
Markov Decision Processes

Ryan P. Adams∗

COS 324 – Elements of Machine Learning
Princeton University

We now turn to a new aspect of machine learning, in which agents take actions and become
active in their environments. Up until this point in the course, agents have been passive learners:
hanging out and analyzing data. We are heading towards the interesting concept of reinforcement
learning (RL), in which an agent learns to act in an uncertain environment by training on data that
are sequences of state, action, reward, state, action, reward, etc. The fun part of RL is that the
training data depend on the actions of the agent, and this will lead us to a discussion of exploitation
vs. exploration.

But for now we will consider planning problems in which the agent is given a probabilistic model
of its environment and should decide which actions to take. We begin with a brief introduction to
utility theory and the maximum expected utility principle (MEU). This provides the foundation for
what it means to be a rational agent: we will take a rational agent as one that tries to maximize its
expected utility, given its uncertainty about the world.

Our focus in Markov decision processes (MDPs) will be on the more realistic situation of
repeated interactions. The agent gets some information about the world, chooses an action, receives
a reward, gets some more information, chooses another action, receives another reward, and so on.
This type of agent needs to consider not only its immediate reward when making its decision, but
also its utility in the long run.

1 Decision Theory
Here is a basic overview of the decision theoretic framework:

• We use probability to model uncertainty about the domain.

• We use utility to model an agent’s objectives.

• The goal is to design a decision policy, describing how the agent should act in all possible
states in order to maximize its expected utility.

Decision theory can be viewed as a definition of rationality. The maximum expected utility
principle states that a rational agent is one that chooses its policy so as to maximize its expected

∗These notes are adapted from Harvard CS181 course notes by Avi Pfeffer and David Parkes.

1

utility. Decision theory provides a precise and concrete formulation of the problem we wish to
solve and a method for designing an intelligent agent.

1.1 Problem Formulation
The reason probability is central to decision theory is because the world is a noisy and uncertain
place; rational agents need to make decisions even when it is unknown what exactly will happen.
There are various sources of uncertainty that an agent faces when trying to achieve good performance
in complex environments:

• The agent may not know the current state of the world. There can be a number of reasons for
this:

– Its sensors only give it partial information about the state of the world. For example, an
agent using a video camera cannot see through walls.

– Its sensors may be noisy. For example, if the camera is facing the sun, it may incorrectly
perceive objects due to lighting effects.

• The effects of the agent’s actions might be unpredictable. For example, if the agent tries to
pick up a plant and eat it, it might accidentally crush it instead.

• There are exogenous events – things completely outside the agent’s control – that it might
have to deal with. For example, if it has planned a path from one room to another going
through a door, someone might shut the door before it gets through.

• Over and above the agent’s uncertainty in a particular situation, we might also have uncertainty
about the correct model of the world.

In the decision theoretic framework, all these different kinds of uncertainty can be modeled using
probabilities. For the most part we will ignore the last kind of uncertainty, uncertainty over the
model itself. However, this can be handled through the Bayesian approach that we know from our
earlier discussions of learning, in which we use the marginal likelihood to perform model selection.
For now we will also be studying problems in which the first problem is ignored and the agent
knows the current state. This will put us in the space of Markov decision processes (MDPs).

Continuing our elaboration of the problem definition, “performs well” means that an agent gets
good utility. Of course, because of uncertainty, we can’t devise a policy that guarantees that it will
get good utility in all circumstances. Instead, we need to try to design an agent so that it gets good
utility on average, i.e., in expectation. We can make this notion a little more precise. For now, we
will focus on the “open-loop” setting, in which the agent has to make a single decision and then it
is done. We will soon get to MDPs and the “closed-loop” setting, in which the agent repeatedly
interacts with is environment.

2

1.2 What are Utilities?
We’ve been blithely throwing around the term “utility” without stopping to think what exactly it
means. The simplest answer is that utility is a measure of happiness. But what does that mean?
What is a happiness of 1, 3.27, or -15?

Can we measure utility by money? This works well for small gains and losses, but is not
necessarily appropriate in general. Consider the following game: you have 99% chance of losing
$10,000, and 1% chance of winning $1,000,000. Many people would be averse to playing this
game, but the expectation of the game is to win $100. This seems to indicate that having $1,000,000
is less than 99 times as good as losing $10,000 is bad, so money is not an ideal measure of utility.

Rather, utility is an encoding of preferences. Given a choice between outcomes A, B and C, you
might rank them as A being better than B which is better than C. But by how much do you prefer A
to B and B to C? If you had to choose between two lotteries, one that gets you B for sure, while the
other gets you 50% chance of A and 50% chance of C, which would you choose? We denote such
a lottery L = [0.5 : A, 0.5 : C], and write L ≻ L′ if you prefer lottery L over L′, and L ∼ L′ if you
are indifferent.

The foundation of utility theory is based on the following idea. I can ask you the same type
of question about all sorts of different lotteries. If you’re rational, your answers to these questions
should satisfy certain fundamental properties. These axioms are:

• Orderability: For every pair of lotteries L and L′, then L ≻ L′ or L′ ≻ L or L ∼ L′.

• Substitutability: If you are indifferent between two lotteries L and L′, then you should be
indifferent between two more complex lotteries that are the same except that L′ replaces L in
one part.

• Transitivity: Given any three lotteries, if you prefer L to L′ and L′ to L′′ then you should
prefer L to L′′.

• Continuity: If L′ is between L and L′′ in preference ordering, then there is some probability p
on a mix of L and L′′ for which you are indifferent between this new lottery and L′.

• Monotonicity: If you prefer L to L′ then you should prefer a new lottery that provides L with
probability p and L′ with probability 1 − p than one that provides L with probability q < p
and L′ with probability 1 − q.

• Decomposability: Compound lotteries can be made equivalent to simpler lotteries, e.g.,

[p : A, 1 − p : [q : B, 1 − q : C]] ∼ [p : A, (1 − p)q : B, (1 − p)(1 − q) : C] .

Von Neumann and Morgenstern established that if your preferences satisfy these axioms,
then there is some function U(·) that can be assigned to outcomes, such that you prefer one
lottery to another if and only if the expectation of U(·) under the first lottery is greater than the
expectation under the second. This function U(·) is your utility function. The expected utility of a

3

S

A

R

Figure 1: Example of agent inter-
action. S is the current state, A is
its action, and R is the reward.

s0 s1 s2 . . .

a0

r0

a1

r1

. . .

. . .

Figure 2: Two steps of a Markov decision process. The agent
starts in state s0, then takes action a0, receiving reward r0
and transitioning to state s1. From state s1, the agent takes
action a1, receives reward r1 and transitions to state s2.

lottery L = [p : A, 1 − p : B] is just p × U(A) + (1 − p) × U(B). That is, we have that there exists
a utility function U(·) such that

L ≻ L′ ⇔ E[U(L)] > E[U(L′)] .

An interesting point to note is that the function U(·) encoding preferences is not unique! In fact,
it can be shown that if U(·) encodes an agent’s preferences, then so does V = aU + b where a > 0,
and b is arbitrary.

The moral of this is that the utility numbers themselves don’t mean anything. One can’t say,
for example, that positive utility means you’re happy, and negative utility means you’re unhappy,
because the utility numbers could just be shifted in the positive or negative direction. All utilities
achieve is a way of encoding the relative preferences between different outcomes.

2 Markov Decision Processes
The basic framework for studying utility-maximizing agents that have repeated interactions with
the world and take a sequence of actions is called a Markov Decision Process, abbreviated MDP.
We can illustrate the agent’s interaction with the environment via Figure 1, where S is the current
state of the world, observed by the agent for the moment, A is its action (drawn as a box because it is
a decision variable rather than a random variable) and R is its reward or utility, drawn as a diamond.
We are interested in “closed loop” problems in which the agent affects the state of the environment
through its action. This is contrasted with “open loop” problems in which only a single action is
taken and any effect on the subsequent state is irrelevant.

The MDP framework consists of the following elements (S,A, R, P):
• A set S = {1, . . . , N} of possible states.

• A set A = {1, . . . ,M} of possible actions.

• A reward model R : S ×A → R, assigning reward to state tuples of state s ∈ S and ac-
tion a ∈ A.

4

• A transition model P(s′ | s, a), where P(s′ | s, a) ≥ 0 and

s′∈S P(s′ | s, a) = 1 for all s, a,
and defining the probability of reaching state s′ in the next period given action a in state s.
This is a probability mass function over the next state, given the current state and action.

This framework describes an agent with repeated interactions with the world. The agent starts
in some state s0 ∈ S. The agent then gets to choose an action a0 ∈ A. The agent receives
reward R(s0, a0), while the world transitions to a new state s1, according to the probability distri-
bution P(s1 | s0, a0). Then the cycle continues: the agent chooses another action a1 ∈ A, and the
world transitions to s2 according to the distribution P(s2 | s1, a1), the agent receiving R(s1, a1), and
so on.

An agent in an MDP goes through s0, a0, r0, s1, a1, r1, s2, a2, r2, s3, . . . where st, at, rt indicate
the state, action and reward in period t. In writing this model, we have adopted a stationary and
deterministic (non-random) reward model R(s, a). Taking the same action in the same state provides
the same reward irrespective of time. Furthermore, we have adopted a stationary transition model,
so that P(st+1 | st, a) does not depend on t. This can be relaxed as necessary by folding some
temporal features into the state.

The framework makes a fundamental assumption: that the reward model and transition model
depend only on the current state and current action, and not on previous history. This assumption
is known as the Markov assumption (hence the name Markov Decision Process), which is a basic
assumption used in reasoning about temporal models. The Markov assumption is often stated as
“The future is independent of the past given the present.”

The general idea of the MDP is shown in as a decision network in Figure 2. Actions are again in
boxes, random variables (the state) in circles as in Bayesian networks (which you might encounter
in later machine learning and statistics courses), and rewards in diamonds. This decision network
uses the same conditional independence semantics for arrows that are used for Bayesian networks,
although the details of these structures are outside the scope of this course. The agent’s proceeds
through time periods t ∈ {0, 1, . . .} and perhaps for an infinite sequence of periods.

Another component that we require in order to solve MDPs is the concept of a policy,

πt : S → A

which produces an action a ∈ A in every possible state s ∈ S, here allowing the policy to also
depend on time t. As we’ll see, dependence on time is required in settings with a finite decision
horizon because as the deadline approaches then different actions become useful. A policy describes
the solution to an MDP: it is a complete description of how an agent will act in all possible states
of the world.

The assumptions made in the MDP formalism are:

• Fully Observable: The state st in period t is known to the agent. This is relaxed in moving
to partially observable MDPs.

• Known Model: The (S,A, R, P) are known to the agent. This is relaxed in reinforcement
learning, where S and A are known, but R and P are learned as the agent acts.

• Markov Property: The future is independent of the past, given the present.

5

• Finite State and Action Spaces: S and A are both finite sets.

• Bounded Reward: There is some Rmax such that R(s, a) ≤ Rmax for all s, a.

The MDP formulation above is general. For example, it is sometimes convenient to describe the
reward model as R : S ×A × S → R, which includes both the current and next state in the reward
computation. However, this is equivalent to R(s, a) =

s′∈S P(s′ | s, a)R(s, a, s′). Similarly, it is
sometimes simpler to associate rewards with states, rather than with states and actions. When we
do that, we will mean that the reward for taking any action in the state is the reward associated with
the state.

The MDP framework describes how the agent interacts with the world, but we haven’t yet
described what the goals of the agent actually are, i.e., what problem we are trying to solve. Here
are some variants of the problem:

Finite Horizon We are given a number T , called the horizon, and assume that the agent is only
interested in maximizing the reward accumulated in the first T steps. In a sense, T represents
the degree to which the agent looks ahead. T = 1 corresponds to a greedy agent that is only
trying to maximize its next reward. We have

Utility =
T−1
t=0

R(st, at) (1)

Total Reward The agent is interested in maximizing its reward from now until eternity. This
makes most sense if we know the agent will die at some point, but we don’t have an upper
bound on how long it will take for it to die. If it is possible for the agent to go on living
forever, its total reward might be unbounded, so the problem of maximizing the total reward
is ill-posed. We have

Utility =
∞

t=0
R(st, at) (2)

Total Discounted Reward A standard way to deal with agents that might live forever is to say that
they are interested in maximizing their total reward, but future rewards are discounted. We
are given a discount factor γ ∈ [0, 1). The reward received at time t is discounted by γt , so
the total discounted reward is

Utility =
∞

t=0
γt R(st, at) (3)

Provided 0 ≤ γ < 1 and the rewards are bounded, this sum is guaranteed to converge.1
Discounting can be motivated either by assumption catastrophic failure can occur with some
small probability > 0 in every period, by acknowledging that the model (S,A, R, P) may
not be accurate all the way into the future, or by inflation or opportunity cost arguments that
it is better to receive reward now because it can be used for something.

1For example, if a constant reward is received in every period t, then the discounted sum is t
1−γ .

6

Long-run Average Reward Another way to deal with the problems with the total reward formu-
lation, while still considering an agent’s reward arbitrarily far into the future, is to look at the
average reward per unit time over the (possibly infinite) lifespan of the agent. This is defined
as

Utility = lim
T→∞

1
T

T−1
t=0

R(st, at) (4)

While this formulation is theoretically appealing, and bounded, the limit in the definition
makes it mathematically intractable in many cases.

In this course, we will focus on the finite horizon and total discounted reward cases (which we will
simply call the infinite horizon case).

3 Examples
Let’s look at some example MDPs.

3.1 Auction Bidding
For the first example, suppose you are participating in an internet auction. We’ll use a somewhat
artificial model to keep things simple. The bidding starts at $100, and in each round you get a
chance to bid. If your bid is successful, you will be recorded as the current bidder of record, and
the asking price will go up $100. Someone else might also bid, but only one successful bid is
accepted on each round. The bidding closes if a bid of $200 is received, or no bid is received for
two successive rounds. You value the item being sold at $150. If you do not buy the item, you
receive 0 reward. If you buy it for $x, you receive a reward of 150 − x.

Formally, we specify the problem as follows:

• The state space consists of tuples 〈x, y, z〉, where x is the current highest bid, y specifies
whether or not you are the current bidder, and z is the number of rounds since the last bid
was received. The possible values for x are $0, $100, and $200. Whether or not you are the
current bidder is a binary variable. The number of rounds since the last bid was received is
0, 1 or 2. So the total number of states is 3 × 2 × 3 = 18.

• There are two possible actions: to bid or not to bid, denote b and ¬b.

• Since you only get a non-zero reward when the auction terminates and you have bought the
item, the reward function is defined as follows. While the action is normally an argument to
the reward function, it has no effect on the reward in this case, so we drop it.

R(〈x, y, z〉) =

150 − x if y = true and z = 2 or x = 200
0 otherwise

(5)

7

• The transition model is specified as follows. States where x = $200 or z = 2 are terminal
states — the auction ends at those states, and there is no further action. We only need to
specify what happens if x < $200 and z < 2. Let’s say that if you do not bid, there is a 50%
probability that someone else will successfully bid. If you do bid, your bid will be successful
70% of the time, but 30% of the time, someone else will beat you to the punch.
Formally, we define the transition model as follows.

P(〈x + 100, false, 0〉 | 〈x, y, z〉,¬b) = 0.5 [You don’t bid. Someone else does.]
P(〈x, y, z + 1〉 | 〈x, y, z〉,¬b) = 0.5 [You don’t bid. Nobody else does either.]

P(〈x + 100, true, 0〉 | 〈x, y, z〉, b) = 0.7 [You bid and are current to bidder.]
P(〈x + 100, false, 0〉 | 〈x, y, z〉, b) = 0.3 [You bid and get beaten to the punch.]

3.2 Robot Navigation
Another common example of an MDP is robot navigation. Suppose that your robot is navigating
on a grid. It has a goal to get to, and perhaps some dangerous spots like stairwells that it needs
to avoid. Unfortunately, because of slippage problems, its operators are not deterministic, and it
needs to take that into account when planning a path to the goal.

Here, the state space consists of possible locations of the robot, and the direction in which it is
currently facing. The total number of states is four times the number of locations, which is quite
manageable. The actions might be to move forward, turn left or turn right. The reward model
gives the agent a reward if it gets to the goal, and a punishment if it falls down a stairwell. The
transition model states that in most cases actions have their expected effect, e.g., moving forward
will normally successfully move the robot forward one space, but with some probability the robot
will stick in the same place, and with some probability it will move forward two spaces.

4 Expectimax Search: Finite Horizon
Given an MDP, the task is to find a policy that maximizes the agent’s utility. How do we find an
optimal policy? Let’s concentrate on the finite horizon case first.

One approach is to view an MDP as a game against nature where an opponent called “nature”
behaves in a specific probabilistic manner. One way to solve this problem is to build a search tree.
The tree will have two kinds of nodes: those where you get to move, and those where nature moves.
Nodes where you get to move are associated with the current state s; nodes where nature moves are
associated with the pair (s, a), where s is the current state and a is your chosen action. The root of
the search tree is the initial state s0. If you choose action a at node s, then the we transition to tree
node (s, a). From node (s, a), then we can transition to any tree node s′ such that P(s′ | s, a) > 0.
The edge from (s, a) to s′ is annotated with probability P(s′ | s, a). This models the move by nature,
which is probabilistic and could take the state in the world to any one of the possible next states.

How do we adopt search to solve and find the optimal decision policy? In expectimax search
we will solve from the end of time to the start of time, propagating a value for every tree node up

8

Algorithm 1 Expectimax Search
1: function E(s) ⊲ Takes a state as an input.
2: if s is terminal then
3: Return 0
4: else
5: for a ∈ A do ⊲ Look at all possible actions.
6: Q(s, a) ← R(s, a) +s′∈S P(s′ | s, a)E(s′) ⊲ Compute expected value.
7: end for
8: π(s) ← arg maxa∈A Q(s, a) ⊲ Optimal policy is value-maximizing action.
9: Return Q(s, π(s))

10: end if
11: end function

from the leaves to the root. The value of a tree node is simply the expected total reward that an
agent can expect to get forward from that node under its optimal policy. The name corresponds to
the fact that the algorithm alternates between taking expectations and maximizations. Algorithm 1
shows the recursion.

We adopt Q(s, a) to denote the value at a tree node (s, a), just before Nature is about to take
an action and determine the next state. This is immediate reward for action a in state s plus the
expectation over the values of the children s′ of (s, a), where the expectation is taken according to
the transition model. The algorithm works from the leaves towards the root, calling E
on each new state. For a given state it considers the possible actions, determining the Q(s, a) value
based on the work done at the children of the state. The optimal action π(s) is then stored, and the
Q-value under that optimal action returned as the expectimax value for the state.

Figure 3 shows the expectimax tree for the Internet auction example. The left subtree, corre-
sponding to the initial action of bid, has been expanded completely and analyzed. The right subtree
has only been partially expanded and dashed edges show the redundant nodes that also appear on
the left subtree. Nature’s edges are annotated with probabilities, while nodes whose values have
been computed are annotated with the value. From the analysis, we see that the auction is worth
at least $8.75 to the agent. The agent can use the policy of bidding right away, hoping that the bid
succeeds, and hoping that no-one bids for the next two rounds. As it happens, the agent cannot do
as well by passing in the first round. If the agent passes, it will hope that no-one else bids, and then
have to bid immediately in the next round, hoping its bid will be successful. It will then have to
hope that no-one bids for the next two rounds. This policy has smaller chance of succeeding than
bidding in the first round, because there is a 50% chance that someone else bids after the agent’s
first pass.

How expensive is the expectimax algorithm? It is proportional to the size of the tree, which
is exponential in the horizon. What is the base of the exponent? The number of actions times
the number of possible transitions for nature. To be precise, let the horizon be T , the number of
actions be M , and the maximum number of transitions for any state and action be L. Then the
cost of the algorithm is O((ML)T). How large is L? It depends on the model. L is the maximum
number of non-zero entries in any row of the transition matrix for any action. In general, if the

9

〈$0, f , 0〉

〈$0, f , 0〉
¬b

〈$0, f , 1〉

〈$0, f , 1〉
¬b

〈$0, f , 2〉

$0

〈$100, f , 0〉

0.5 0.5

〈$0, f , 1〉
b

〈$100, f , 0〉〈$100, t, 0〉

0.7 0.3

Bid: $8.75 Don’t Bid: $0

〈$100, f , 0〉

0.5 0.5

〈$0, f , 0〉
b

〈$100, f , 0〉

〈$100, f , 0〉
¬b

〈$100, f , 1〉

〈$100, f , 1〉
¬b

〈$100, f , 2〉

$0

〈$200, f , 0〉

$0

0.5 0.5

〈$100, f , 1〉
b

〈$200, f , 0〉

$0

〈$200, t, 0〉

−$50

0.7 0.3

Bid: −$35 Don’t Bid: $0

〈$200, f , 0〉

$0

0.5
0.5

〈$100, f , 0〉
b

〈$200, f , 0〉

$0

〈$200, t, 0〉

−$50

0.7 0.3

Bid: −$35 Don’t Bid: $0

〈$100, t, 0〉

〈$100, t, 0〉
¬b

〈$100, t, 1〉

〈$100, t, 1〉
¬b

〈$100, t, 2〉

$50

〈$200, f , 0〉

$0

0.5 0.5

〈$100, t, 1〉
b

〈$200, f , 0〉

$0

〈$200, t, 0〉

−$50

0.7 0.3

Bid: −$35 Don’t Bid: $25

〈$200, f , 0〉

$0

0.5 0.5

〈$100, t, 0〉
b

〈$200, f , 0〉

$0

〈$200, t, 0〉

−$50

0.7 0.3

Bid:−$35 Don’t Bid: $12.50

0.7 0.3

Bid: $8.75 Don’t Bid: $4.37

Figure 3: This figure shows the game tree, with shared structured shown via dashed arrows.
Paths down the tree alternate between agent actions (Bid vs. Don’t Bid) and Nature actions, i.e.,
probabilistic state transitions. The leaves on the tree are outcomes of the auction when we value
the item at $150.

matrices are sparse, the branching factor will be small and the algorithm will be more efficient. As
an alternative, we will turn to value iteration, which uses dynamic programming.

5 Value Iteration: Finite Horizon
Notice that in expectimax the same state may be reached by many different paths, a property we use
to make the tree fit into Figure 3. This is true even in deterministic settings, but is especially true
in probabilistic settings – Nature tends to act as an equalizer, negating the results of your actions,
especially actions in the distant past. If there are states that can be reached in multiple ways, there’s
a tremendous amount of wasted work in the expectimax algorithm, because the entire tree beneath
the repeated states is searched multiple times.

An alternative approach is to work backwards from the decision horizon but memorize the
optimal thing to do from each possible state reached and reuse this computation. This is an
approach of dynamic programming. It recognizes that the optimal policy forward from state s
with k periods to go is the same irrespective of the way s is reached, and moreover can be found by
taking the best subsequent action and then following the optimal k-to-go policy from the next state
reached.

To flesh this out, we will denote by Vk(s) the k-step-to-go value of state s. That is, the value
that you can expect to get if you start in state s and proceed for k steps under the optimal policy.
So, V0(s) is just 0 for all s. Similarly, let Qk(s, a) denote the k-step-to-go value of taking a now and
then following by the optimal policy. Finally, let πk (s) denote the optimal k-to-go action.

10

Algorithm 2 Value Iteration
1: function VI(T) ⊲ Takes a horizon as input.
2: for s ∈ S do ⊲ Loop over each possible ending state.
3: V0(s) ← 0 ⊲ Horizon states have no value.
4: end for
5: for k ← 1 . . .T do ⊲ Loop backwards over time.
6: for s ∈ S do ⊲ Loop over possible states with k steps to go.
7: for a ∈ A do ⊲ Loop over possible actions.
8: Qk(s, a) ← R(s, a) +s′∈S P(s′ | s, a)Vk−1(s′) ⊲ Compute Q-function for k.
9: end for

10: πk (s) ← arg maxa∈A Qk(s, a) ⊲ Find best action with k to go in state s.
11: Vk(s) ← Qk(s, πk (s)) ⊲ Compute value for state s with k steps to go.
12: end for
13: end for
14: end function

The base case is

V0(s) = 0, ∀s (6)

The inductive case is

Qk(s, a) = R(s, a) +

s′∈S

P(s′ | s, a)Vk−1(s′) (7)

πk (s) = arg max
a∈A

Qk(s, a) (8)

Vk(s) = Qk(s, πk (s)) (9)

Look carefully at Equation 7. This holds that the value of each action a taken now is the immediate
reward plus the expected continuation value from the next state s′ reached, given the Vk−1(s′) values
already computed. Also, note that πk (s) is the optimal action with k steps to go and not the optimal
action in time period k.

This suggests an algorithm, where we solve this series of equations layer by layer, from the
bottom up. The algorithm, called value iteration, is as follows:

What is the meaning of πk (·) and Vk(·)? The function πk (·) is the optimal policy for the kth
step before the end, assuming you have only k steps to go. The function Vk(·) is the value you get
in the last k steps, assuming you play optimally. As k grows larger, the nature of the optimal policy
changes. For k = 1, the policy will be greedy, considering only the reward in the last step. For
small k, only the next few rewards will be considered, and there will be no long-term planning. For
large k, there is incentive to sacrifice short-term gain for long run benefit, because there is plenty
of time to reap the reward of your investment.

What is the complexity of finite horizon value iteration? If the number of states is N , the
number of actions is M , and the horizon is T , then there are N M Q-values to be updated every

11

time through the loop, each Q-value update is L work for the s′ next states that occur with non-zero
probability, and there are T iterations of the loop. Altogether, we have O(N MLT), which is linear
in the horizon, instead of exponential as we found for expectimax! Great.

However, expectimax still has one advantage over dynamic programming: it only has to compute
values for states that are actually reached. If states can generally not be reached in multiple ways,
and there are many states that are not reached at all, expectimax may be better. There is a simple
algorithm that combines the advantages of both, using an idea called reachability analysis. The
first stage is simply to determine which of the possible states are reachable. Then, value iteration
is performed over this reduced set of states.

Changelog
• 23 November 2018 – Initial version converted from Harvard CS181 notes.

12

