
Linear Regression via Maximization of the Likelihood

Ryan P. Adams
COS 324 – Elements of Machine Learning

Princeton University

In least squares regression, we presented the common viewpoint that our approach to supervised
learning be framed in terms of a loss function that scores our predictions relative to the ground
truth as determined by the training data. That is, we introduced the idea of a function ℓ(ŷ, y) that
is bigger when our machine learning model produces an estimate ŷ that is worse relative to y. The
loss function is a critical piece for turning the model-fitting problem into an optimization problem.
In the case of least-squares regression, we used a squared loss:

ℓ(ŷ, y) = (ŷ − y)2 . (1)

In this note we’ll discuss a probabilistic view on constructing optimization problems that fit
parameters to data by turning our loss function into a likelihood.

Maximizing the Likelihood
An alternative view on fitting a model is to think about a probabilistic procedure that might’ve
given rise to the data. This probabilistic procedure would have parameters and then we can take
the approach of trying to identify which parameters would assign the highest probability to the
data that was observed. When we talk about probabilistic procedures that generate data given some
parameters or covariates, we are really talking about conditional probability distributions.

Let’s step away from regression for a minute and just talk about how we might think about
a probabilistic procedure that generates data from a Gaussian distribution with a known variance
but an unknown mean. Consider a set of data {yn}N

n=1 where yn ∈ R and we assume that they are
all independently and identically distributed according to a Gaussian distribution with unknown
mean µ and variance σ2. We would write this as a conditional probability as

yn | µ,σ2 ∼ N(yn | µ,σ2) . (2)

The probability density function associate with this conditional distribution is the familiar univariate
Gaussian:

Pr(yn | µ,σ2) = 1
σ
√

2π
exp

󰀝
− 1

2σ2 (yn − µ)2
󰀞
. (3)

1

We have N i.i.d. data, however, and so we write the conditional distribution for all of them as a
product:

Pr({yn}N
n=1 | µ,σ

2) =
N󳕘

n=1

1
σ
√

2π
exp

󰀝
− 1

2σ2 (yn − µ)2
󰀞
. (4)

This function, which we are here thinking of as being parameterized by µ is what we call the
likelihood. When we maximize this with respect to µ, we are asking “what µ would assign the
highest probability to the data we’ve seen?” This inductive criterion of selecting model parameters
based on their ability to probabilistically explain the data is what we refer to as maximum likelihood
estimation (MLE). Maximum likelihood estimation is a cornerstone of statistics and it has many
wonderful properties that are out of scope for this course. At the end of the day, however, we can
think of this as being a different (negative) loss function:

µ󰂏 = µMLE = arg max
µ

Pr({yn}N
n=1 | µ,σ

2) = arg max
µ

N󳕘
n=1

1
σ
√

2π
exp

󰀝
− 1

2σ2 (yn − µ)2
󰀞
. (5)

In practice, this isn’t exactly the problem that we like to solve. Rather, we actually prefer to
maximize the log likelihood because it turns all of our products into sums, which are easier to
manipulate and differentiate, while preserving the location of the maximum. Also, when we take
the product of many things that may be less than 1, the floating point numbers on our computer
may become very close to zero and the maximization may not be numerically stable; taking the log
makes those small positive numbers into better behaved negative numbers. As such, our (negative)
loss function becomes

L(µ) = log Pr({xn}N
n=1 | µ,σ

2) =
N󳕗

n=1
log

󰀕
1
σ
√

2π
exp

󰀝
− 1

2σ2 (yn − µ)2
󰀞󰀖

(6)

= −N logσ − N
2

log 2π − 1
2σ2

N󳕗
n=1

(yn − µ)2 . (7)

Figure 1 shows the likelihood function L(µ) that arises from a small set of data. Note in particular
how the vertical scale of the likelihood is very small; this is one reason we transform it with the
natural logarithm. We can go on and find the maximum likelihood estimate of µ by following the
same kind of procedure that we used for least squares regression: differentiate, set to zero, and
solve for µ:

d
dµ

L(µ) = 1
σ2

N󳕗
n=1

(yn − µ) = 0 (8)

1
σ2

N󳕗
n=1

yn −
N
σ2 µ = 0 (9)

µ =
1
N

N󳕗
n=1

yn . (10)

2

�4 �2 0 2 4

0.0

0.2

0.4

0.6

0.8

⇥10�7

Figure 1: The black dots are ten (N = 10) data from a Gaussian distribution with σ2 = 1
and µ = 1.4. The red line is the likelihood as a function of µ. The maximum likelihood estimate
is the peak of the red line. The red line is proportional to a Gaussian distribution but it is not
generally true that likelihoods will have the same shape as the data distribution; this is a property
that happens to arise when the location parameter is the quantity being estimated. Note also that
the scale of the likelihood is tiny.

Unsurprisingly, the maximum likelihood estimate in this model (regardless of σ2) is the sample
average of the data.

MLE Regression with Gaussian Noise
We now revisit the linear regression problem with a maximum likelihood approach. As in the
previous lecture, we assume our data are tuples of the form {xn, yn}N

n=1, where xn ∈ RD and yn ∈ R.
Rather than having a least-squares loss function, however, we now have to construct an explicit
model for the noise that lets us reason about the conditional probability of the label. That is, we’re
now going to say that our data arise from a process like

y = xTw + 󰂃 (11)

where 󰂃 ∈ R is a random variable capturing the noise. Just like we can construct different loss
functions, we can think about different noise models for 󰂃 . Generalizing the previous section, a very
natural idea is to say that this noise is from a zero-mean Gaussian distribution with variance σ2,

3

i.e.,

󰂃 | σ2 ∼ N(󰂃 | 0,σ2) . (12)

Adding a constant to a Gaussian just has the effect of shifting its mean, so the resulting conditional
probability distribution for our generative probabilistic process is

Pr(yn | xn, w,σ
2) = 1

σ
√

2π
exp

󰀝
− 1

2σ2 (yn − xT
nw)2

󰀞
. (13)

This is very similar to Eq. 3, except now rather than conditioning on µ, we’re conditioning on xn
and w. Those two quantities combine to form the mean of the Gaussian distribution on yn.

We denote the noise associated with the nth observation as 󰂃n and we will take these to be
independent and identically distributed. This allows us to write the overall likelihood function as a
product over these N terms:

Pr({yn}N
n=1 | {xn}N

n=1, w,σ
2) =

N󳕘
n=1

1
σ
√

2π
exp

󰀝
− 1

2σ2 (yn − xT
nw)2

󰀞
. (14)

Again, this is a function of w, as that is the parameter we are seeking to fit to the data.
In the previous lecture, we employed some more compact notation and aggregated the labels

into a vector y and the features into a design matrix X . We do the same trick here, but with a
new twist: we’re going to turn this univariate Gaussian distribution into a multivariate Gaussian
distribution with a diagonal covariance matrix. Recall that the PDF for a D-dimensional Gaussian
distribution is

Pr(z | µ,Σ) = |Σ |−1/2(2π)−D/2 exp
󰀝
−1

2
(z − µ)TΣ−1(z − µ)

󰀞
. (15)

The covariance matrix Σ must be square, symmetric, and positive definite. When Σ is diagonal,
the D dimensions are independent of each other. Putting our regression likelihood into this form
we write:

Pr(y | X, w,σ2) = N(y | Xw,σ2I) = (2σ2π)−N/2 exp
󰀝
− 1

2σ2 (Xw − y)T(Xw − y)
󰀞
. (16)

We can now think about how we’d maximize this with respect to w in order to find the maximum
likelihood estimate. As in the simple Gaussian case, it is helpful to take the natural log first:

log Pr(y | X, w,σ2) = −N
2

log(2σ2π) − 1
2σ2 (Xw − y)T(Xw − y) . (17)

The additive term doesn’t have a w. We are then left with the following optimization problem:

wMLE = arg max
w

󰀝
− 1

2σ2 (Xw − y)T(Xw − y)
󰀞
. (18)

4

The 1
2σ2 does not change the solution to this problem and of course could change the sign and make

this maximization into a minimization:

wMLE = arg min
w

(Xw − y)T(Xw − y) . (19)

This is exactly the same optimization problem that we solved for the least-squares linear regression!
While it seems like the loss function view and the maximum likelihood view are different, this reveals
that they are often the same under the hood: least squares can be interpreted as assuming Gaussian
noise, and particular choices of likelihood can be interpreted directly as (usually exponentiated)
loss functions.

Fitting σ2

One thing that is different about maximum likelihood, however, is that it gives us an additional
parameter to play with that helps us reason about the predictive distribution. The predictive
distribution is the distribution over the label, given parameters we have just fit. Rather than simply
producing a single estimate, when we have a probabilistic model we can account for noise when we
look at test data. That is, after finding wMLE if we have a query input xpred for which we don’t know
the y, we could compute a guess via ypred = xT

predw
MLE, or we could actually construct a whole

distribution:

Pr(ypred | xpred, w
MLE,σ2) = N(ypred | xT

predw
MLE,σ2) . (20)

This sounds great, but σ2 went away when we constructed the optimization problem for w. Why
would it be any good? Well, it won’t be any good — unless you fit it also. Fortunately, maximum
likelihood estimation tells us how to do that one also, and we can start out by assuming that we’ve
already computed wMLE. We set up the problem the same way except we keep the additive term in
Eq. 17:

σMLE = arg max
σ

󰀝
−N

2
log(2σ2π) − 1

2σ2 (XwMLE − y)T(XwMLE − y)
󰀞
. (21)

Solving this maximization problem is again just a question of differentiating and setting to zero:
∂

∂σ2

󰀗
−N

2
logσ2 − 1

2σ2 (XwMLE − y)T(XwMLE − y)
󰀘
= 0 (22)

− N
2σ2 +

1
2σ4 (XwMLE − y)T(XwMLE − y) = 0 (23)

−N +
1
σ2 (XwMLE − y)T(XwMLE − y) = 0 (24)

σ2 =
1
N
(XwMLE − y)T(XwMLE − y) . (25)

This is a satisfying result because it is just finding the sample average of the squared deviations
between what wMLE predicts and what the training data actually are. It feels exactly like what
happens when you compute the maximum likelihood estimate of the variance of a univariate
Gaussian distribution.

5

Changelog
• 17 September 2018 – Initial version

6

