
Lecture 13  
Networking

Where do we go from here?

•  networking
•  Java (CM)
•  C++
•  Go
•  little languages
•  exploratory software development (CM)
•  legal issues in software
•  ethical issues in software (CM)

•  Guests:
 Apr 4: Molly Nacey '13, startup, Google SWE, Area 120, consulting
 Apr 11: Clay Bavor '05, VP, Augmented and Virtual Reality, Google
 Apr 30: mystery guest #2: don't miss it!

Internet architecture
•  connects independent heterogeneous networks

–  each network connects multiple computers
–  nearby computers connected by local area network

often Ethernet but lots of other choices
•  networks connected by gateways/routers

–  route packets from one network to next
–  gateways continuously exchange routing information

•  each packet passes through multiple gateways
–  gateway passes packet to gateway that is closer to ultimate destination
–  usually operated by different companies

•  information travels through networks in packets
–  each packet is independent of all others

like individual envelopes through the mail
–  all packets have the same format

but are carried on different physical transport media
•  no central control
•  ICANN: central authority for resources that have to be unique

–  IP addresses, domain names, country codes, ...

Internet mechanisms
•  names for networks and computers

–  www.cs.princeton.edu, de.licio.us
–  hierarchical naming scheme
–  imposes logical structure, not physical or geographical

•  addresses for identifying networks and computers
–  each has a unique 32-bit IP address (128 bits for IPv6)
–  ICANN assigns contiguous blocks of numbers to networks (icann.org)
–  network owner assigns host addresses within network

•  DNS Domain Name System maps names /addresses
–  www.princeton.edu = 128.112.136.12
–  hierarchical distributed database
–  caching for efficiency, redundancy for safety

•  routing to find paths from network to network
–  gateways/routers exchange routing info with nbrs

•  protocols for packaging and transporting information, handling errors, ...
–  IP (Internet Protocol): a uniform transport mechanism
–  at IP level, all info is in a common packet format
–  different physical systems carry IP in different formats (e.g., Ethernet, wireless, fiber,

phone,...)
–  higher-level protocols built on top of IP for exchanging info like web pages, mail, …

Local Area Networks; Ethernet
•  a LAN connects computers (“hosts”) in a small geographical area
•  Ethernet is the most widely used LAN technology

–  developed by Bob Metcalfe & David Boggs (ELE '72) at Xerox PARC, 1973
–  each host has a unique 48-bit identification number
–  data sent in "packets" of 100-1500 bytes

packets include source and destination addresses, error checking
typical data rate 100-1000 Mbits/sec; maximum cable lengths

–  CSMA/CD: carrier sense multiple access with collision detection
sender broadcasts, but if detects someone else sending, stops, waits a random interval,

tries again
–  hubs and wireless nets simulate cable behavior

host host host

coaxial
cable

hdr src dest data CRC
8 6 6 2 46-1500 4

packet:

host

host

host
hub

Protocols
•  precise rules that govern communication between two parties
•  basic Internet protocols usually called TCP/IP

–  1973 by Bob Kahn *64, Vint Cerf
•  IP: Internet protocol (bottom level)

–  all packets shipped from network to network as IP packets
–  each physical network has own format for carrying IP packets (Ethernet, fiber, …)
–  no guarantees on quality of service or reliability: "best effort"

•  TCP: transmission control protocol
–  reliable stream (circuit) transmission in 2 directions
–  most things we think of as "Internet" use TCP

•  application-level protocols, mostly built from TCP
–  SSH, FTP, SMTP (mail), HTTP (web), …

•  UDP: user datagram protocol
–  unreliable but simple, efficient datagram protocol
–  used for DNS, NFS, …

•  ICMP: internet control message protocol
–  error and information messages
–  ping, traceroute

Internet (IP) addresses
•  each network and each connected computer has an IP address
•  IP address: a unique 32-bit number in IPv4 (IPv6 is 128 bits)

–  1st part is network id, assigned centrally in blocks
(Internet Assigned Numbers Authority -> Internet Service Provider -> you)

–  2nd part is host id within that network
assigned locally, often dynamically

•  written in "dotted decimal" notation: each byte in decimal
–  e.g., 128.112.128.81 = www.princeton.edu

128 112 128 81

10000000 01110000 10000000 01010001

net part host on that net

IPv6

IP: Internet Protocol
•  unreliable connectionless packet delivery service

–  every packet has 20-40B header with
source & destination addresses,
time to live: maximum number of hops before packet is discarded (each gateway

decreases this by 1)
checksum of header information (not of data itself)

–  up to 65 KB of actual data
•  IP packets are datagrams:

–  individually addressed packages, like envelopes in mail
–  "connectionless": every packet is independent of all others
–  unreliable -- packets can be damaged, lost, duplicated, delivered out of order
–  packets can arrive too fast to be processed
–  stateless: no memory from one packet to next
–  limited size: long messages have to be fragmented and reassembled

•  higher level protocols synthesize error-free communication from IP
packets

TCP: Transmission Control Protocol
•  reliable connection-oriented 2-way byte stream

–  no record boundaries
if needed, create your own by agreement

•  a message is broken into 1 or more packets
•  each TCP packet has a header (20 bytes) + data

–  header includes checksum for error detection,
–  sequence number for preserving proper order, detecting missing or duplicates

•  each TCP packet is wrapped in an IP packet
–  has to be positively acknowledged to ensure that it arrived safely

otherwise, re-send it after a time interval
•  a TCP connection is established to a specific host

–  and a specific "port" at that host
•  each port provides a specific service

–  see /etc/services
–  FTP = 21, SSH = 22, SMTP = 25, HTTP = 80

•  TCP is basis of most higher-level protocols

Higher level protocols:
•  FTP: file transfer
•  SSH: terminal session
•  SMTP: mail transfer
•  HTTP: hypertext transfer -> Web
•  protocol layering:

–  a single protocol can't do everything
–  higher-level protocols build elaborate operations out of simpler ones
–  each layer uses only the services of the one directly below
–  and provides the services expected by the layer above
–  all communication is between peer levels: layer N destination receives exactly

the object sent by layer N source

connectionless packet delivery service
reliable transport service

application

physical layer

Network programming
•  C: client, server, socket functions; based on processes & inetd
•  Java: import java.net.* for Socket, ServerSocket; threads
•  Python: import socket, SocketServer; threads
•  underlying mechanism (pseudo-code):
 server:

 fd = socket(protocol)
 bind(fd, port)
 listen(fd)
 fd2 = accept(fd, port)
 while (...)
 read(fd2, buf, len)
 write(fd2, buf, len)
 close(fd2)
client:
 fd = socket(protocol)
 connect(fd, server IP address, port)
 while (...)
 write(fd, buf, len)
 read(fd, buf, len)
 close(fd)

C TCP client
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

struct hostent *ptrh; /* host table entry */
struct protoent *ptrp; /* protocol table entry */
struct sockaddr_in sad; /* server adr */
sad.sin_family = AF_INET; /* internet */
sad.sin_port = htons((u_short) port);
ptrh = gethostbyname(host); /* IP address of server /
memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);
ptrp = getprotobyname("tcp");
fd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
connect(sd, (struct sockaddr *) &sad, sizeof(sad));

while (...) {
 write(fd, buf, strlen(buf)); /* write to server */
 n = read(fd, buf, N); /* read reply from server */
}
close(fd);

C TCP server
struct protoent *ptrp; /* protocol table entry */
struct sockaddr_in sad; /* server adr */
struct sockaddr_in cad; /* client adr */
memset((char *) &sad, 0, sizeof(sad));
sad.sin_family = AF_INET; /* internet */
sad.sin_addr.s_addr = INADDR_ANY; /* local IP adr */

sad.sin_port = htons((u_short) port);
ptrp = getprotobyname("tcp");
fd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
bind(fd, (struct sockaddr *) &sad, sizeof(sad));
listen(fd, QLEN);

while (1) {
 fd2 = accept(sd, (struct sockaddr *) &cad, &alen));
 while (1) {
 read(fd2, buf, N);
 write(fd2, buf, N);
 }
 close(fd2);
}

Serving multiple requests simultaneously
•  how can we serve more than one client at a time?
•  in C/Unix, usually start a new process for each conversation

–  fork & exec: process is entirely separate entity
–  usually shares nothing with other processes
–  operating system manages scheduling
–  alternative: use a threads package (e.g., pthreads)

•  in Java, use threads
–  threads all run in the same process and address space
–  process itself controls allocation of time (JVM)
–  threads have to cooperate (JVM doesn't enforce this)
–  threads must not interfere with each other's data and use of time

•  Thread class defines two primary methods
–  start start a new thread
–  run run this thread

•  a class that wants multiple threads must
–  extend Thread
–  implement run()
–  call start() when ready, e.g., in constructor

•  Python is very similar

Inetd: use processes to avoid blocking
•  how do we arrange that a server can dispatch requests
 to the right processes without blocking?
•  one solution: a daemon process that accepts connection requests,
 and forks a new process for each request

for (;;) {
 int alen = sizeof(cad), sd2;
 if ((sd2 = accept(sd, (struct sockaddr *) &cad, &alen)) < 0)
 exit(1); /* accept failed */
 if (fork() == 0) {
 close(sd); /* child does this */
 runsrv(sd2);
 exit(0);
 }
 close(sd2); /* parent does this */
}

Java client: copy stdin to server, read reply
•  uses Socket class for TCP connection between client & server

import java.net.*;
import java.io.*;

public class cli {

static String host = "localhost"; // or 127.0.0.1
static String port = "33333";

public static void main(String[] argv) {
 if (argv.length > 0)
 host = argv[0];
 if (argv.length > 1)
 port = argv[1];
 new cli(host, port);
}

•  (continued…)

Java client: part 2
cli(String host, String port) { // tcp/ip version
 try {
 BufferedReader stdin = new BufferedReader(
 new InputStreamReader(System.in));
 Socket sock = new Socket(host, Integer.parseInt(port));
 System.err.println("client socket " + sock);
 BufferedReader sin = new BufferedReader(
 new InputStreamReader(sock.getInputStream()));
 BufferedWriter sout = new BufferedWriter(
 new OutputStreamWriter(sock.getOutputStream()));
 String s;
 while ((s = stdin.readLine()) != null) { // read cmd
 sout.write(s); // write to socket
 sout.newLine();
 sout.flush(); // needed
 String r = sin.readLine(); // read reply
 System.out.println(host + " got [" + r + "]");
 if (s.equals("exit"))
 break;
 }
 sock.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

Multi-threaded Java server
public class multisrv {
 static String port = "33333";

 public static void main(String[] argv) {
 if (argv.length == 0)
 multisrv(port);
 else
 multisrv(argv[0]);
 }
 public static void multisrv(String port) { // tcp/ip version
 try {
 ServerSocket ss =
 new ServerSocket(Integer.parseInt(port));
 while (true) {
 Socket sock = ss.accept();
 System.err.println("multiserver " + sock);
 new echo1(sock);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Thread part...
class echo1 extends Thread {
 echo1(Socket sock) {
 this.sock = sock; start();
 }
 public void run() {
 try {
 BufferedReader in = new BufferedReader(new
 InputStreamReader(sock.getInputStream()));
 BufferedWriter out = new BufferedWriter(new
 OutputStreamWriter(sock.getOutputStream()));
 String s;
 while ((s = in.readLine()) != null) {
 out.write(s);
 out.newLine();
 out.flush();
 System.err.println(sock.getInetAddress() + " " + s);
 if (s.equals("exit")) // end this conversation
 break;
 }
 sock.close();
 } catch (IOException e) {
 System.err.println("server exception " + e);
 }
 }

Multi-threaded Python server
#!/usr/bin/python

import SocketServer
import socket
import string

class Srv(SocketServer.StreamRequestHandler):
 def handle(self):
 print "Python server called by %s" % (self.client_address,)
 while 1:
 line = self.rfile.readline()
 print "server got " + line.strip()
 self.wfile.write(line)
 if line.strip() == "exit":
 break

srv = SocketServer.ThreadingTCPServer(("",33333), Srv)
srv.serve_forever()

Node.js server

var net = require('net');
var os = require('os');
var server = net.createServer(function(c) {
 //'connection' listener
 console.log('server connected');
 c.on('data', function(d) {
 process.stdout.write(d);
 console.log("Javascript srv got [%s] from %s",
 d.toString().trim(), os.hostname());
 });
 c.on('end', function() {
 console.log('server disconnected');
 });
 c.pipe(c);
});
server.listen(33333, function() { //'listening' listener
 console.log('Javascript srv listening');
});

Multi-threaded client: web crawler

•  want to crawl a bunch of web pages to do something
–  e.g., figure out how big they are

•  problem: network communication takes relatively long time
–  program does nothing useful while waiting for a response

•  solution: access pages in parallel
–  send requests asynchronously
–  display results as they arrive
–  needs some kind of threading or other parallel process mechanism

•  takes less time than doing them sequentially

Python version, no parallelism
import urllib2, time, sys

def main():
 start = time.time()
 for url in sys.argv[1:]:
 count("http://" + url)
 dt = time.time() - start
 print "\ntotal: %.2fs" % (dt)

def count(url):
 start = time.time()
 n = len(urllib2.urlopen(url).read())
 dt = time.time() - start
 print "%6d %6.2fs %s" % (n, dt, url)

main()

Python version, with threads
import urllib2, time, sys, threading

global_lock = threading.Lock()

class Counter(threading.Thread):
 def __init__(self, url):
 super(Counter, self).__init__()
 self.url = url

 def count(self, url):
 start = time.time()
 n = len(urllib2.urlopen(url).read())
 dt = time.time() - start
 with global_lock:
 print "%6d %6.2fs %s" % (n, dt, url)

 def run(self):
 self.count(self.url)

def main():
 threads = []
 start = time.time()
 for url in sys.argv[1:]: # one thread each
 w = Counter("http://" + url)
 threads.append(w)
 w.start()

 for w in threads:
 w.join()
 dt = time.time() - start
 print "\ntotal: %.2fs" % (dt)

main()

Python version, with threads (main)
def main():
 threads = []
 start = time.time()
 for url in sys.argv[1:]: # one thread each
 w = Counter("http://" + url)
 threads.append(w)
 w.start()

 for w in threads:
 w.join()
 dt = time.time() - start
 print "\ntotal: %.2fs" % (dt)

main()

Python version, with threads (count)
import urllib2, time, sys, threading

global_lock = threading.Lock()

class Counter(threading.Thread):
 def __init__(self, url):
 super(Counter, self).__init__()
 self.url = url

 def count(self, url):
 start = time.time()
 n = len(urllib2.urlopen(url).read())
 dt = time.time() - start
 with global_lock:
 print "%6d %6.2fs %s" % (n, dt, url)

 def run(self):
 self.count(self.url)

