COS320: Compiling Techniques

Zak Kincaid

April 26, 2019
Static Single Assignment form
SSA

• Each %uid appears on the left-hand-side of at most one assignment in a CFG

```plaintext
if (x < 0) {
    y := y - x;
} else {
    y := y + x;
}
return y
```

→

```plaintext
if (x_0 < 0) {
    y_1 := y_0 - x_0;
} else {
    y_2 := y_0 + x_0;
}
y_3 := \phi(y_1, y_2)
return y_3
```

• Recall: \(y_3 := \phi(y_1, y_2) \) picks either \(y_1 \) or \(y_2 \) (whichever one corresponds to the branch that is actually taken) and stores it in \(y_3 \)

• Well-formedness condition:
 • If \(\%x \) is the \(i \)th argument of a \(\phi \) function in a block \(n \), then the definition of \(\%x \) must dominate the \(i \)th predecessor of \(n \).
 • If \(\%x \) is used in a non-\(\phi \) statement in block \(n \), then the definition of \(\%x \) must dominate \(n \).
 • Essentially: no using uninitialized uids. More on dominance later.
Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many “subscripted” variables x_1, x_2, x_3, \ldots
 - (At least) one for each definition of x
 - Each x_i can potentially be stored in a different memory location
Register allocation

• SSA form reduces register pressure
 • Each variable x is replaced by potentially many “subscripted” variables $x_1, x_2, x_3, ...$
 • (At least) one for each definition of x
 • Each x_i can potentially be stored in a different memory location

• Interference graphs for SSA programs are chordal (every cycle contains a chord)
 • Chordal graphs can be colored optimally in polytime
 • (But optimal translation out of SSA form is intractable)
SSA admits a very simple algorithm for eliminating assignment instructions that are never used:

```plaintext
while some %x has no uses do
  Remove definition of %x from CFG;

• Note: does not eliminate dead stores
```
Recall: constant propagation

- Let $G = (N, E, s)$ be a control flow graph.
- cp is the smallest\(^1\) function such that
 - $cp(s) = \{ x_1 \mapsto \top, \ldots, x_n \mapsto \top \}$
 - For each $p \rightarrow n \in E$, $\text{post}(p, cp(p)) \leq cp(n)$

$p(s) = \{ x_1 \mapsto \top, \ldots, x_n \mapsto \top \}$;
$p(n) = \{ x_1 \mapsto \bot, \ldots, x_n \mapsto \bot \}$ for all other nodes;
$work \leftarrow N \setminus \{ s \}$;

\[
\text{while } work \neq \emptyset \text{ do}
\]
 \[
 \begin{align*}
 &\text{Pick some } n \text{ from work;} \\
 &work \leftarrow work \setminus \{ n \}; \\
 &C \leftarrow \bigcup_{p \in \text{pred}(n)} \text{post}(p, cp(p)); \\
 &\text{if } C \neq cp(n) \text{ then} \\
 &\quad cp(n) \leftarrow C; \\
 &work \leftarrow work \cup \text{succ}(n)
 \end{align*}
\]\n
\(^1\)Pointwise order: $f \leq g$ if for all nodes n and all variables x, $f(n)(x) \leq g(n)(x)$
(Dense) constant propagation performance

- **Memory requirements**: $O(|N| \cdot |Var|)$
- **Height** of the abstract domain (length of longest strictly ascending sequence): $|Var|$
- **Time requirements**: $O(|N| \cdot |Var|)$
- Can we do better?
Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
 - Don’t need to store the value of every variable at every program point
- Define $\text{rhs}(\%x)$ to be the right hand side of the unique assignment to $\%x$
- Define $\text{succ}(\%x) = \{ \%y : \text{rhs}(\%y) \text{ reads } \%x \}$
• *scp* is the smallest function \(\text{Uid} \to \mathbb{Z} \cup \{ \top, \bot \} \) such that

 • If \(G \) contains no assignments to \(%x \), then \(\text{scp}(%x) = \top \)

 • For each instruction \(%x = e \), \(\text{scp}(%x) = \text{eval}(e, \text{scp}) \)

\[
\text{scp}(%x) = \begin{cases}
\bot & \text{if } %x \text{ has an assignment} \\
\top & \text{otherwise}
\end{cases}
\]

\(\text{work} \leftarrow \{ %x \in \text{Uid} : %x \text{ is defined}; \right. \)

while \(\text{work} \neq \emptyset \) do

 Pick some \(%x \) from work;
 \(\text{work} \leftarrow \text{work} \setminus \{ %x \} ; \)

 if \(\text{rhs}(%x) = \phi(%y, %z) \) then
 \(v \leftarrow \text{scp}(%y) \sqcup \text{scp}(%z) \)
 else
 \(v \leftarrow \text{eval}(\text{rhs}(%x), \text{scp}) \)

 if \(v \neq \text{scp}(%x) \) then
 \(\text{scp}(%x) \leftarrow v, \)
 \(\text{work} \leftarrow \text{work} \cup \text{succ}(%x) \)
However, observe that we only find constants for uids, not stack slots.

- Again: advantageous to use uids to represent variable whenever possible
Dominance

• Let $G = (N, E, s)$ be a control flow graph
• We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 • Every node dominates itself
 • d strictly dominates n if d is not n
 • d immediately dominates n if d strictly dominates n and d does not strictly dominate any strict dominator of n.
• Observe: dominance is a partial order on N
 • Every node dominates itself (reflexive)
 • If n_1 dominates n_2 and n_2 dominates n_3 then n_1 dominates n_3 (transitive)
 • If n_1 dominates n_2 and n_2 dominates n_1 then n_1 must be n_2 (anti-symmetric)
If we draw an edge from every node to its immediate dominator, we get a data structure called the *dominator tree*.
Let $G = (N, E, s)$ be a control flow graph.

Define dom to be a function mapping each node $n \in N$ to the set $\text{dom}(n) \subseteq N$ of nodes that dominate it

Local specification: dom is the largest (equiv. least in superset order) function such that

- $\text{dom}(s) = \{s\}$
- For each $p \rightarrow n \in E$, $\text{dom}(n) \subseteq \{n\} \cup \text{dom}(p)$
SSA construction

- In SSA, each use of a variable must be linked to a single corresponding definition.
- If multiple definitions reach a single use, then they must be merged using a ϕ (phi) node.

```
y := 0;
while (x >= 0) {
    x := x - 1;
    y := y + x;
}
return y
```

```
y0 := 0;
while (true) {
    x2 = $\phi$(x0, x1)
    y2 = $\phi$(y0, y1)
    if (x2 < 0) break;
    x1 := x2 - 1;
    y1 := y2 + x1;
}
return y2
```
• Easy, inefficient solution: place a ϕ statement for each variable location at each *join point*

 • A *join point* is a node in the CFG with more than one predecessor

• Better solution: place a ϕ statement for variable x at location n exactly when the following *path convergence criterion* holds: there exist a pair of non-empty paths P_1, P_2 ending at n such that
 1. The start node of both P_1 and P_2 defines x^2
 2. The only node shared by P_1 and P_2 is n

• The path convergence criterion can be implemented using the concept of *dominance frontiers*

2 The entry node of the CFG is considered to be an implicit definition of every variable
The dominance frontier of a node n is the set of all nodes m such that n dominates a predecessor of m, but does not dominate strictly dominate m itself.

- $DF(n) = \{ m : (\exists p \in Pred(m). n \in dom(p)) \land (m = n \lor n \notin dom(m)) \}$

- Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ function for $\%x$.
Control Flow Graph

1
↓
2
3
4
5
6
7

Dominator tree

1
↑
2
3
4
5
6
7

\[DF(1) = \emptyset \]
• $DF(1) = \emptyset$
• $DF(2) = \{2\}$
Control Flow Graph

Dominator tree

• $DF(1) = \emptyset$
• $DF(2) = \{2\}$
• $DF(3) = \{3, 6\}$
- $DF(1) = \emptyset$
- $DF(2) = \{2\}$
- $DF(3) = \{3, 6\}$
- $DF(4) = \{6\}$
- $DF(5) = \{6\}$
- $DF(6) = \{2\}$
Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ statement for $\%x$.
- *But*, that is not the only place where ϕ statements are needed.
Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid %x, then any node m in the dominance frontier of n needs a ϕ statement for %x.

• But, that is not the only place where ϕ statements are needed.
Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid $\%x$, then any node m in the dominance frontier of n needs a ϕ statement for $\%x$.
- But, that is not the only place where ϕ statements are needed
SSA construction

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$

- Define the iterated dominance frontier $IDF(M) = \bigcup IDF_i(M)$, where
 - $IDF_0(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$

- For any node x, let $Def(x)$ be the set of nodes that define x
- Insert a ϕ statement for x at every node in $IDF(Def(x))$
Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code.
- For each ϕ statement $\%x = \phi(\%x_1, \ldots, \$x_k)$ in block n, n must have exactly k predecessors p_1, \ldots, p_k.
- Insert a new block along each edge $p_i \rightarrow n$ which executes $\%x = \%x_i$ (program no longer satisfies SSA property!)
- Using a graph coalescing register allocator, often possible to eliminate the resulting move instructions.