
Lecture 7.5: 
Javascript

 2019 Project Schedule You are here

You are now here!

Dynamic web interfaces
•  forms are a limited interface

<FORM METHOD=GET
 ACTION="http://bwk.mycpanel.princeton.edu/cgi-bin/hello1.cgi">
 <INPUT TYPE="submit" value="hello" >
</FORM>

–  limited interaction on client side
form data usually sent to server for processing
can do simple validation with Javascript

–  synchronous exchange with server
potentially slow: client blocks waiting for response

–  recreates entire page with what comes back
even if it's mostly identical to current content

•  making web interfaces more interactive and responsive
–  "dynamic HTML": HTML + CSS, DOM, Javascript
–  asynchronous partial update: XMLHttpRequest / Ajax
–  plugins like Flash, Quicktime, ...
–  HTML5 reduces need for audio & video plugins

Javascript
•  client-side scripting language (Brendan Eich, Netscape, 1995)

–  C/Java-like syntax
–  weakly typed; basic data types: double, string, array, object
–  very dynamic
–  unusual object model based on prototypes, not classes

•  usage:
<script> javascript code </script>
<script src="url "></script>
<sometag onSomeEvent ='javascript code'>

•  can catch events from mouse, keyboard, ...
•  can access browser's object interface

–  window object for window itself
–  document object (DOM == document object model) for entities on page

•  can modify ("reflow") a page without completely redrawing it

•  incompatibilities among browsers
–  HTML, DOM, Javascript all potentially vary
–  but it's getting much better: ECMA standard is being followed

Javascript constructs

•  constants, variables, types
•  operators and expressions
•  statements, control flow
•  functions
•  arrays, objects
•  libraries
•  prototypes
•  lambdas, function objects
•  asynchrony, promises
•  etc.

Constants, variables, operators
•  constants

–  doubles [no integer], true/false, null
–  ‘string’, “string”,

no difference between single and double quotes; interprets \ within either
–  16-bit Unicode characters

•  variables
–  hold strings or numbers, as in Awk, but not both simultaneously

no automatic coercions; interpretation determined by operators and context
–  var declaration (optional; just names the variable; always use it)
–  variables are either global or local to a function

originally only two scopes; block structure did not affect scope
now has regular block scope (changed in newer versions)

•  operators
–  mostly like C
–  use === and !== for testing equality (== and != for equivalency)
–  string concatenation uses +
–  string[index] but no slices
–  regular expressions /x/.test("x")

Unicode (www.unicode.org)

•  universal character encoding scheme
 > 120,000 characters

•  UTF-16: 16 bit internal representation
–  encodes all characters used in all languages

numeric value, name, case, directionality, …
–  expansion mechanism for > 216 characters

•  UTF-8: byte-oriented external form
–  variable-length encoding, self-synchronizing within a couple of bytes
–  ASCII compatible: 7-bit characters occupy 1 byte

 0bbbbbbb
 110bbbbb 10bbbbbb
 1110bbbb 10bbbbbb 10bbbbbb
 11110bbb 10bbbbbb 10bbbbbb 10bbbbbb

•  Javascript supports Unicode
–  char data type is 16-bit Unicode
–  String data type is 16-bit Unicode chars
–  \uhhhh is Unicode character hhhh (h == hex digit); use in "..." and '.'

Statements, control flow

•  statements
–  assignment, control flow, function call, …
–  braces for grouping
–  semicolon terminator is optional (but always use it)
–  // or /* … */ comments

•  control flow almost like C, etc.
 if-else, switch
 while, do-while, break, continue
 for (; ;) …
 for (var in array) …
 try {…} catch(…) {…} finally {…}

 Example: Find the largest number

<html>
<body>
<script>
 var max = 0;
 var num;
 num = prompt("Enter new value, or empty to end");
 while (num != null && num != "") {
 if (parseFloat(num) > max)

 max = num;
 num = prompt("Enter new value, or empty to end");
 }
 alert("Max = " + max);
</script>
</body>
</html>

•  needs parseInt or parseFloat to coerce string value to a number

Functions
•  functions are objects

–  can store in variables, pass to functions, return from functions, etc.
–  can be “anonymous” (no name)
–  heavily used for callbacks

 function name(arg, arg, arg) {
 var ... // local if declared with var; otherwise global
 statements
 }

 function sum(x, y) { return x + y; }

 var sum = function (x, y) { return x + y; }
 sum(1,2);

•  standard libraries for math, strings, regular expressions,
 date/time, ...
•  browser DOM interface: dialog boxes, events, ...

Example: ATM checksum
function atm(s) {
 var n = s.length, odd = 1, sum = 0;
 for (i = n-1; i >= 0; i--) {
 if (odd)
 v = parseInt(s.charAt(i));
 else
 v = 2 * parseInt(s.charAt(i));
 if (v > 9)
 v -= 9;
 sum += v;
 odd = 1 – odd;
 }
 if (sum % 10 == 0)
 alert("OK");
 else
 alert("Bad. Remainder = " + (sum % 10));
}

<form name=F0 onsubmit="">
 <input type=text name=num >
 <input type=button value="ATM"
 onClick='atm(document.forms.F0.num.value);'>
</form>

Closures
•  A closure is a function that has access to its parent scope, even after

the parent function has closed.
 (based on https://www.w3schools.com/js/js_function_closures.asp)

 var incr = (function () {
 var counter = 0;
 return function () {
 return counter += 1;
 }
 })();

 incr();
 incr();
 incr();
 console.log(incr());

Objects and arrays
•  object: compound data type with any number of components

–  very loosely, a cross between a structure and an associative array
•  each property is a name-value pair

–  accessible as obj.name or obj[“name”]
–  values can be anything, including objects, arrays, functions, …

 var point = {x:0, y:0, name: "origin"};
 point.x = 1; point["y"] = 2;
 point.name = "not origin"

•  array: an object with numbered values 0..length-1
–  elements can be any mixture of types

 var arr = [point, 1, "somewhere", {x:1, y:2}];

•  array operators:
–  sort, reverse, join, push, pop, slice(start, end), …

Object literals

 var course = {
 dept: "cos",
 numbers: [109, 333],
 prof: {
 name1: "brian", name2: "kernighan",
 office: { bldg: "cs", room: "311" },
 email: "bwk"
 },
 toString: function() {
 return this.dept + this.numbers + " "
 + this.prof.name1 + " "
 + this.prof.name2 + " "
 + this.prof.office.bldg
 + this.prof.office.room
 + " " + this.prof.email;
 }
 }

JSON : Javascript Object Notation (Douglas Crockford)

•  lightweight data interchange format
–  based on object literals
–  simpler and clearer than XML, but without checking
–  parsers and generators exist for most languages

•  two basic structures
–  object: unordered collection of name-value pairs (associative array)

{ string: value, string: value, ... }
–  array: ordered collection of values

[value, value, ...]
–  string is "..."
–  value is string, number, true, false, object or array

•  Javascript eval function can convert this into a data structure:
 var obj = eval(json_string) // bad idea!
–  potentially unsafe, since the string can contain executable code

Formatter in Javascript
var fs = require('fs');
var line = ''; var space = '';
var buf = fs.readFileSync(process.argv[2], 'utf-8');
buf = buf.replace(/\n/g, ' ').replace(/ +/, ' ').trim();
words = buf.split(/ +/);
for (i = 0; i < words.length; i++) {
 addword(words[i]);
}
printline();

function addword(w) {
 if (line.length + w.length > 60)
 printline();
 line = line + space + w;
 space = " ";
}
function printline() {
 if (line.length > 0)
 console.log(line);
 line = space = ""
}

