COS320: Compiling Techniques

Zak Kincaid

May 2, 2019
• HW6 is due on Dean’s date, 5pm.
• Final exam: Sunday May 19th 1pm in CS 104
Final Exam

- *Mostly* material since the midterm (LR parsing and up). Topics:
 - LR Parsing
 - Type systems (be comfortable reading inference rules, writing proof trees)
 - Data flow analysis (translate a global specification into local constraints)
 - Register allocation (graph coloring, coalescing)
 - Control flow analysis (dominators, loops, SSA conversion)

- Format similar to midterm
- Past COS320 exams @ Princeton & CIS341 exams @ UPenn are online
Review
Compiler phases (simplified)

Source text → Lexing → Token stream → Parsing → Abstract syntax tree → Translation → Intermediate representation → Optimization → Code generation → Assembly
Software engineering

- Compilers are large software projects
 - Decompose the problem into lots of small phases, each of which accomplishes
 - E.g., the optimization phase is also a large piece of software – it too is composed of lots of small individual phases
- Many problems do not have a “right” answer: pick a convention, document it well, and adhere to it.
 - E.g., calling conventions, pass environment as first argument to a closure, store pointer to dispatch vector in object, ...
Intermediate representations

• An IR breaks code generation up into two phases. Simpler & easier to implement
• IRs (such as SSA) can drastically simplify optimization
• Makes compiler back-end re-usable
Lexing and parsing

- The **lexing** phase of a compiler breaks a stream of characters (source text) into a stream of *tokens*.
- The **parsing** phase of a compiler takes in a stream of tokens (produced by a lexer), and builds an abstract syntax tree (AST).
- Lexing and parsing are based on *automata*
 - Lexing: finite automata (DFAs, NFAs)
 - Parsing: (deterministic) pushdown automata
- Useful tool to have in your toolbox!
 - Parsing useful for programming languages, domain specific languages, custom data formats, ...
 - Lexer generators: lex, flex, ocamllex, jflex
 - Parser generators: Yacc, Bison, ANTLR, menhir
Type Systems

• Specified by *inference rules*

\[
\begin{array}{c}
J_1 \quad J_2 \quad \cdots \quad J_n \\
\hline
J
\end{array}
\quad \text{SIDE-CONDITION}
\]

• **Succinct** way to communicate a *precise* specification
• Pervasive in formal logic and programming language theory. Can be used to specify
 • the semantics of programming languages
 • logics for reasoning about programs
 • program analyses
 • ...

• Type theory is a large subject and an active area of research
 • Close ties to logic (Curry-Howard correspondence: formulas are types, programs are proofs)
 • More in COS 510
Dataflow analysis

- Dataflow analysis is an approach to program analysis that unifies the presentation and implementation of many different analyses
 - Define a system of inequations \(\{X_i \supseteq R_i\}_{i \in I} \), where “unknowns” \(X_i \) are values in some partially ordered set, and right-hand-sides are monotone expressions over unknowns
 - Solve the system by repeatedly:
 1. Choosing a constraint \(X_j \supseteq R_j \) that is not satisfied
 2. Increasing \(X_j \) so that the constraint is satisfied
 until all constraints are satisfied
- Idea: can sometimes transform a global specification into a system of local constraints, which can be solved iteratively
LL parsing revisited

- LL(1) parser can be constructed from *nullable*, *first*, and *follow*, which have the following global specifications
 - Fix a grammar \(G = (N, \Sigma, R, S) \)
 - For any word \(\gamma \in (N \cup \Sigma)^* \), define \(\text{first}(\gamma) = \{ a \in \Sigma : \gamma \Rightarrow^* aw \} \)
 - For any word \(\gamma \in (N \cup \Sigma)^* \), say that \(\gamma \) is *nullable* if \(\gamma \Rightarrow^* \epsilon \)
 - For any non-terminal \(A \), define \(\text{follow}(A) = \{ a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma' \} \)
LL parsing revisited

- **LL(1) parser** can be constructed from *nullable*, *first*, and *follow*, which have the following global specifications
 - Fix a grammar \(G = (N, \Sigma, R, S) \)
 - For any word \(\gamma \in (N \cup \Sigma)^* \), define \(\text{first}(\gamma) = \{ a \in \Sigma : \gamma \Rightarrow^* aw \} \)
 - For any word \(\gamma \in (N \cup \Sigma)^* \), say that \(\gamma \) is **nullable** if \(\gamma \Rightarrow^* \epsilon \)
 - For any non-terminal \(A \), define \(\text{follow}(A) = \{ a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma' \} \)
- **nullable** : \(N \rightarrow \{ \text{true}, \text{false} \} \) (w/ \(\text{false} \sqsubseteq \text{true} \)) is the *least function* such that
 - For each rule \(A ::= \gamma_1 \ldots \gamma_n \), \(\text{nullable}(A) \sqsubseteq \text{nullable}(\gamma_1) \land \cdots \land \text{nullable}(\gamma_1) \)
LL parsing revisited

- LL(1) parser can be constructed from nullable, first, and follow, which have the following global specifications
 - Fix a grammar $G = (N, \Sigma, R, S)$
 - For any word $\gamma \in (N \cup \Sigma)^*$, define $\text{first}(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
 - For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
 - For any non-terminal A, define $\text{follow}(A) = \{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma Aa\gamma'\}$

nullable: $N \rightarrow \{\text{true}, \text{false}\}$ (w/ $\text{false} \sqsubseteq \text{true}$) is the least function such that
- For each rule $A ::= \gamma_1...\gamma_n$, $\text{nullable}(A) \sqsubseteq \text{nullable}(\gamma_1) \land \cdots \land \text{nullable}(\gamma_1)$

first is the smallest function such that
- For each $a \in \Sigma$, $\text{first}(a) = \{a\}$
- For each $A ::= \gamma_1...\gamma_i...\gamma_n \in R$, with $\gamma_1, ..., \gamma_{i-1}$ nullable, $\text{first}(A) \supseteq \text{first}(\gamma_i)$
LL parsing revisited

• LL(1) parser can be constructed from nullable, first, and follow, which have the following global specifications
 • Fix a grammar $G = (N, \Sigma, R, S)$
 • For any word $\gamma \in (N \cup \Sigma)^*$, define $\text{first}(\gamma) = \{ a \in \Sigma : \gamma \Rightarrow^* aw \}$
 • For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
 • For any non-terminal A, define $\text{follow}(A) = \{ a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma' \}$

nullable : $N \rightarrow \{ \text{true, false} \}$ (w/ false \sqsubseteq true) is the least function such that
 • For each rule $A ::= \gamma_1 \ldots \gamma_n$, nullable($A$) \sqsubseteq nullable(γ_1) $\land \cdots \land$ nullable(γ_1)

first is the smallest function such that
 • For each $a \in \Sigma$, $\text{first}(a) = \{ a \}$
 • For each $A ::= \gamma_1 \ldots \gamma_i \ldots \gamma_n \in R$, with $\gamma_1, \ldots, \gamma_{i-1}$ nullable, first(A) \supseteq first(γ_i)

follow is the smallest function such that
 • For each $A ::= \gamma_1 \ldots \gamma_i \ldots \gamma_n \in R$, with $\gamma_{i+1}, \ldots, \gamma_n$ nullable, follow(γ_i) \supseteq follow(A)
 • For each $A ::= \gamma_1 \ldots \gamma_i \ldots \gamma_j \ldots \gamma_n \in R$, with $\gamma_{i+1}, \ldots, \gamma_{j-1}$ nullable, follow(γ_i) \supseteq first(A)
Current research
Conferences

- Programming Language Design and Implementation (PLDI)
- Principles of Programming Languages (POPL)
- Object Oriented Programming Systems, Languages & Applications (OOPSLA)
- Principles and Practice of Parallel Programming (PPoPP)
- Code Generation and Optimization (CGO)
- Compiler Construction (CC)
- International Conference on Functional Programming (ICFP)
- European Symposium on Programming (ESOP)
- Architectural Support for Programming Languages and Operating Systems (ASPLOS)
The job of a compiler is to translate from the syntax of one language to another, but preserve the semantics.

- Compiler correctness is critical
 - Trustworthiness of every component built in a compiled language depends on trustworthiness of the compiler
- Compilers tend to be well-engineered and well-tested, but that does not mean bug-free
Bug-finding in compilers

• CSmith1: randomized differential testing of C compilers
 • Randomly generate a C program \textit{without undefined behavior}
 • Integrates program analysis to find interesting test cases
 • Compile with several different compilers
 • Compare the results

• Over 3 years found several real bugs
 • 79 bugs in GCC (25 maximum-priority/release-blocking)
 • 202 bugs in LLVM

1Yang et al. Finding and Understanding Bugs in C Compilers, PLDI 2011
Verified compilation

- **CompCert**: (Xavier Leroy, primary developer of OCaml)
 - Optimizing C compiler, implemented and **proved correct** in the Coq proof assistant
 - Coq proof assistant an (essentially) implementation of a sophisticated type system (CoIC)

The striking thing about our CompCert results is that the middle-end bugs we found in all other compilers are absent

Verified compilation

- **CompCert**: (Xavier Leroy, primary developer of OCaml)
 - Optimizing C compiler, implemented and proved correct in the Coq proof assistant
 - Coq proof assistant an (essentially) implementation of a sophisticated type system (CoIC)

 The striking thing about our CompCert results is that the middle-end bugs we found in all other compilers are absent

 - Yang et al. *Finding and Understanding Bugs in C Compilers, 2011*

- At Princeton: **CertiCoq** (Andrew Appel)
 - CompCert is implemented the proof assistant Coq... but why should we trust the Coq compiler?
 - CertiCoq is an optimizing compiler for Coq, implemented and verified in Coq.
Automatic parallelization

• Moore’s law: processor advances double speed every 18 months
• (Proebsting’s law: compiler advances double speed every 18 years)
Automatic parallelization

- Moore’s law: processor advances double speed every 18 months
- (Proebsting’s law: compiler advances double speed every 18 years)
- Moore’s law ended in 2006 for single-threaded applications
 - Started to hit fundamental limits in how small transistors can be
- Processor manufacturers shifted to multi-core processors
Automatic parallelization

- Moore’s law: processor advances double speed every 18 months
- (Proebsting’s law: compiler advances double speed every 18 years)
- Moore’s law ended in 2006 for single-threaded applications
 - Started to hit fundamental limits in how small transistors can be
- Processor manufacturers shifted to *multi-core* processors
- Need new compiler technology to take advantage of multi-core – automatically find and exploit opportunities for parallel execution
- At Princeton: David August’s parallelization project
Program synthesis

- **Verification**: Given a program and a specification, prove that the program satisfies the specification
- **Synthesis**: Given a specification, find a program that satisfies the specification
- **Superoptimization**: find the least costly sequence of instructions that is equivalent to a given sequence
 - Specification is a program, but used as a black box
 - Solved by exhaustive search
 - Symbolic search (SAT,SMT), stochastic search (Markov-Chain Monte Carlo sampling)
- At Princeton: Synthesizing Lenses (David Walker), synthesis via logical games (Zak Kincaid)
Program analysis

- The goal of a program analysis is to answer questions about the run-time behavior of software
 - In compilers: data flow analysis, control flow analysis
 - Typical goal: determine whether an optimization is safe
- Research in program analysis has shifted to more sophisticated properties
 - Numerical analyses – e.g., find geometric regions that contain reachable values for integer variables. Can be used to verify absence of buffer overflows.
 - Shape analyses – determine whether a data structure in the heap is a list, a tree, a graph, ... Can be used to verify memory safety.
 - Resource analyses – e.g., find a conservative upper bound on the run-time complexity of a loop. Can be used to find timing side-channel attacks.
Program analysis

• The goal of a program analysis is to answer questions about the run-time behavior of software
 • In compilers: data flow analysis, control flow analysis
 • Typical goal: determine whether an optimization is safe
• Research in program analysis has shifted to more sophisticated properties
 • Numerical analyses – e.g., find geometric regions that contain reachable values for integer variables. Can be used to verify absence of buffer overflows.
 • Shape analyses – determine whether a data structure in the heap is a list, a tree, a graph, ... Can be used to verify memory safety.
 • Resource analyses – e.g., find a conservative upper bound on the run-time complexity of a loop. Can be used to find timing side-channel attacks.
• Industrial program analysis
 • Static Driver Verifier (Microsoft): finds bugs in device driver code
 • Infer (Facebook): proves memory safety & finds race conditions
 • Astrée (AbsInt): static analyzer for safety-critical embedded code (e.g., automotive & aerospace applications)
 • Several commercial static analyzers: Codesonar, Coverity, PVS-Studio, Fortify, ...
Program analysis at Princeton

- Synthesis, Learning, and Verification project (Aarti Gupta)
 - Idea: learn program invariants, termination arguments, etc from data

- My work on *algebraic program analysis*
 - Program analyses typically work by propagating information forwards through a program
 - Requires that we know the program's entry procedure
 - Analysis complexity is polynomial (or exponential, or worse) in program size
 - Changing one part of a codebase may change everything down-stream
 - We want analyses to be *compositional*
 - Analyze the program by breaking it into parts, analyzing each part, and then combining the results
Algebraic program analysis

Consists of:

1. **Semantic algebra** $\mathcal{D} = \langle D, \otimes, \oplus, *, 0, 1 \rangle$
 - D: Space of program properties
 - $\otimes: D \times D \to D$: sequencing operator
 - $\oplus: D \times D \to D$: choice operator
 - $*: D \to D$: iteration operator
 - $0, 1 \in D$: unit of \oplus, \otimes respectively

2. **Semantic function** $\mathcal{D}[:,] : Edge \to D$
Algebraic program analysis

Consists of:

1. **Semantic algebra** $\mathcal{D} = \langle D, \otimes, \oplus, *, 0, 1 \rangle$
 - D: Space of program properties
 - $\otimes: D \times D \rightarrow D$: sequencing operator
 - $\oplus: D \times D \rightarrow D$: choice operator
 - $*: D \rightarrow D$: iteration operator
 - $0, 1 \in D$: unit of \oplus, \otimes respectively

2. **Semantic function** $\mathcal{L}: Edge \rightarrow D$

 L: Space of program properties
 $\sqsubseteq L \times L$: approximation order
 $\sqcup: L \times L \rightarrow L$: join operator
 $\perp \in L$: least element
 $\mathcal{L}[\cdot] : Edge \rightarrow (L \rightarrow L)$
Algebraic program analysis

Consists of:

1. **Semantic algebra** $\mathcal{D} = \langle D, \otimes, \oplus, *, 0, 1 \rangle$
 - D: Space of program properties
 - $\otimes: D \times D \to D$: sequencing operator
 - $\oplus: D \times D \to D$: choice operator
 - $*: D \to D$: iteration operator
 - $0, 1 \in D$: unit of \oplus, \otimes respectively

2. **Semantic function** $\mathcal{D}[-] : \text{Edge} \to D$

Analyze a program by evaluating its syntax in a semantic algebra

$$\mathcal{D}[S_1; S_2] = \mathcal{D}[S_1] \otimes \mathcal{D}[S_2]$$

$$\mathcal{D}[\text{if}(*)\{S_1\}\text{else}\{S_2\}] = \mathcal{D}[S_1] \oplus \mathcal{D}[S_2]$$

$$\mathcal{D}[\text{while}(*)\{S\}] = (\mathcal{D}[P])^*$$
If a control flow edge e is an assignment $x := t$, then we say that e is a definition that defines x.

A definition e of a variable x reaches a vertex v if there exists a path from the root to v of the form:

No definitions to x
Iterative reaching definitions:

- \(L \triangleq 2^{\text{Def}} \)
- \(\mathcal{L}[e : x := t](R) \triangleq (R \setminus \{e' : e' \text{ defines } x\}) \cup \{e\} \)
- \(R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2 \)
- \(R_1 \sqcup R_2 \triangleq R_1 \cup R_2 \)
- \(\bot \triangleq \emptyset \)
Iterative reaching definitions:

- $L \triangleq 2^\text{Def}$
- $\mathcal{L}[e : x := t](R) \triangleq (R \setminus \{e' : e' \text{ defines } x\}) \cup \{e\}$
- $R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2$
- $R_1 \sqcup R_2 \triangleq R_1 \cup R_2$
- $\bot \triangleq \emptyset$

Algebraic reaching definitions:

- $D = (2^\text{Def}) \times (2^\text{Def})$
- $\mathcal{D}[e : x := t] \triangleq (\{e\}, \{e' : e' \text{ defines } x\})$
Iterative reaching definitions:

- \(L \triangleq 2^{\text{Def}} \)
- \(\mathcal{L}[e : x := t](R) \triangleq (R \setminus \{ e' : e' \text{ defines } x \}) \cup \{ e \} \)
- \(R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2 \)
- \(R_1 \sqcup R_2 \triangleq R_1 \cup R_2 \)
- \(\bot \triangleq \emptyset \)

Algebraic reaching definitions:

- \(D = (2^{\text{Def}}) \times (2^{\text{Def}}) \)
- \(\mathcal{D}[e : x := t] \triangleq (\{ e \}, \{ e' : e' \text{ defines } x \}) \)
- \((G_1, K_1) \otimes (G_2, K_2) \triangleq ((G_1 \setminus K_2) \cup G_2, (K_1 \setminus G_2) \cup K_2) \)
Iterative reaching definitions:

- $L \triangleq 2^{\text{Def}}$
- $\mathcal{L}[e : x := t](R) \triangleq (R \setminus \{e' : e' \text{ defines } x\}) \cup \{e\}$
- $R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2$
- $R_1 \sqcup R_2 \triangleq R_1 \cup R_2$
- $\bot \triangleq \emptyset$

Algebraic reaching definitions:

- $D = (2^{\text{Def}}) \times (2^{\text{Def}})$
- $\mathcal{D}[e : x := t] \triangleq (\{e\}, \{e' : e' \text{ defines } x\})$
- $(G_1, K_1) \otimes (G_2, K_2) \triangleq ((G_1 \setminus K_2) \cup G_2, (K_1 \setminus G_2) \cup K_2)$
- $(G_1, K_1) \oplus (G_2, K_2) \triangleq (G_1 \cup G_2, K_1 \cap K_2)$
Iterative reaching definitions:

- $L \triangleq 2^{\text{Def}}$
- $\mathcal{L}[e : x := t](R) \triangleq (R \setminus \{ e' : e' \text{ defines } x \}) \cup \{ e \}$
- $R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2$
- $R_1 \sqcup R_2 \triangleq R_1 \cup R_2$
- $\bot \triangleq \emptyset$

Algebraic reaching definitions:

- $D = (2^{\text{Def}}) \times (2^{\text{Def}})$
- $\mathcal{D}[e : x := t] \triangleq (\{ e \}, \{ e' : e' \text{ defines } x \})$
- $(G_1, K_1) \otimes (G_2, K_2) \triangleq ((G_1 \setminus K_2) \cup G_2, (K_1 \setminus G_2) \cup K_2)$
- $(G_1, K_1) \oplus (G_2, K_2) \triangleq (G_1 \cup G_2, K_1 \cap K_2)$
- $(G, K)^* \triangleq (G, \emptyset)$
while(*){
 if(*){
 \(x := 1;\)
 \(y := 1;\)
 } else {
 \(y := 2;\)
 }
}

\(x := 0;\)
while(*){
 if(*){
 x := 1;
 } else {
 y := 2;
 }
}
x := 0;

x1: x := 1;
\{{x1}, \{x1, x0\}\}
y1: y := 1; \{y1\}, \{y1, y2\}\)
 } else {
 y := 2;
 }
}
}
x0: x := 0;
while(*){
 if(*){
 x := 1;
 y := 1;
 } else {
 y := 2;
 }
}

x := 0;
while(*){
 if(*){
 x := 1;
 y := 1;
 } else {
 y := 2;
 }
}

x0 : x := 0;
while(*){
 if(*){
 \(x := 1; \)
 \(y := 1; \)
 } else {
 \(y := 2; \)
 }
}\((\{x_1, y_1, y_2\}, \{y_1, y_2\}) \)
\(x_0 : x := 0; \)
while(*){
 if(*){
 x := 1;
 y := 1;
 } else {
 y := 2;
 }
}

x_0 : x := 0;

\{ (\{ x_1, y_1, y_2 \}, \emptyset) \}
\[
\text{while}(\ast)\{
\quad \text{if}(\ast)\{
\quad \quad x := 1;
\quad \quad y := 1;
\quad \} \quad \text{else} \quad \{
\quad \quad y := 2;
\quad \}
\}
\]

\[
x_1 : \quad x := 0;
\]

\[
(y_1 : \quad y := 1; \quad (\{x_1, y_1, y_2\}, \emptyset))
\]

\[
(y_2 : \quad y := 2; \quad (\{x_0\}, \{x_0, x_1\}))
\]
while(*){
 if(*){
 \texttt{x := 1;}
 \texttt{y := 1;}
 } else {
 \texttt{y := 2;}
 }
}
\texttt{x := 0;}
Let $G = \langle \text{Loc}, \text{Edge}, s \rangle$ be a control flow graph. A **path expression** of G is a regular expression E over the alphabet Edge such that each word recognized by E corresponds to a path in G.

$$E, F \in \text{RegExp}(G) ::= e \in \text{Edge} \mid E + F \mid EF \mid E^* \mid 0 \mid 1$$
Let $G = \langle \text{Loc}, \text{Edge}, s \rangle$ be a control flow graph.

A path expression of G is a regular expression E over the alphabet Edge such that each word recognized by E corresponds to a path in G.

$$E, F \in \text{RegExp}(G) ::= e \in \text{Edge} \mid E + F \mid EF \mid E^* \mid 0 \mid 1$$

If $u, v \in \text{Loc}$ are control locations, a path expression from u to v is a path expression that recognizes the set of all paths from u to v in G.
x := 0
n := 10
i := 0

outer: if(i >= n):
 goto end
 i := i + 1

inner: j := 0
if(*):
 if(*):
 x := x + 1
 j := j + 1
 if(j < n):
 goto inner
 goto end
 goto outer

end: assert(x <= 100)
x := 0
n := 10
i := 0

outer: if(i >= n):
 goto end
 i := i + 1

inner: j := 0
 if(*):
 x := x + 1
 j := j + 1
 if(j < n):
 goto inner
 goto outer

end: assert(x <= 100)
\[
x := 0
\]
\[
n := 10
\]
\[
i := 0
\]
\[
\text{outer: if}(i \geq n):
\]
\[
\quad \text{goto end}
\]
\[
\quad i := i + 1
\]
\[
\text{inner: j := 0}
\]
\[
\quad \text{if}(\ast):
\]
\[
\quad \quad x := x + 1
\]
\[
\quad \quad j := j + 1
\]
\[
\quad \quad \text{if}(j < n):
\]
\[
\quad \quad \quad \text{goto inner}
\]
\[
\quad \quad \text{goto outer}
\]
\[
\text{end: assert}(x \leq 100)
\]
\begin{align*}
x &:= 0 \\
n &:= 10 \\
i &:= 0 \\
outer: & \text{ if}(i \geq n): \\
 & \quad \text{ goto end} \\
i &:= i + 1 \\
inner: & \quad j := 0 \\
 & \quad \text{ if}(\star): \\
 & \quad \quad x := x + 1 \\
j &:= j + 1 \\
 & \quad \text{ if}(j < n): \\
 & \quad \quad \text{ goto inner} \\
 & \quad \quad \text{ goto outer} \\
end: & \quad \text{ assert}(x \leq 100)
\end{align*}
x := 0
n := 10
i := 0
outer: if(i >= n):
 goto end
 i := i + 1
inner: j := 0
 if(*):
 x := x + 1
 j := j + 1
 if(j < n):
 goto inner
 goto outer
end: assert(x <= 100)
\[
x := 0 \\
\text{n} := 10 \\
i := 0 \\
\text{outer: if}(i \geq n): \\
\quad \text{goto}\ \text{end}
\]
\[
i := i + 1
\]
\[
\text{inner: j} := 0 \\
\text{if\star: if}(\star):
\quad \text{x} := x + 1
\]
\[
j := j + 1 \\
\text{if}(j < n):
\quad \text{goto}\ \text{inner}
\]
\[
\text{goto}\ \text{outer}
\]
\[
\text{end: assert\!(x \leq 100)}
\]
x := 0
n := 10
i := 0
outer: if (i >= n):
 goto end
 i := i + 1
inner: j := 0
if (*):
 x := x + 1
 j := j + 1
if (j < n):
 goto inner
 goto outer
end: assert (x <= 100)

Path expression: from s to end
x := 0
n := 10
i := 0
outer: if(i >= n):
 goto end
 i := i + 1
inner: j := 0
 if(*):
 x := x + 1
 j := j + 1
 if(j < n):
 goto inner
 goto outer
 goto outer
end: assert(x <= 100)
Running an algebraic program analysis

1. Compute a *path expression* from the program entry to each vertex
2. Evaluate the path expressions in the *semantic algebra* defining the analysis.

\[
\mathcal{D}[S_1S_2] = \mathcal{D}[S_1] \otimes \mathcal{D}[S_2] \\
\mathcal{D}[S_1 + S_2] = \mathcal{D}[S_1] \oplus \mathcal{D}[S_2] \\
\mathcal{D}[S^*] = (\mathcal{D}[P])^*
\]
Running an algebraic program analysis

1. Compute a *path expression* from the program entry to each vertex
2. Evaluate the path expressions in the *semantic algebra* defining the analysis.

\[
\begin{align*}
\mathcal{D}[S_1 S_2] &= \mathcal{D}[S_1] \times \mathcal{D}[S_2] \\
\mathcal{D}[S_1 + S_2] &= \mathcal{D}[S_1] \oplus \mathcal{D}[S_2] \\
\mathcal{D}[S^*] &= (\mathcal{D}[P])^*
\end{align*}
\]

Tarjan’s algorithm [Tarjan ’81]: do both steps & avoid repeated work
What next?

- COS 375: Computer Architecture and Organization
- COS 326: Functional Programming
- COS 510: Programming Languages
- COS 516: Automated Reasoning about Software
Thanks!