (== stdin, stdout, stderr)

Formatter in C++
#include <iostream>
#include <string>
using namespace std;

const int maxlen = 60;
string line;
void addword(const string&);
void printline();

main(int argc, char **argv) {
 string word;
 while (cin >> word)
 addword(word);
 printline();
}
void addword(const string& w) {
 if (line.length() + w.length() > maxlen)
 printline();
 if (line.length() > 0)
 line += " ";
 line += w;
}
void printline() {
 if (line.length() > 0) {
 cout << line << endl;
 line = "";
 }
}

Summary of references

•  a reference is in effect a very constrained pointer
–  points to a specific object
–  can't be changed, though whatever it points to can certainly be changed

•  provides control of pointer operations for applications where addresses
must be passed for access to an object
–  e.g., a function that will change something in the caller
–  like swap(x, y)

•  provides notational convenience
–  compiler takes care of all * and & properly

•  permits some non-intuitive operations like the overloading of []
–  int &operator[] permits use of [] on left side of assignment
–  v[e] means v.operator[](e)

Life cycle of an object
•  construction: creating a new object

–  implicitly, by entering the scope where it is declared
–  explicitly, by calling new
–  construction includes initialization

•  copying: using existing object to make a new one
–  "copy constructor" makes a new object from existing one of the same kind
–  implicitly invoked in (some) declarations, function arguments, function return

•  assignment: changing an existing object
–  occurs explicitly with =, +=, etc.
–  meaning of explicit and implicit copying must be part of the representation

default is member-wise assignment and initialization
•  destruction: destroying an existing object

–  implicitly, by leaving the scope where it is declared
–  explicitly, by calling delete on an object created by new
–  includes cleanup and resource recovery

Strings: constructors & assignment
•  another type that C and C++ don't provide
•  implementation of a String class combines

–  constructors, destructors, copy constructor
–  assignment, operator =
–  constant references
–  handles, reference counts, garbage collection

•  Strings should behave like strings in Awk, Python, Java, …
–  can assign to a string, copy a string, etc.
–  can pass them to functions, return as results, …

•  storage managed automatically
–  no explicit allocation or deletion
–  grow and shrink automatically
–  efficient

•  can create String from "..." C char* string
•  can pass String to functions expecting char*

"Copy constructor"
•  when a class object is passed to a function, returned from a function, or

used as an initializer in a declaration, a copy is made:
 String substr(String s, int start, int len)

•  a "copy constructor" creates an object of class X from an existing object
of class X

•  obvious way to write it causes an infinite loop:
 class String {

 String(String s) {...} // doesn't work
 };

•  copy constructor parameter must be a reference so object can be
accessed without copying
 class String {
 String(const String& s) {...}
 // ...
 };

•  copy constructor is necessary for declarations, function arguments,
function return values

String class
class String {
 private:
 char *sp;
 public:
 String() { sp=strdup(""); } // String s;
 String(const char *t) { sp=strdup(t); } // String s("abc");
 String(const String &t) { sp=strdup(t.sp); } // String s(t);
 ~String() { delete [] sp; }

 String& operator =(const char *);// s="abc"
 String& operator =(const String &);// s1=s2

 const char *s() { return sp; } // as char*
};

•  assignment is not the same as initialization
–  changes the state of an existing object

•  the meaning of assignment is defined by a member function
 named operator=

 x = y means x.operator=(y)

Assignment operators
String& String::operator =(const char *t) { // s = "abc"
 delete [] sp;
 sp = strdup(t);
 return *this;
}
String& String::operator=(const String& t) { // s1 = s2
 if (this != &t) { // avoid s1 = s1
 delete [] sp;
 sp = strdup(t.sp);
 }
 return *this;
}

•  in a member function, this points to current object, so *this is the
object (returned as a reference)

•  assignment operators almost always end with
 return *this

 which returns a reference to the LHS
–  permits multiple assignment s1 = s2 = s3

Handles and reference counts
•  how to avoid unnecessary copying for classes like strings, arrays, other

containers

•  copy constructor may allocate new memory even if unnecessary
–  e.g., in f(const String& s) string value would be copied
 even if it won't be changed by f

•  a handle class manages a pointer to the real data
•  implementation class manages the real data

–  string data itself
–  counter of how many Strings refer to that data
–  when String is copied, increment the ref count
–  when String is destroyed, decrement the ref count
–  when last reference is gone, free all allocated memory

•  with a handle class, copying only increments reference count
–  "shallow" copy instead of "deep" copy

 s = "abc"

 t = s

 t = "def"

Reference counts

1

2

1 1

abc

abc

abc def

Inheritance

•  a way to create or describe one class in terms of another
–  "a D is like a B, with these extra properties..."
–  "a D is a B, plus…"
–  B is the base class or superclass
–  D is the derived class or subclass

C++, Perl, Python, … use base/derived; Java, Ruby, … use super/sub

•  inheritance is used for classes that model strongly related concepts
–  objects share some common properties, behaviors, ...
–  and have some properties and behaviors that are different

•  base class contains aspects common to all
•  derived classes contain aspects different for different kinds

Derived classes
class Shape {

 int color;
 virtual Shape& draw();
 // other items common to all Shapes

};
class Rect: public Shape {
 Point origin; double ht, wid;
 Shape& draw() {...} // how to draw a rectangle
};
class Circle: public Shape {
 Point center; double rad;
 Shape& draw() {...} // how to draw a circle
};

•  a Rect is a derived class of (a kind of) Shape
–  a Rect "is a" Shape
–  inherits all members of Shape
–  adds its own members

•  a Circle is also a derived class of Shape
–  adds its own different members

 Shape Shape

Circle

Shape

 Rect

Virtual Functions
•  a function in a base class that can be overridden by a function in a

derived class (with same name and arguments)

 class Shape {
 public:

 virtual Shape& draw();
 ...

 };

•  "virtual" means that a derived class may provide its own version of this
function, which will be called automatically for instances of that derived
class

•  the base class can provide a default implementation
•  if the base class is "pure", it must be derived from

–  pure base class can't exist on its own; no default implementation

Polymorphism
•  when a pointer or reference to a base-class type points to a derived-class

object
•  and you use that pointer or reference to call a virtual function
•  this calls the derived-class function
•  "polymorphism": proper function to call is determined at run-time
•  e.g., drawing Shapes on a linked list:

 draw_all(Shape *sp) {
 for (; sp != NULL; sp = sp->next)

 sp->draw();
 }

•  the virtual function mechanism automatically calls the right draw() function
for each object

•  the loop does not change if more kinds of Shapes are added

Implementation of virtual functions
•  each class object that has virtual functions has one extra word that holds

a pointer to a table of virtual function pointers ("vtbl")
•  each class with virtual functions has one vtbl
•  a call to a virtual function calls it indirectly through the vtbl

Circle C2

drawRect R1
vtbl for class Rect

vtbl for class CircleCircle C1
draw code

code

Rect R2

Summary of inheritance
•  a way to describe a family of types
•  by collecting similarities (base class)
•  and separating differences (derived classes)

•  polymorphism: proper member functions determined at run time
–  virtual functions are the C++ mechanism

•  not every class needs inheritance
–  may complicate without compensating benefit

•  use composition instead of inheritance?
–  an object contains (has) an object
 rather than inheriting from it

•  "is-a" versus "has-a"
–  inheritance describes "is-a" relationships
–  composition describes "has-a" relationships

Templates (parameterized types, generics)
•  another approach to polymorphism
•  compile time, not run time
•  a template specifies a class or a function that is the same for
 several types

–  except for one or more type parameters

•  e.g., a vector template defines a class of vectors that can be instantiated
for any particular type
vector<int>
vector<String>
vector<vector<int>>

•  templates versus inheritance:
–  use inheritance when behaviors are different for different types

drawing different Shapes is different
–  use template when behaviors are the same, regardless of types

accessing the n-th element of a vector is the same,
 no matter what type the vector is

Vector template class
•  vector class defined as a template, to be instantiated with different types

of elements

template <typename T> class vector {
 T *v; // pointer to array
 int size; // number of elements

 public:
 vector(int n=1) { v = new T[size = n]; }
 T& operator [](int n) {
 assert(n >= 0 && n < size);
 return v[n];
 }

};

vector<int> iv(100); // vector of ints
vector<complex> cv(20); // vector of complex
vector<vector<int>> vvi(10); // vector of vector of int
vector<double> d; // default size

•  compiler instantiates whatever types are used

Standard Template Library (STL)
Alex Stepanov
 (GE > Bell Labs > HP > SGI > Compaq > Adobe > A9 > ...)

•  general-purpose library of
 containers (vector, list, set, map, …)
 generic algorithms (find, replace, sort, …)
•  algorithms written in terms of iterators performing
 specified access patterns on containers

–  rules for how iterators work, how containers have to support them

•  generic: every algorithm works on a variety of containers,
 including built-in types

–  e.g., find elements in char array, vector<int>, list<…>

•  iterators: generalization of pointer for uniform access to items
 in a container

Containers and algorithms
•  STL container classes contain objects of any type

–  sequences: vector, list, slist, deque
–  sorted set, map, multiset, multimap; unordered_set, unordered_map

•  each container class is a template that can be instantiated to contain
any type of object

•  generic algorithms
–  find, find_if, find_first_of, search, ...
–  count, min, max, …
–  copy, replace, fill, remove, reverse, …
–  accumulate, inner_product, partial_sum, …
–  sort
–  binary_search, merge, set_union, …

•  performance guarantees
–  each combination of algorithm and iterator type specifies worst-case (O(…))

performance bound
e.g., maps are O(log n) access, vectors are O(1) access

Iterators
•  a generalization of C pointers
 for (p = begin; p < end; ++p)
 do something with *p
•  range from begin() to just before end() [begin, end)
•  ++iter advances to the next if there is one
•  *iter dereferences (points to value)
•  uses operator != to test for end of range
 for (iter i = v.begin(); i != v.end(); ++i)
 do something with *i

#include <vector>
#include <iterator>
using namespace ::std;
int main() {
 vector<double> v;
 for (int i = 1; i <= 10; i++)
 v.push_back(i);
 vector<double>::const_iterator it;
 double sum = 0;
 for (it = v.begin(); it != v.end(); ++it)
 sum += *it;
 printf("%g\n", sum);
}

Iterators (2)
•  no change to loop if type or representation changes

•  not all containers support all iterator operations

•  input iterator
–  can only read items in order, can't store into them (e.g., input from file)

•  output iterator
–  can only write items in order, can't read them (output to a file)

•  forward iterator
–  can read/write items in order, can't go backwards (singly-linked list)

•  bidirectional iterator
–  can read/write items in either order (doubly-linked list)

•  random access iterator
–  can access items in any order (array)

Example: STL sort
#include <iostream>
#include <iterator>
#include <vector>
#include <string>
#include <algorithm>
using namespace ::std;

int main() { // sort stdin by lines
 vector<string> vs;
 string tmp;
 while (getline(cin, tmp))
 vs.push_back(tmp);
 sort(vs.begin(), vs.end());
 copy(vs.begin(), vs.end(),
 ostream_iterator<string>(cout, "\n"));
}

•  vs.push_back(s) pushes s onto "back" (end) of vs
•  3rd argument of copy is a "function object" that calls a function for each

iteration
–  uses overloaded operator()

Word frequency count: C++ STL

#include <iostream>
#include <map>
#include <string>

int main() {
 string temp;
 map<string, int> v;
 map<string, int>::const_iterator i;

 while (cin >> temp)
 v[temp]++;
 for (auto i : v)
 cout << i.first << " " << i.second << "\n";
}

Word frequency count: Java
public class freqhash {
 public static void main(String args[]) throws IOException {
 FileReader f1 = new FileReader(args[0]);
 BufferedReader f2 = new BufferedReader(f1);

 Map<String, Integer> hs = new HashMap<String,Integer>();
 String buf;
 while ((buf = f2.readLine()) != null) {
 String nv[] = buf.split("[]+");
 for (int i = 0; i < nv.length; i++) {
 Integer oldv = hs.get(nv[i]);
 if (oldv == null)
 hs.put(nv[i], 1);
 else
 hs.put(nv[i], oldv+1);
 }
 }
 for (String n : hs.keySet()) {
 Integer v = hs.get(n);
 System.out.println(n + " " + v);
 }
 }
}

Sorting in Java and C++
String s;
List<string> al = new ArrayList<string>();
while ((s = f2.readLine()) != null)
 al.add(s);
Collections.sort(al);
for (String j : al)
 System.out.println(j);

string tmp;
vector<string> v;
while (getline(cin, tmp))
 v.push_back(tmp);
sort(v.begin(), v.end());
copy(v.begin(), v.end(),
 ostream_iterator<string>(cout,"\n"));

What to use, what not to use?

•  Use
–  classes
–  const
–  const references
–  default constructors
–  C++ -style casts
–  bool
–  new / delete
–  C++ string type
–  range for
–  auto

•  Use sparingly / cautiously
–  overloaded functions
–  inheritance
–  virtual functions
–  exceptions
–  STL

•  Don't use
–  malloc / free
–  multiple inheritance
–  run time type identification
–  references if not const
–  overloaded operators (except for

arithmetic types)
–  default arguments (overload functions

instead)

